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Abstract. We propose a deep-learning-based framework for multimodal
sentiment analysis and emotion recognition. In particular, we leverage
on the power of convolutional neural networks to obtain a performance
improvement of 10% over the state of the art by combining visual,
text and audio features. We also discuss some major issues frequently
ignored in multimodal sentiment analysis research, e.g., role of speaker-
independent models, importance of different modalities, and generaliz-
ability. The framework illustrates the different facets of analysis to be
considered while performing multimodal sentiment analysis and, hence,
serves as a new benchmark for future research in this emerging field.
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1 Introduction

Emotion recognition and sentiment analysis have become a new trend in social
media analytics because of the immense opportunities they offer in terms of
understanding preferences and habits of users and their contents [1]. With the
advancement of communication technology, abundance of smartphones and the
rapid rise of social media, a larger and larger amount of data is being uploaded
in video, rather than text, format [2]. For example, consumers tend to record
their reviews and opinions on products using a web camera and upload them on
social media platforms such as YouTube or Facebook to inform subscribers of
their views. Such videos often contain comparisons of products from competing
brands, pros and cons of product specifications, and other information that can
aid prospective buyers to make informed decisions.

The primary advantage of analyzing videos over mere text analysis for detect-
ing emotions and sentiment from opinions is the surplus of behavioral cues. Video
provides multimodal data in terms of vocal and visual modalities. The vocal
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modulations and facial expressions in the visual data, along with text data, pro-
vide important cues to better identify true affective states of the opinion holder.
Thus, a combination of text and video data helps to create a better emotion and
sentiment analysis model.

Recently, a number of approaches to multimodal sentiment analysis produc-
ing interesting results have been proposed [3–7]. However, there are major issues
that remain unaddressed in this field, such as the role of speaker-dependent and
speaker-independent models, the impact of each modality across datasets, and
generalization ability of a multimodal sentiment classifier. Not tackling these
issues has presented difficulties in effective comparison of different multimodal
sentiment analysis methods. In this paper, we address some of these issues and,
in particular, propose a novel framework that outperforms the state of the art
on benchmark datasets by more than 10%. We use a deep convolutional neural
network (CNN) to extract features from visual and text modalities.

The paper is organized as follows: Sect. 2 provides a brief literature review on
multimodal sentiment analysis; Sect. 3 presents the proposed framework; exper-
imental results and discussion are given in Sect. 4; Sect. 5 proposes a qualitative
analysis; finally, Sect. 6 concludes the paper.

2 Related Work

Text-based sentiment analysis systems can be broadly categorized into
knowledge-based and statistics-based systems [8]. While the use of knowledge
bases was initially more popular for the identification of emotions and polarity
in text [9,10], sentiment analysis researchers have recently been using statistics-
based approaches, with a special focus on supervised statistical methods [11–13].

In 1970, Ekman et al. [14] carried out extensive studies on facial expres-
sions. Their research showed that universal facial expressions are able to pro-
vide sufficient clues to detect emotions. Recent studies on speech-based emotion
analysis [15] have focused on identifying relevant acoustic features, such as fun-
damental frequency (pitch), intensity of utterance, bandwidth, and duration.

As to fusing audio and visual modalities for emotion recognition, two of the
early works were done by De Silva et al. [16] and Chen et al. [17]. Both works
showed that a bimodal system yielded a higher accuracy than any unimodal
system. More recent research on audio-visual fusion for emotion recognition has
been conducted at either feature level [18] or decision level [19].

While there are many research papers on audio-visual fusion for emotion
recognition, only a few research works have been devoted to multimodal emotion
or sentiment analysis using text clues along with visual and audio modalities.
Wollmer et al. [4] and Rozgic et al. [20] fused information from audio, visual
and text modalities to extract emotion and sentiment. Metallinou et al. [21] and
Eyben et al. [22] fused audio and text modalities for emotion recognition. Both
approaches relied on feature-level fusion. Wu et al. [23] fused audio and textual
clues at decision level.

In this paper, we propose CNN-based framework for feature extraction from
visual and text modality and a method for fusing them for multimodal sentiment
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analysis. In addition, we study the behavior of our method in the aspects rarely
addressed by other authors, such as speaker independence, generalizability of
the models and performance of individual modalities.

3 Method

3.1 Textual Features

For feature extraction from textual data, we used a CNN. The trained CNN
features were then fed into a support vector machine (SVM) for classification,
i.e., we used CNN as trainable feature extractor and SVM as a classifier (Fig. 1).

The idea behind convolution is to take the dot product of a vector of k
weights wk, known as kernel vector, with each k-gram in the sentence s(t) to
obtain another sequence of features c(t) = (c1(t), c2(t), . . . , cL(t)):

cj = wT
k · xi:i+k−1. (1)

We then apply a max pooling operation over the feature map and take the
maximum value ĉ(t) = max{c(t)} as the feature corresponding to this particular
kernel vector. We used varying kernel vectors and window sizes to obtain multiple
features.

For each word xi(t) in the vocabulary, a d-dimensional vector representation,
called word embedding, was given in a look-up table that had been learned from
the data [24]. The vector representation of a sentence was a concatenation of the
vectors for individual words. The convolution kernels are then applied to word
vectors instead of individual words. Similarly, one can have look-up tables for
features other than words if these features are deemed helpful.

We used these features to train higher layers of the CNN to represent bigger
groups of words in sentences. We denote the feature learned at a hidden neuron
h in layer l as F l

h. Multiple features are learned in parallel at the same CNN
layer. The features learned at each layer are used to train the next layer:

F l =
∑nh

h=1
wh

k ∗ F l−1, (2)

where * denotes convolution, wk is a weight kernel for hidden neuron h and
nh is the total number of hidden neurons. The CNN sentence model preserves
the order of words by adopting convolution kernels of gradually increasing sizes,
which span an increasing number of words and ultimately the entire sentence.

Each word in a sentence was represented using word embeddings. We
employed the publicly available word2vec vectors, which were trained on 100
billion words from Google News. The vectors were of dimensionality d = 300,
trained using the continuous bag-of-words architecture [24]. Words not present
in the set of pre-trained words were initialized randomly.

Each sentence was wrapped to a window of 50 words. Our CNN had two con-
volution layers. A kernel size of 3 and 4, each of them having 50 feature maps was
used in the first convolution layer and a kernel size 2 and 100 feature maps in the
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second one. We used ReLU as the non-linear activation function of the network.
The convolution layers were interleaved with pooling layers of dimension 2. We
used the activation values of the 500-dimensional fully-connected layer of the
network as our feature vector in the final fusion process.

Fig. 1. CNN for feature extraction from text modality.

3.2 Audio Features

We automatically extracted audio features from each annotated segment of the
videos. Audio features were also extracted in 30Hz frame-rate; we used a sliding
window of 100 ms. To compute the features, we used the open-source software
openSMILE [25]. This toolkit automatically extracts pitch and voice intensity.
Voice normalization was performed and voice intensity was thresholded to iden-
tify samples with and without voice. Z-standardization was used to perform voice
normalization.

The features extracted by openSMILE consist of several low-level descriptors
(LLD) and their statistical functionals. Some of the functionals are amplitude
mean, arithmetic mean, root quadratic mean, etc. Taking into account all func-
tionals of each LLD, we obtained 6373 features.

3.3 Visual Features

Since the video data is very large, we only considered every tenth frame in our
training videos. The constrained local model (CLM) was used to find the outline
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of the face in each frame [26]. The cropped frame size was further reduced by
scaling down to a lower resolution, thus creating our new frames for the video.
In this way, we could drastically reduce the amount of training video data. The
frames were then passed through a CNN architecture similar to Fig. 1.

Neuron with Highly Activated Features of Forehead and Mouth

Neuron with Highly Activated Features of Eyes and Ear

Fig. 2. Top image segments activated at two feature detectors in the first layer of a
deep CNN

To capture the temporal dependence of the images constituting the video,
we transformed each pair of consecutive images at t and t+1 into a single image
and provided this transformed image as input to the multilevel CNN. We used
kernels of varying dimensions to learn Layer-1 2D features (shown in Fig. 2) from
the transformed input. Similarly, the second layer also used kernels of varying
dimensions to learn 2D features. The down-sampling layer transformed features
of different kernel sizes into uniform 2D features and was then followed by a
logistic layer of neurons.

Pre-processing involved scaling all video frames to half of their resolution.
Each pair of consecutive video frames were converted into a single frame to
achieve temporal convolution features. All frames were standardized to 250×500
pixels by padding with zeros.

The first convolution layer contained 100 kernels of size 10 × 20; the next
convolution layer had 100 kernels of size 20 × 30; this layer was followed by a
logistic layer of fully connected 300 neurons and a softmax layer. The convolution
layers were interleaved with pooling layers of dimension 2 × 2. The activation
of the neurons in the logistic layer were taken as the video features for the
classification task.

3.4 Fusion

In order to fuse the information extracted from each modality, we concatenated
feature vectors extracted from each modality and sent the combined vector to a
SVM for the final decision. This scheme of fusion is called feature-level fusion.
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Since the fusion involved concatenation and no overlapping merge or combi-
nation, scaling and normalization of the features were avoided. We discuss the
results of this fusion in Sect. 4. The overall architecture of the proposed method
can be seen in Fig. 3.

Fig. 3. Overall architecture of the proposed method.

4 Experiments and Observations

4.1 Datasets

Multimodal Sentiment Analysis Datasets. For our experiments, we used
the MOUD dataset, developed by Perez-Rosas et al. [3]. They collected 80 prod-
uct review and recommendation videos from YouTube. Each video was seg-
mented into its utterances (498 in total) and each of these was categorized by
a sentiment label (positive, negative and neutral). On average, each video has
6 utterances and each utterance is 5 s long. In our experiment, we did not con-
sider neutral labels, which led to the final dataset consisting of 448 utterances.
We dropped the neutral label to maintain consistency with previous work. In
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a similar fashion, Zadeh et al. [27] constructed a multimodal sentiment analy-
sis dataset called multimodal opinion-level sentiment intensity (MOSI), which is
bigger than MOUD, consisting of 2199 opinionated utterances, 93 videos by 89
speakers. The videos address a large array of topics, such as movies, books, and
products. In the experiment to address the generalizability issues, we trained a
model on MOSI and tested on MOUD.

Multimodal Emotion Recognition Dataset. The IEMOCAP database [28]
was collected for the purpose of studying multimodal expressive dyadic interac-
tions. This dataset contains 12 h of video data split into 5min of dyadic interac-
tion between professional male and female actors. Each interaction session was
split into spoken utterances. At least 3 annotators assigned to each utterance
one emotion category: happy, sad, neutral, angry, surprised, excited, frustration,
disgust, fear and other. In this work, we considered only the utterances with
majority agreement (i.e., at least two out of three annotators labeled the same
emotion) in the emotion classes of angry, happy, sad, and neutral. We take only
these four classes for comparison with the state of the art [29] and other authors.

4.2 Speaker-Independent Experiment

Most of the research in multimodal sentiment analysis is performed on datasets
with speaker overlap in train and test splits. Given this overlap, however, results
do not scale to true generalization. In real-world applications, the model should
be robust to person variance. Thus, we performed person-independent exper-
iments to emulate unseen conditions. This time, our train/test splits of the
datasets were completely disjoint with respect to speakers. While testing, our
models had to classify emotions and sentiments from utterances by speakers
they have never seen before. Below, we enlist the procedure of this speaker-
independent experiment:

– IEMOCAP: As this dataset contains 10 speakers, we performed a 10-fold
speaker-independent test, where in each round, one of the speaker was in the
test set. The same SVM model was used as before and macro F-score was
used as a metric.

– MOUD: This dataset contains videos of about 80 people reviewing various
products in Spanish. Each utterance in the video has been labeled as positive,
negative or neutral. In our experiments, we consider only positive and negative
sentiment labels. The speakers were divided into 5 groups and a 5-fold person-
independent experiment was run, where in every fold one out of the five group
was in the test set. Finally, we took average of the macro F-score to summarize
the results (Table 1).

– MOSI: The MOSI dataset is a dataset rich in sentimental expressions where
93 people review topics in English. The videos are segmented with each seg-
ment’s sentiment label scored between +3 to −3 by 5 annotators. We took the
average of these labels as the sentiment polarity and, hence, considered only
two classes (positive and negative). Like MOUD, speakers were divided into
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5 groups and a 5-fold person-independent experiment was run. During each
fold, about 75 people were in the training set and the remaining in the test
set. The training set was further split randomly into 80%–20% and shuffled
to generate train and validation splits for parameter tuning.

Comparison with the Speaker-Dependent Experiment. In comparison
with the speaker-dependent experiment, the speaker-independent experiment
performs poorly. This is due to the lack of knowledge about speakers in the
dataset. Table 2 shows the performance obtained in the speaker-dependent exper-
iment. It can be seen that audio modality consistently performs better than
visual modality in both MOSI and IEMOCAP datasets. The text modality plays
the most important role in both emotion recognition and sentiment analysis. The
fusion of the modalities shows more impact for emotion recognition than for sen-
timent analysis. Root mean square error (RMSE) and TP-rate of the experiments
using different modalities on IEMOCAP and MOSI datasets are shown in Fig. 4.

Table 1. Speaker-Independent: Macro F-score reported for speaker-independent
classification. IEMOCAP: 10-fold speaker-independent average. MOUD: 5-fold
speaker-independent average. MOSI: 5-fold speaker-independent average. Legenda: A
stands for Audio, V for Video, T for Text.

Modality Source IEMOCAP MOUD MOSI

Unimodal A 51.52 53.70 57.14

V 41.79 47.68 58.46

T 65.13 48.40 75.16

Bimodal T + A 70.79 57.10 75.72

T + V 68.55 49.22 75.06

A + V 52.15 62.88 62.4

Multimodal T + A + V 71.59 67.90 76.66

4.3 Contributions of the Modalities

As expected, bimodal and trimodal models have performed better than unimodal
models in all experiments. Overall, audio modality has performed better than
visual on all datasets. Except for MOUD dataset, the unimodal performance of
text modality is notably better than other two modalities (Fig. 5). Table 2 also
presents the comparison with state of the art. The present method outperformed
the state of the art by 12% and 5% on the IEMOCAP and MOSI datasets,
respectively.1 The method proposed by Poria et al. is similar to ours, except
for the fact they used a standard CLM-based facial feature extraction method.
Hence, our proposed CNN-based visual feature extraction algorithm has helped
to outperform the method by Poria et al.
1 We have reimplemented the method by Poria et al. [5].
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Table 2. Speaker-Dependent: Ten-fold cross-validation results on IEMOCAP
dataset and 5-fold CV results (macro F-score) on MOSI dataset.

Modality Source IEMOCAP MOSI

Unimodal Audio 66.20 64.00

Video 60.30 62.11

Text 67.90 78.00

Bimodal Text + Audio 78.20 76.60

Text + Video 76.30 78.80

Audio + Video 73.90 66.65

Multimodal Text + Audio + Video 81.70 78.80

Text + Audio + Video 69.35a 73.55b

aBy [29]; bBy [5]

Fig. 4. Experiments on IEMOCAP and MOSI datasets. The top-left figure shows the
RMSE of the models on IEMOCAP and MOSI. The top-right figure shows the dataset
distribution. Bottom-left and bottom-right figures present TP-rate on of the models
on IEMOCAP and MOSI dataset, respectively.

4.4 Generalizability of the Models

To test the generalization ability of the models, we have trained the framework
on MOSI dataset in speaker-independent fashion and tested on MOUD dataset.
From Table 3, we can see that the trained model on MOSI dataset performed
poorly on MOUD dataset.
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Fig. 5. Performance of the modalities on the datasets. Red line indicates the median
of the F-score.

Table 3. Cross-dataset results: Model (with previous configurations) trained on
MOSI dataset and tested on MOUD dataset.

Modality Source Macro F-score

Unimodal Audio 41.60 %

Video 45.50 %

Text 50.89 %

Bimodal Text + Audio 51.70 %

Text + Video 52.12 %

Audio + Video 46.35 %

Multimodal Text + Audio + Video 52.44 %

This is mainly due to the fact that reviews in MOUD dataset had been
recorded in Spanish so both audio and text modalities miserably fail in recog-
nition, as MOSI dataset contains reviews in English. A more comprehensive
study would be to perform generalizability tests on datasets in the same lan-
guage. However, we were unable to do this for the lack of benchmark datasets.
Also, similar experiments of cross-dataset generalization was not performed on
emotion detection given the availability of only a single dataset (IEMOCAP).

4.5 Visualization of the Datasets

MOSI visualizations present information regarding dataset distribution within
single and multiple modalities (Fig. 6). For the textual and audio modalities,
comprehensive clustering can be seen with substantial overlap. However, this
problem is reduced in the video and all modalities with structured declustering
but overlap is reduced only in multimodal. This forms an intuitive explanation of
the improved performance in the multimodality. IEMOCAP visualizations pro-
vide insight for the 4-class distribution for uni and multimodals, where clearly the
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Fig. 6. T-SNE 2D visualization of MOSI and IEMOCAP datasets when unimodal
features and multimodal features are used.

multimodal distribution has the least overlap (increase in red and blue visuals,
apart from the rest) with sparse distribution aiding the classification process.

5 Qualitative Analysis

In order to have a better understanding of roles of modalities for the overall
classification, we performed a qualitative analysis. Here, we show the cases where
our model successfully comprehends the semantics of the utterances and, with
aid from the multiple media, correctly classifies the emotion of the same.

While overviewing the correctly classified utterances in the validation set,
we found out that text modality often helped the classification of utterances
where visual and audio cues were flat with less variance. In such situations, the
model gathered information from the language semantics extracted by the text
modality. For example, in an utterance from the MOSI dataset “amazing special
effects”, there was no jest of enthusiasm in speaker’s voice and face audio-visual
classifier, which caused failure to identify the positivity of this utterance by
the audio and video unimodal classifiers. The text classifier, instead, correctly
detected the polarity as positive (given the presence of highly polar words) and,
hence, helped the bimodal and multimodal classifiers to correctly classify the
utterance.

The text modality also helped in situations where the face of the reviewer was
not visible (which happens quite often in product reviews). Even in cases where
the text modality led to a misclassification (e.g., due to the presence of misleading
linguistic cues), the overall classification was correct thanks to the audio and
video inputs. For example, the text classifier classified the sentence “that like
to see comic book characters treated responsibly” as positive (possibly because
of the presence of positive phrases such as “like to see” and “responsibly”);
however, the high pitch of anger in the person’s voice and the frowning face
helps to identify this as a negative utterance.

The above examples demonstrate the effectiveness and robustness of our
model to capture overall video semantics of the utterances for emotion and sen-
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timent detection. They also show how bimodal and multimodal models overcome
the limitations of unimodal networks, given the multiple media input.

We also explored the misclassified validation utterances and found some inter-
esting trends. Most videos consist of a group of utterances that have contextual
dependencies among them. Thus, our model failed to classify utterances whose
emotional polarity was highly dependent on the context described in an earlier
or later part of the video. The modeling of such an inter-dependence, however,
was out of the scope of this paper and, hence, we left it to future work.

6 Conclusion

We have presented a framework (available as demo2) for multimodal sentiment
analysis and multimodal emotion recognition, which outperforms the state of
the art in both tasks by a significant margin. We also discussed some major
aspects of multimodal sentiment analysis problem such as the performance of
speaker-independent models and cross-dataset performance of the models.

Our future work will focus on extracting semantics from the visual features,
relatedness of the cross-modal features and their fusion. We will also include con-
textual dependency learning in our model to overcome the limitations mentioned
in the previous section.
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