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a b s t r a c t

Between the dawn of the Internet through year 2003, there were just a few dozens exabytes of
information on the Web. Today, that much information is created weekly. The opportunity to capture the
opinions of the general public about social events, political movements, company strategies, marketing
campaigns, and product preferences has raised increasing interest both in the scientific community, for
the exciting open challenges, and in the business world, for the remarkable fallouts in marketing and
financial prediction. Keeping up with the ever-growing amount of unstructured information on the Web,
however, is a formidable task and requires fast and efficient models for opinion mining. In this paper, we
explore how the high generalization performance, low computational complexity, and fast learning
speed of extreme learning machines can be exploited to perform analogical reasoning in a vector space
model of affective common-sense knowledge. In particular, by enabling a fast reconfiguration of such a
vector space, extreme learning machines allow the polarity associated with natural language concepts to
be calculated in a more dynamic and accurate way and, hence, perform better concept-level sentiment
analysis.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ways people express their opinions and sentiments have
radically changed in the past few years thanks to the advent of
social networks, web communities, blogs, wikis, and other online
collaborative media. Actually, the availability of these new tools
allow people to create and share, in a time and cost efficient way,
their own contents, ideas, and opinions with virtually the millions
of people connected to the World Wide Web. This has made
available by click a huge source of information and opinions and
has provided a powerful communication medium to share knowl-
edge and to get advantage from others' experiences. As a major
consequence, the distillation of knowledge from this huge amount
of unstructured information can be a key factor for marketers who
want to create an image or identity in the minds of their
customers for their product, brand, or organization.

On the other hand, these online social data remain hardly
accessible to computers, as they are specifically meant for human
consumption. Online information retrieval is still mainly based on
algorithms relying on the textual representation of web pages.
Such algorithms are very good at retrieving texts, splitting them

into parts, checking the spelling, and counting their words. But
when it comes to interpreting sentences and extracting useful
information for users, their capabilities are still very limited.

Indeed, such scenario has led to the emerging fields of opinion
mining and sentiment analysis [1–3], which deal with information
retrieval and knowledge discovery from text using data mining
and natural language processing (NLP) techniques to distill knowl-
edge and opinions from the huge amount of information on the
World Wide Web. Mining opinions and sentiments from natural
language, though, is an extremely difficult task as it involves a
deep understanding of most of the explicit and implicit, regular
and irregular, syntactical and semantic rules proper of a language.
Sentic computing [4] tackles these crucial issues by exploiting
affective common-sense reasoning, i.e., the intrinsically human
capacity to interpret the cognitive and affective information
associated with natural language and, hence, to infer new knowl-
edge and make decisions, in connection with one's social and
emotional values, censors, and ideals. Thus, common-sense com-
puting techniques are applied to bridge the semantic gap between
word-level natural language data and the concept-level opinions
conveyed by these. To achieve this goal, the sentic computing
framework takes advantage of AffectNet,1 a semantic network in
which common-sense concepts (e.g., ‘read book’, ‘payment’,
‘play music’) are linked to a hierarchy of affective domain labels
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(e.g., ‘joy’, ‘amazement’, ‘fear’, ‘admiration’). In particular, the
vector space representation of such a semantic network, termed
AffectiveSpace,2 enables affective analogical reasoning on natural
language concepts. In practice, concepts conveying similar seman-
tic and affective information, e.g., ‘enjoy conversation’ and ‘chat
with friend’, tend to fall near each other in the multi-dimensional
space that characterizes AffectiveSpace.

The present research fits within the sentic computing frame-
work and aims at exploiting machine learning to develop a
cognitive model that can effectively support emotion recognition
in natural language text. In this regard, the issue addressed in this
paper is the design of an emotion categorization architecture that
is able to remap any concept represented according to the
AffectiveSpace into a suitable space defined by four affective
dimensions: Pleasantness, Attention, Sensitivity, and Aptitude.
Previous works already published in the literature [4] proved that
a categorization model based on these four affective dimensions
can potentially synthesize the full range of emotional experiences.
Moreover, one can take advantage of such representation based on
a four-dimensional sentic vector to effectively support cognitive
tasks such as polarity detection and emotion recognition. How-
ever, the task of predicting the four-dimensional sentic vector to
be associated with a generic concept involves non-linear, complex
mechanisms [5]; this in turn means that one cannot address such
problem by designing an explicit model. Therefore, in this work
extreme learning machine (ELM) is adopted as a powerful tool to
tackle this challenging task by exploiting inductive learning
methodologies.

The paper shows the proposed ELM-based architecture for
emotion categorization compares favorably with other approaches
previously published in the literature that addressed the same
problem [5]. Indeed, the most interesting outcome of the present
research concerns the eventual dimensionality of the Affective-
Space, which defines the input space to categorization model. The
experimental results prove that by adopting ELM-based predictors
one can attain consistent performance in terms of emotion
categorization while using a 50-dimensional AffectiveSpace, while
previous approaches exploited a 100-dimensional space [4]. This
in turn demonstrates that the proposed architecture is able to
significantly reduce the overall complexity of the categorization
model system.

The rest of the paper is organized as follows: Section 2 presents
related work in the field of opinion mining and sentiment analysis;
Section 3 describes the multi-dimensional vector space model of
affective common-sense knowledge; Section 4 illustrates the
adopted emotion categorization model; Section 5 presents the
ELM-based model for affective analogical reasoning; Section 6
proposes an evaluation of the cognitive-inspired model;
finally, Section 7 concludes the paper and suggests directions for
future work.

2. Background

Most existing approaches to opinion mining and sentiment
analysis rely on the extraction of a vector representing the most
salient and important text features, which is later used for
classification purposes. Some of the most commonly used features
are term frequency and presence. The latter is a binary-valued
feature vectors in which the entries merely indicate whether a
term occurs (value 1) or not (value 0) formed a more effective
basis for review polarity classification. This is indicative of an
interesting difference between typical topic-based text

categorization and polarity classification. While a topic is more
likely to be emphasized by frequent occurrences of certain key-
words, overall sentiment may not usually be highlighted through
repeated use of the same terms. Other term-based features are
often added to the features vector. Position is one of these, in
consideration of how the position of a token in a text unit can
affect the way in which the token affects the sentiment of the text.
Also presence n-grams, typically bi-grams and tri-grams, are often
taken into account as useful features. Some methods also rely on
the distance between terms. Part-of-speech (POS) information
(nouns, adjectives, adverbs, verbs, etc.) is also commonly exploited
in general textual analysis as a basic form of word-sense disambi-
guation. Certain adjectives, in particular, have been proved to be
good indicators of sentiment and sometimes have been used to
guide feature selection for sentiment classification. In other works,
finally, the detection of sentiments was performed through
selected phrases, which were chosen via a number of pre-
specified POS patterns, most including an adjective or an adverb.
Several other approaches have been developed for the general task
of mapping a given piece of text to a label belonging to a
predefined set of categories, or to a real number representative
of a polarity degree. However, such approaches and their perfor-
mance are strictly bound to the considered domain of application
and to the related topics. Moreover, most of the literature on
sentiment analysis has focused on text written in English and,
consequently, most resources developed, e.g., sentiment lexicons,
are in English. Adapting such resources to other languages can be
considered as a domain adaptation problem.

The evolution of sentiment analysis research can be studied in
terms of the different tokens, or building blocks, of the analysis,
and the implicit information associated with them. In this sense,
existing approaches can be grouped into four main categories:
keyword spotting, lexical affinity, statistical methods, and concept-
based techniques. Keyword spotting is the most naïve approach
and probably also the most popular because of its accessibility and
economy. Text is classified into affect categories based on the
presence of fairly unambiguous affect words like ‘happy’, ‘sad’,
‘afraid’, and ‘bored’. Elliott's Affective Reasoner [6], for example,
watches for 198 affect keywords, e.g., ‘distressed’, ‘enraged’, plus
affect intensity modifiers, e.g., ‘extremely’, ‘somewhat’, ‘mildly’,
plus a handful of cue phrases, e.g., ‘did that’, ‘wanted to’. Other
popular sources of affect words are Ortony's Affective Lexicon [7],
which groups terms into affective categories, and Wiebe's linguis-
tic annotation scheme [8]. The weaknesses of this approach lie in
two areas: poor recognition of affect when negation is involved
and reliance on surface features. In relation to its first weakness,
while the approach can correctly classify the sentence “today was
a happy day” as being happy, it is likely to fail on a sentence like
“today was not a happy day at all”. Regarding its second weakness,
the approach relies on the presence of obvious affect words, which
are only surface features of the prose. In practice, a lot of sentences
convey affect through underlying meaning rather than affect
adjectives. For example, the text “My husband just filed for divorce
and he wants to take custody of my children away from me”
certainly evokes strong emotions, but uses no affect keywords, and
therefore, cannot be classified using a keyword spotting approach.

Lexical affinity is slightly more sophisticated than keyword
spotting as rather than simply detecting obvious affect words, it
assigns arbitrary words a probabilistic ‘affinity’ for a particular
emotion. For example, ‘accident’ might be assigned a 75% prob-
ability of indicating a negative affect, as in ‘car accident’ or ‘hurt by
accident’. These probabilities are usually learnt using linguistic
corpora [9–11]. Though often outperforming pure keyword spot-
ting, there are two main problems with the approach. First, lexical
affinity, operating solely on the word-level, can easily be tricked by
sentences like “I avoided an accident” (negation) and “I met my2 http://sentic.net/affectivespace.zip
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girlfriend by accident” (other word senses). Second, lexical affinity
probabilities are often biased towards text of a particular genre,
dictated by the source of the linguistic corpora. This makes it
difficult to develop a reusable, domain-independent model.

Statistical methods, such as Bayesian inference and support
vector machine (SVM), have been popular for affect classification
of texts and have been used by researchers on projects such as
Pang's movie review classifier [12] and many others [13–16]. By
feeding a machine learning algorithm a large training corpus of
affectively annotated texts, it is possible for the system to not only
learn the affective valence of affect keywords (as in the keyword
spotting approach), but also to take into account the valence of
other arbitrary keywords (like lexical affinity), punctuation, and
word co-occurrence frequencies. However, statistical methods are
generally semantically weak, meaning, with the exception of
obvious affect keywords, other lexical or co-occurrence elements
in a statistical model have little predictive value individually. As a
result, statistical text classifiers only work with acceptable accu-
racy when given a sufficiently large text input. So, while these
methods may be able to affectively classify user's text on the page-
or paragraph-level, they do not work well on smaller text units
such as sentences or clauses.

Concept-based approaches [17–20], in turn, focus on a semantic
analysis of text through the use of web ontologies or semantic
networks, which allow the handling of conceptual and affective
information associated with natural language opinions. By relying
on large semantic knowledge bases, such approaches step away
from blind use of keywords and word co-occurrence counts, but
rather rely on the implicit meaning/features associated with
natural language concepts. Unlike purely syntactical techniques,
concept-based approaches are also able to detect sentiments that
are expressed in a subtle manner, e.g., through the analysis of
concepts that do not explicitly convey any emotion, but are
implicitly linked to other concepts that do so. Moreover,
concept-level sentiment analysis enables comparative fine-
grained feature-based sentiment analysis. Rather than gathering
isolated opinions about a whole item (e.g., iPhone5), users are
generally more interested in comparing different products accord-
ing to their specific features (e.g., iPhone5's vs Galaxy S3's
touchscreen), or even sub-features (e.g., fragility of iPhone5's vs
Galaxy S3's touchscreen). In this context, the construction of
comprehensive common and common-sense knowledge bases is
key for feature-spotting and polarity detection, respectively. Such
common-sense bases, in particular, allow natural language text to
be properly deconstructed into sentiments– for example, to
appraise the concept ‘long battery life’ as positive for a laptop
review and ‘long queue’ as negative for a post office, or the concept
‘go read the book’ as positive for a book review but negative for a
movie review.

3. The vector space model

The best way to solve a problem is to already know a solution
for it. But, if we have to face a problemwe have never encountered
before, we need to use our intuition. Intuition can be explained as
the process of making analogies between the current problem and
the ones solved in the past to find a suitable solution. Marvin
Minsky attributes this property to the so called ‘difference-
engines’ [21]. This particular kind of an agent operates by recog-
nizing differences between the current state and the desired state,
and acting to reduce each difference by invoking K-lines that turn
on suitable solution methods. This kind of thinking may be the
essence of our supreme intelligence since in everyday life no two
situations are ever the same and we have to perform this action
continuously.

Human mind constructs intelligible meanings by continuously
compressing over vital relations [22]. The compression principles
aim to transform diffuse and distended conceptual structures to
more focused versions so as to become more congenial for human
understanding. To this end, principal component analysis (PCA)
has been applied on the matrix representation of AffectNet.
In particular, truncated singular value decomposition (TSVD) has
been preferred to other dimensionality reduction techniques for
its simplicity, relatively low computational cost, and compactness.
TSVD is particularly suitable for measuring cross-correlations
between affective common-sense concepts as it uses an orthogo-
nal transformation to convert the set of possibly correlated
common-sense features associated with each concept into a set
of values of uncorrelated variables (the principal components of
the SVD).

By using Lanczos' method [23], the generalization process is
relatively fast (a few seconds), despite the size and the sparseness
of AffectNet. Applying TSVD on AffectNet causes it to describe
other features that could apply to known affective concepts by
analogy: if a concept in the matrix has no value specified for a
feature owned by many similar concepts, then by analogy the
concept is likely to have that feature as well. In other words,
concepts and features that point in similar directions and, there-
fore, have high dot products, are good candidates for analogies.

After performing TSVD on AffectNet, hereby termed A for the
sake of conciseness, a low-rank approximation of it is obtained,
that is, a new matrix ~A ¼ UM ΣM VT

M . This approximation is based
on minimizing the Frobenius norm of the difference between A
and ~A under the constraint rankð ~AÞ ¼M. For the Eckart–Young
theorem [24], it represents the best approximation of A in the
least-square sense, in fact:

min
~Ajrankð ~AÞ ¼ M

jA� ~Aj ¼ min
~A jrankð ~AÞ ¼ M

jΣ�Un ~AV j ¼ min
~Ajrankð ~AÞ ¼ M

jΣ�Sj ð1Þ

assuming that ~A has the form ~A ¼USVn, where S is diagonal. From
the rank constraint, i.e., S has M non-zero diagonal entries, the
minimum of the above statement is obtained as follows:

min
~Ajrankð ~AÞ ¼ M

jΣ�Sj ¼min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ 1
ðσi�siÞ2

s
ð2Þ

min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ 1
ðσi�siÞ2

s
¼min

si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i ¼ 1
ðσi�siÞ2þ ∑

n

i ¼ Mþ1
σ2i

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ Mþ1
σ2i

s

ð3Þ
Therefore, ~A of rank M is the best approximation of A in the

Frobenius norm sense when σi ¼ siði¼ 1;…;MÞ and the corre-
sponding singular vectors are the same as those of A. If all but
the first M principal components are discarded, common-sense
concepts and emotions are represented by vectors of M coordi-
nates. These coordinates can be seen as describing concepts in
terms of ‘eigenmoods’ that form the axes of AffectiveSpace, i.e., the
basis e0;…; eM�1 of the vector space (Fig. 1). For example, the most
significant eigenmood, e0, represents concepts with positive affec-
tive valence. That is, the larger a concept's component in the e0
direction is, the more affectively positive it is likely to be. Concepts
with negative e0 components, then, are likely to have negative
affective valence. Thus, by exploiting the information sharing
property of TSVD, concepts with the same affective valence are
likely to have similar features – that is, concepts conveying the
same emotion tend to fall near each other in AffectiveSpace.
Concept similarity does not depend on their absolute positions
in the vector space, but rather on the angle they make with the
origin. For example, concepts such as ‘beautiful day’, ‘birthday
party’, and ‘make person happy’ are found very close in direction
in the vector space, while concepts like ‘feel guilty’, ‘be laid off’,
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and ‘shed tear’ are found in a completely different direction
(nearly opposite with respect to the center of the space).

The key to perform common-sense reasoning is to find a good
trade-off for representing knowledge. Since in reality two situa-
tions are never exactly the same, no representation should be too
concrete, or it will not apply to new situations, but, at the same
time, no representation should be too abstract, or it will suppress
too many details. Within AffectiveSpace, this knowledge repre-
sentation trade-off can be seen in the choice of the vector space
dimensionality. The number M of singular values selected to build
AffectiveSpace is a measure of the trade-off between precision and
efficiency in the representation of the affective common-sense
knowledge base. The bigger is M, the more precisely Affective-
Space represents AffectNet's knowledge, but generating the vector

space is slower, and so is computing dot products between
concepts. The smaller is M, on the other hand, the more efficiently
AffectiveSpace represents affective common-sense knowledge
both in terms of vector space generation and of dot product
computation. However, too few dimensions risk not correctly
representing AffectNet as concepts defined with too few features
tend to be too close to each other in the vector space and, hence,
not easily distinguishable and clusterable.

4. The emotion categorization model

The Hourglass of Emotions [4] is an affective categorization
model inspired by Plutchik's studies on human emotions [25].
It reinterprets Plutchik's model by organizing primary emotions
around four independent but concomitant dimensions, whose
different levels of activation make up the total emotional state of
the mind. Such a reinterpretation is inspired by Minsky's theory of
the mind, according to which brain activity consists of different
independent resources and that emotional states result from
turning some set of these resources on and turning another set
of them off [26]. This way, the model can potentially synthesize
the full range of emotional experiences in terms of Pleasantness,
Attention, Sensitivity, and Aptitude, as the different combined
values of the four affective dimensions can also model affective
states we do not have a specific name for, due to the ambiguity of
natural language and the elusive nature of emotions.

The primary quantity we can measure about an emotion we feel is
its strength. But, whenwe feel a strong emotion, it is because we feel a
very specific emotion. And, conversely, we cannot feel a specific
emotion like fear or amazement without that emotion being reason-
ably strong. For such reasons, the transition between different emo-
tional states is modeled, within the same affective dimension, using

Fig. 1. A sketch of AffectiveSpace. Affectively positive concepts (in the bottom-left corner) and affectively negative concepts (in the up-right corner) are floating in the multi-
dimensional vector space.

Fig. 2. Pleasantness emotional flow. G(x) models how Pleasantness valence varies
with respect to arousal (x), which spans from emotional void (null value) to
heightened emotionality (unit value).
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the function GðxÞ ¼ �1=σ
ffiffiffiffiffiffi
2π

p
e�x2=2σ2 , for its symmetric inverted bell

curve shape that quickly rises up towards the unit value (Fig. 2).
In particular, the function models how valence or intensity of an
affective dimension varies according to different values of arousal or
activation (x), spanning from null value (emotional void) to the unit
value (heightened emotionality). Justification for assuming that the
Gaussian function (rather than a step or simple linear function) is
appropriate for modeling the variation of emotion intensity is based
on research into the neural and behavioral correlates of emotion,
which are assumed to indicate emotional intensity in some sense.
Nobody genuinely knows what function subjective emotion intensity
follows, because it has never been truly or directly measured [27].

For example, the so-called Duchenne smile (a genuine smile
indicating pleasure) is characterized by smooth onset, increasing
to an apex, and a smooth, relatively lengthy offset [28]. More
generally, Klaus Scherer has argued that emotion is a process
characterized by non-linear relations among its component ele-
ments - especially physiological measures, which typically look
Gaussian [29]. Emotions, in fact, are not linear [25]: the stronger
the emotion, the easier it is to be aware of it. Mapping this space of
possible emotions leads to a hourglass shape (Fig. 3). It is worth to
note that, in the model, the state of ‘emotional void’ is a-dimen-
sional, which contributes to determine the hourglass shape. Total
absence of emotion can be associated with the total absence of
reasoning (or, at least, consciousness) [30], which is not an
envisaged mental state as, in human mind, there is never nothing
going on. Each affective dimension of the Hourglass model is
characterized by six levels of activation (measuring the strength of
an emotion), termed ‘sentic levels’, which represent the intensity
thresholds of the expressed or perceived emotion.

These levels are also labeled as a set of 24 basic emotions [25],
six for each of the affective dimensions, in a way that allows the
model to specify the affective information associated with text

both in a dimensional and a discrete form (Table 1). The dimen-
sional form, in particular, is termed ‘sentic vector’ and it is a four-
dimensional float vector that can potentially synthesize the full
range of emotional experiences in terms of Pleasantness, Atten-
tion, Sensitivity, and Aptitude. In the model, the vertical dimension
represents the intensity of the different affective dimensions, i.e.,
their level of activation, while the radial dimension represents
K-lines [21] that can activate configurations of the mind, which
can either last just a few seconds or years. The model follows the
pattern used in color theory and research in order to obtain
judgments about combinations, i.e., the emotions that result when
two or more fundamental emotions are combined, in the same
way that red and blue make purple.

Hence, some particular sets of sentic vectors have special names,
as they specify well-known compound emotions (Fig. 4). For exam-
ple, the set of sentic vectors with a level of Pleasantness A [G(2/3),
G(1/3)), i.e., joy, a level of Aptitude A [G(2/3), G(1/3)), i.e., trust, and a
minor magnitude of Attention and Sensitivity, are termed ‘love sentic
vectors’ since they specify the compound emotion of love (Table 2).
More complex emotions can be synthesized by using three, or even

Fig. 3. The 3D model and the net of the Hourglass of Emotions. Since affective states go from strongly positive to null to strongly negative, the model assumes a
hourglass shape.

Table 1
The sentic levels of the Hourglass model. Labels are organized into four affective
dimensions with six different levels each, whose combined activity constitutes the
‘total state’ of the mind.

Interval Pleasantness Attention Sensitivity Aptitude

[G(1), G(2/3)) Ecstasy Vigilance Rage Admiration
[G(2/3), G(1/3)) Joy Anticipation Anger Trust
[G(1/3), G(0)) Serenity Interest Annoyance Acceptance
(G(0), –G(1/3)] Pensiveness Distraction Apprehension Boredom
(–G(1/3), –G(2/3)] Sadness Surprise Fear Disgust
(–G(2/3), –G(1)] Grief Amazement Terror Loathing
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four, sentic levels, e.g., joy þ trust þ anger¼ jealousy. Therefore,
analogous to the way primary colors combine to generate different
color gradations (and even colors we do not have a name for), the
primary emotions of the Hourglass model can blend to form the full
spectrum of human emotional experience. Beyond emotion detec-
tion, the Hourglass model is also used for polarity detection tasks.
Since polarity is strongly connected to attitudes and feelings, it is
defined in terms of the four affective dimensions, according to the
formula:

p¼ ∑
N

i ¼ 1

PleasantnessðciÞþjAttentionðciÞj�jSensitivityðciÞjþAptitudeðciÞ
3N

ð4Þ
where ci is an input concept, N the total number of concepts, and
3 the normalization factor (as the Hourglass dimensions are defined
as float A [�1,þ1]). In the formula, Attention is taken as absolute
value since both its positive and negative intensity values correspond
to positive polarity values (e.g., ‘surprise’ is negative in the sense of
lack of Attention, but positive from a polarity point of view).
Similarly, Sensitivity is taken as negative absolute value since both
its positive and negative intensity values correspond to negative
polarity values (e.g., ‘anger’ is positive in the sense of level of
activation of Sensitivity, but negative in terms of polarity). Besides
practical reasons, the formula is important because it shows a clear
connection between polarity (opinion mining) and emotions (senti-
ment analysis).

5. ELM-based affective analogical reasoning

Affective analogical reasoning consists in processing the cog-
nitive and affective information associated with natural language
concepts, in order to compare the similarities between new and
understood concepts and, hence, use such similarities to gain
understanding of the new concept. It is a form of inductive
reasoning because it strives to provide understanding of what is
likely to be true, rather than deductively proving something as
fact. The reasoning process begins by determining the target
concept to be learned or explained. It is then compared to a
general matching concept whose semantics and sentics (that is,
the conceptual and affective information associated with it) are
already well-understood. The two concepts must be similar

enough to make a valid, substantial comparison. Affective analo-
gical reasoning is based on the brain's ability to form semantic
patterns by association. The brain may be able to understand new
concepts more easily if they are perceived as being part of a
semantic pattern. If a new concept is compared to something the
brain already knows, it may be more likely that the brain will store
the new information more readily.

Such a semantic association needs high generalization perfor-
mance, in order to better match conceptual and affective patterns.
Because of the dynamic nature of AffectiveSpace, moreover,
affective analogical reasoning should be characterized by fast
learning speed, in order for concept associations to be recalculated
every time a new multi-word expression is inserted in AffectNet.
Finally, the process should be of low computational complexity, in
order to perform big social data analysis [31]. All such features are
those typical of ELM, a machine learning technique that, in recent
years, has proved to be a powerful tool to tackle challenging
modeling problems [32–39].

5.1. Extreme learning machine

The ELM approach [40] was introduced to overcome some
issues in back-propagation network [41] training, specifically,
potentially slow convergence rates, the critical tuning of optimiza-
tion parameters [42], and the presence of local minima that call for
multi-start and re-training strategies. The ELM learning problem
settings require a training set, X, of N labeled pairs, ðxi; yiÞ, where
xiARm is the i-th input vector and yiAR is the associate expected
‘target’ value; using a scalar output implies that the network has
one output unit, without loss of generality.

Fig. 4. Hourglass compound emotions of second level. By combining basic emotions pairwise, it is possible to obtain complex emotions.

Table 2
The second-level emotions generated by pairwise combination of the sentic levels
of the Hourglass model. The co-activation of different levels gives birth to different
compound emotions.

Attention40 Attentiono0 Aptitude40 Aptitudeo0

Pleasantness40 Optimism Frivolity Love Gloat
Pleasantnesso0 Frustration Disapproval Envy Remorse
Sensitivity40 Aggressiveness Rejection Rivalry Contempt
Sensitivityo0 Anxiety Awe Submission Coercion
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The input layer has m neurons and connects to the ‘hidden’
layer (having Nh neurons) through a set of weights fŵ jA
Rm; j¼ 1;…;Nhg. The j-th hidden neuron embeds a bias term, b̂j,
and a nonlinear ‘activation’ function, φð�Þ; thus the neuron's
response to an input stimulus, x, is

ajðxÞ ¼ φðŵ j � xþ b̂jÞ ð5Þ

Note that (5) can be further generalized to a wider class of
functions [43] but for the subsequent analysis this aspect is not
relevant. A vector of weighted links, w jARNh , connects hidden
neurons to the output neuron without any bias [44]. The overall
output function, f ðxÞ, of the network is

f ðxÞ ¼ ∑
Nh

j ¼ 1
w jajðxÞ ð6Þ

It is convenient to define an ‘activation matrix’, H, such that the
entry fhijAH; i¼ 1;…;N; j¼ 1;…;Nhg is the activation value of the
j-th hidden neuron for the i-th input pattern. The H matrix is:

H�
φðŵ1 � x1þ b̂1Þ ⋯ φðŵNh

� x1þ b̂Nh
Þ

⋮ ⋱ ⋮
φðŵ1 � xNþ b̂1Þ ⋯ φðŵNh

� xNþ b̂Nh
Þ

2
664

3
775 ð7Þ

In the ELM model, the quantities fŵ j; b̂jg in (5) are set randomly
and are not subject to any adjustment, and the quantity w j in (6) is
the only degree of freedom. The training problem reduces to the
minimization of the convex cost:

min
fw ;bg

‖Hw�y‖2 ð8Þ

A matrix pseudo-inversion yields the unique L2 solution, as
proven in [40]:

w ¼Hþy ð9Þ

The simple, efficient procedure to train an ELM therefore
involves the following steps:

1. Randomly set the input weights ŵ i and bias b̂i for each hidden
neuron.

2. Compute the activation matrix, H, as per (7).

3. Compute the output weights by solving a pseudo-inverse
problem as per (9).

Despite the apparent simplicity of the ELM approach, the
crucial result is that even random weights in the hidden layer
endow a network with a notable representation ability [40].
Moreover, the theory derived in [45] proves that regularization
strategies can further improve its generalization performance. As a
result, the cost function (8) is augmented by an L2 regularization
factor as follows:

min
w

f‖Hw�y‖2þλ‖w‖2g ð10Þ

5.2. The emotion categorization framework

The proposed framework is designed to receive as input a
natural language concept represented according to an M-dimen-
sional space and to predict the corresponding sentic levels for the
four affective dimensions involved: Pleasantness, Attention, Sen-
sitivity, and Aptitude. The dimensionality M of the input space
stems from the specific design of AffectiveSpace. As for the
outputs, in principle each affective dimension can be characterized
by an analog value in the range [�1, 1], which represents the
intensity of the expressed or received emotion. Indeed, as dis-
cussed in Section 4, those analog values are eventually remapped
to obtain six different sentic levels for each affective dimension.

The research presented in this paper spans each affective
dimension separately, under the reasonable assumption that the
various dimensions map perceptual phenomena that are mutually
independent [4]. As a result, each affective dimension is handled
by a dedicated ELM, which addresses a regression problem. Thus,
each ELM-based predictor is fed by the M-dimensional vector
describing the concept and yields as output the analog value that
would eventually lead to the corresponding sentic level. Fig. 5
provides the overall scheme of the framework; here, gX is the level
of activation predicted by the ELM and lX is the corresponding
sentic level.

In theory, one might also implement the framework showed in
Fig. 5 by using four independent predictors based on a multi-class
classification schema. In such a case, each predictor would directly
yield as output a sentic level out of the six available. However, two
important aspects should be taken into consideration. First, the
design of a reliable multi-class predictor is not straightforward,
especially when considering that several alternative schemata
have been proposed in the literature without a clearly established
solution. Second, the emotion categorization scheme based on
sentic levels stem from an inherently analog model, i.e., the
Hourglass of Emotions. This ultimately motivates the choice of
designing the four prediction systems as regression problems.

In fact, the framework schematized in Fig. 5 represents an
intermediate step in the development of the final emotion
categorization system. One should take into account that every
affective dimension can in practice take on seven different values:
the six available sentic levels plus a ‘neutral’ value, which in theory
correspond to the value Gð0Þ in the emotion categorization model
discussed in Section 4. In practice, though, the neutral level is
assigned to those concepts that are characterized by a level
activation that lies in an interval around Gð0Þ in that affective
dimension. Therefore, the final framework should properly man-
age the eventual seven-level scale. To this end, the complete
categorization system is set to include a module that is able to
predict if an affective dimension is present or absent in the
description of a concept. In the latter case, no sentic level should
be associated with that affective dimension (i.e., Ix¼null). In the
present paper, this task is addressed by exploiting the hierarchical

Fig. 5. The ELM-based framework for describing common-sense concepts in terms
of the four Hourglass model's dimensions.
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approach presented in Fig. 6. Hence, given a concept and an
affective dimension, first a SVM-based binary classifier is entitled
to decide if a sentic level should be assessed. Accordingly, the ELM-
based predictor is asked to assess the level of activation only if the
SVM-based classifier determines that a sentic level should be
associated with that concept. Otherwise, it is assumed that the
neutral level should be associated with that concept (i.e., the
corresponding affective dimension is not involved in the descrip-
tion of that concept). Obviously, such structure is replicated for
each affective dimension. Fig. 7 schematizes the complete
framework.

6. Experimental results

The proposed emotion categorization framework has been
tested both on a benchmark of 6,813 common-sense concepts
and on the real-world dataset of 2000 patient opinions used in [5].
As for the benchmark, the publicly available Sentic API3 was used
to obtain for each concept the corresponding sentic vector, i.e., the
level of activation of each affective dimension. According to the
emotion categorization model presented in Section 4, the Sentic
API expresses the level of activation as an analog number in the
range [�1, 1], which are eventually mapped into sentic levels by
adopting the Gaussian mapping function. Indeed, the neutral
sentic level is codified by the value ‘0’. The format adopted by
the Sentic API to represent the levels of activation actually
prevents one to approach the prediction problem as an authentic

regression task, as per Fig. 5. The neutral sentic level corresponds
to a single value in the analog range used to represent activations.

Therefore, experimental results are presented as follows: firstly,
the performance of the system depicted in Fig. 5 is analyzed
(according to that set up, the ELM-based predictors are not
designed to assess the neutral sentic level); secondly, the perfor-
mance of the complete framework (Fig. 7) is discussed; lastly, a
use-case evaluation on the patient opinion dataset is proposed.

6.1. Accuracy in the prediction of the sentic levels

The emotion categorization framework proposed in Fig. 5
exploits four independent ELM-based predictors to estimate the
levels of activation of as many affective dimensions. In this
experiment, it is assumed that each ELM-based predictor can
always assess correctly a level of activation set to ‘0’. A cross-
validation procedure has been used to robustly evaluate the
performance of the framework. As a result, the experimental
session involved ten different experimental runs. In each run,
800 concepts randomly extracted from the complete benchmark
provided the test set; the remaining concepts were heavenly split
into a training set and a validation set. The validation set was
designed to support the model selection phase, i.e., the selection of
the best parameterization for the ELM predictors. In the present
configuration, two quantities were involved in the model selection
phase: the number of neurons Nh in the hidden layer and the
regularization parameter λ. The following parameters were used
for model selection:

� NhA ½100;1000� by steps of 100 neurons;
� λ¼{1�10�6, 1�10�5, 1�10�4, 1�10�3, 1�10�2, 1�10�1, 1}.

In each run the performance of the emotion categorization
framework was measured by using only the patterns included in
the test set, i.e., the patterns that were not involved in the training
phase or in the model selection phase. Table 3 reports the
performance obtained by the emotion categorization framework
over the ten runs. The table actually compares the results of three
different sets up, which differs in the dimensionality M of
AffectiveSpace that describe the concepts. Thus, Table 3 provides
the results achieved with M¼100, M¼70, and M¼50. The results
refer to a configuration of the ELM predictors characterized by the
following parameterization: Nh¼200 and λ¼1; such configuration
was obtained by exploiting the model selection phase. The
performance of each setting is evaluated according to the follow-
ing quantities (expressed as average values over the ten runs):

� Pearson's correlation coefficient: the measure of the linear
correlation between predicted levels of activation and expected
levels of activation for the four predictors.

� Strict accuracy: the percentage of patterns for which the frame-
work correctly predicted the four sentic levels; thus, a concept
is assumed to be correctly classified only if the predicted sentic
level corresponds to the expected sentic level for every affec-
tive dimension.

� Smooth accuracy: the percentage of patterns for which the
framework correctly predicted three sentic levels out of four;
thus, a concept is assumed to be correctly classified even when
one among the four predictors fails to assign the correct
sentic level.

� Relaxed accuracy: in this case, one relaxes the definition of
correct prediction of the sentic level. As a result, given an
affective dimension, the prediction is assumed correct even
when the assessed sentic level and the expected sentic level are
contiguous in Table 1. As an example, let suppose that the

Fig. 6. The hierarchical scheme in which an SVM-based classifier first filters out
unemotional concepts and an ELM-based predictor then classifies emotional
concepts in terms of the involved affective dimension.

3 http://sentic.net/api
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expected sentic level in the affective dimension Sensitivity for
the incoming concept is ‘annoyance’. Then, the prediction is
assumed correct even when the assessed sentic level is ‘anger’
or ‘apprehension’. Therefore, the relaxed accuracy gives the
percentage of patterns for which the framework correctly
predicted the four sentic levels according to such criterion.

In practice, the smooth accuracy and the relaxed accuracy allow
one to take into account two crucial issues: the dataset can include
noise and entries may incorporate a certain degree of subjective-
ness. The results provided in Table 3 lead to the following
comments:

� Emotion categorization is in fact a challenging problem; in this
regard, the gap between strict accuracy and smooth/relaxed
accuracies confirms that the presence of noise is a crucial issue.

� The ELM-based framework can attain satisfactory performance
in terms of smooth accuracy and relaxed accuracy. Actually, the
proposed framework scored a 75% accuracy in correctly asses-
sing at least three affective dimension for an input concept.

� Reliable performance can be achieved evenwhen a 50-dimensional
AffectiveSpace is used to characterize concepts. The latter result
indeed represents a very interesting outcome, as previous appro-
aches to the same problem in general exploited a 100-dimensional
AffectiveSpace [4,5]. In this respect, the present work shows that
the use of ELM-based predictors can reduce the overall complexity
of the framework by shrinking the feature space.

6.2. Accuracy of the complete emotion categorization system

As anticipated above, the complete categorization system
exploits the hierarchical approach presented in Fig. 6 to assess
the level of activation of a concept. According to such set up, the
accuracy of the SVM-based classifier is critical to the whole
system's performance, as it handles the preliminary filtering task
before that actual sentic description is evaluated. In principle, one
might analyze the performance of the two components separately
and assess the run-time generalization accuracy accordingly.
Nevertheless, in the present context, the system performance
has been measured as a whole, irrespectively of the internal
structure of the evaluation scheme. On the other hand, one should
also consider that, given a concept and a sentic dimension in
which such concept should be assessed as neutral, to predict a low
activation value is definitely less critical than predicting a large
activation value. Therefore, the system performance has been
evaluated by avoiding considering as an error the cases in which
the expected sentic level is ‘neutral’ and the assessed sentic level is
the less intense (either positive or negative). As an example, given
the sentic dimension Attention, to classify a neutral sentic level
either as ‘interest’ or ‘distraction’ would not be considered
an error.

The performance of the framework has been evaluated by
exploiting the same cross-validation approach already applied in
the previous experimental session. In the present case, though, the
model selection approach involved both the SVM-based classifiers
and the ELM-based predictors. For the SVM classifiers, two

Fig. 7. The final framework: a hierarchical scheme is adopted to classify emotional concepts in terms of Pleasantness, Attention, Sensitivity, and Aptitude.

Table 3
Performance obtained by the emotion categorization framework over the ten runs with three different sets up of AffectiveSpace's dimensionality.

M Correlation Accuracy

Pleasantness Attention Sensitivity Aptitude Strict Smooth Relaxed

100 0.69 0.67 0.78 0.72 39.4 73.4 87.0
70 0.71 0.67 0.78 0.72 41.0 75.4 88.4
50 0.66 0.66 0.77 0.71 40.9 75.3 86.4
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quantities were set with model selection: the regularization
parameter C and the width σ of the Gaussian kernel. The following
parameters were used for model selection:

� C ¼ f1;10;100;1000g;
� σ ¼ f0:1;0:25;0:5;0:75;1;1:5;2;5;10g.

Table 4 reports the performance obtained by the framework
over the ten runs. In this case, the experimental session involved
only the set up M¼50, which already proved to attain a satisfac-
tory trade-off between accuracy and complexity. The table pro-
vides the average value over the ten runs of the following
quantities: strict accuracy, smooth accuracy, relaxed accuracy.
The results refer to a configuration of the SVM classifiers char-
acterized by the following parameterization: C¼1 and σ¼1.5;
As expected, the accuracy of the complete framework is slightly
inferior to that of the system presented in Section 6.1. Indeed, the
results confirm that the proposed approach can attain satisfactory
accuracies by exploiting a 50-dimensional AffectiveSpace. In this
regard, one should also notice that the estimated performance of
the proposed methodology appears quite robust, as it is estimated
on ten independent runs involving different compositions of the
training and the test set.

6.3. Use-case evaluation

In order to test the performance of the proposed approach in a
real-world environment, the ELM-based framework was
embedded into an opinion mining engine [4] for the inference of
cognitive and affective information associated with natural lan-
guage. Such an engine consists of four main components: a pre-
processing module, which performs a first skim of text; a semantic
parser, whose aim is to extract concepts from the opinionated text;
a target spotting module, which identifies opinion targets; an
affect interpreter, for emotion recognition and polarity detection.

The pre-processing module firstly interprets all the affective
valence indicators usually contained in opinionated text such as
special punctuation, complete upper-case words, cross-linguistic
onomatopoeias, exclamation words, negations, degree adverbs and
emoticons. Secondly, it converts text to lower-case and, after
lemmatizing it, splits the opinion into single clauses according to
grammatical conjunctions and punctuation.

Then, the semantic parser deconstructs text into concepts using
a lexicon based on sequences of lexemes that represent multiple-
word concepts extracted from the Sentic API. These n-grams are
not used blindly as fixed word patterns but exploited as reference
for the module, in order to extract multiple-word concepts from
information-rich sentences. So, unlike other shallow parsers, the
module can recognize complex concepts also when irregular verbs
are used or when these are interspersed with adjective and
adverbs, e.g., the concept ‘buy christmas present’ in the sentence
“I bought a lot of very nice Christmas gifts”. The semantic parser,
additionally, provides, for each retrieved concept, the relative
frequency, valence and status, that is the concept's occurrence in
the text, its positive or negative connotation and the degree of
intensity with which the concept is expressed. For each clause, the

module outputs a small bag of concepts (SBoC), which is later on
analyzed separately by the target spotting module and the affect
interpreter to infer the cognitive and affective information asso-
ciated with the input text, respectively.

The target spotting module aims to individuate one or more
opinion targets, such as people, places, events and ideas, from the
input concepts. This is done by projecting the concepts of each
SBoC into the graph representation of AffectNet, in order to assign
these to a specific conceptual class. The categorization does not
consist in simply labeling each concept but also in assigning a
confidence score to each category label, which is directly propor-
tional to the value of belonging to a specific conceptual cluster
(number of steps in the AffectNet graph). The affect interpreter, in
turn, projects the concepts of each SBoC into AffectiveSpace and
feeds their coordinates to the four ELM-based predictors, in order
to assign such concepts to a specific affective class and, hence,
calculate polarity in terms of the Hourglass dimensions, as
specified in formula (4).

As an example of how the opinion mining engine works,
intermediate and final outputs obtained when a natural language
opinion is given as input to the system can be examined. The tweet
“I think iPhone4 is the top of the heap! OK, the speaker is not the
best i hv ever seen bt touchscreen really puts me on cloud 9...
camera looks pretty good too!” is selected. After the pre-
processing and semantic parsing operations, the following SBoCs
are obtained:

SBoC#1:
oConcept : ‘think’4
oConcept : ‘iphone4’4
oConcept : ‘topheap’4

SBoC#2:
oConcept : ‘ok’4
oConcept : ‘speaker’4
oConcept : !‘good’þþ4
oConcept : ‘see’4

SBoC#3:
oConcept : ‘touchscreen’4
oConcept : ‘putcloudnine’þþ4

SBoC#4:
oConcept : ‘camera’4
oConcept : ‘lookgood’–4

These are then concurrently processed by the target spotting
module and the affect interpreter, which detect the opinion targets
and output, for each of them, the relative affective information both
in a discrete way, with one or more emotional labels, and in a
dimensional way, with a polarity value A [�1,þ1] (as shown in
Table 5). In order to evaluate the resulting opinion mining engine, the
patient opinion database used in [5] is adopted, and results obtained
using k-NN, k-medoids, and the two single layer feedforward net-
works (SLFNs) developed in [5] (DNN and CNN, which use a 100-
dimensional AffectiveSpace) are compared with those obtained using
the ELM-based predictors exploiting a 50-dimensional AffectiveSpace.

Table 4
Performance obtained by the overall framework over the ten runs with a
50-dimensional AffectiveSpace.

M Accuracy

Strict Smooth Relaxed

50 38.3 72 79.8

Table 5
Structured output example of opinion mining engine.

Opinion target Category Moods Polarity

‘iphone4’ ‘phones’, ‘electronics’ ‘ecstasy’, ‘interest’ þ0.71
‘speaker’ ‘electronics’, ‘music’ ‘annoyance’ �0.34
‘touchscreen’ ‘electronics’ ‘ecstasy’, ‘anticipation’ þ0.82
‘camera’ ‘photography’, ‘electronics’ ‘acceptance’ þ0.56
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The resource is a dataset obtained from PatientOpinion,4 a social
enterprise pioneering an online feedback service for users of the UK
national health service to enable people to share their recent
experience of local health services online. It is a manually tagged
dataset of 2000 patient opinions that associates to each post a
category (namely, clinical service, communication, food, parking, staff,
and timeliness) and a positive or negative polarity. There are no
ethical issues involved in the data used in the experimentation as
tweets, blogposts, and patient opinions were all anonymized. In order
to guarantee full anonymity, moreover, the text associated with
tweets, blogposts, and patient opinions has never been wholly
reported in the proposed tables and examples. The dataset is hereby
used to test the combined detection of opinion targets and the
polarity associated with these. Results show that the ELM-based
framework outperforms k-medoids, k-NN, and the two SLFNs in all
cases (Table 6). Besides achieving higher generalization performance,
the ELM-based predictors have lower computational complexity, in
which they use just 50 dimensions (in stead of 100), and faster
learning speed, in which they were trained in the order of milli-
seconds (rather than seconds).

7. Conclusion and future work

In a world in which millions of people express their opinions
about commercial products and services everywhere on the Web,
the distillation of knowledge from this huge amount of unstruc-
tured information is a key factor for tasks such as social media
marketing, product positioning, and financial market prediction.
However, all the sentiment analysis tasks are highly challenging.
Our understanding and knowledge of the problem and its solution
are still very limited. A possible reason for this limitedness may be
due to our popular ways of doing research. So far, researchers have
probably relied too much on machine learning algorithms. Some of
the most effective machine learning algorithms, produce no
human understandable results such that, although they may
achieve improved accuracy, little about how and why is known,
apart from some superficial knowledge gained in the manual
feature engineering process. All such approaches, moreover, rely
on syntactical structure of text, which is far from the way human
mind processes natural language.

Sentic computing and similar concept-based approaches aim to
bridge this gap by giving machines means to grasp the semantics
associated with natural language concepts through common-sense
reasoning, rather than blindly processing text through a limited
set of affect words and their co-occurrence frequencies. Sentic
computing, moreover, enables finer-grained opinion mining. Opi-
nions and sentiments do not occur only at document- or para-
graph-level, nor are they limited to a single valence or target.
Contrary or complementary attitudes toward the same topic or
multiple topics can be present across the span of the same
document, paragraph, and even sentence. To this end, sentic

computing pioneers the concepts of affective common-sense
reasoning and concept-level sentiment analysis.

In this work, we explored how an ensemble of concept-based
sentiment analysis and machine learning techniques could emu-
late the cognitive process of affective analogical reasoning, in
order to quickly, dynamically, and effectively infer semantics and
sentics associated with natural language concepts. For its intrinsic
properties, ELM turned out to be a better option than state-of-the-
art approaches. In particular, we focused on demonstrating the
higher generalization performance of the ELM-based predictors
over standard SLFNs. However, the ELM-based framework is also
characterized by lower computational complexity and faster
learning speed. Because of the current dimensions of Affective-
Space, it is difficult to thoroughly prove the performance of such
features (although it was already proved that the ELM predictors
used half of the dimensions needed by SLFNs and were trained
three orders of magnitude faster). To this end, we plan a more
extensive evaluation using a bigger AffectiveSpace and showing
how the ELM-based framework is a better solution for online
learning, i.e., for an AffectiveSpace that is dynamically expanding
(in which new common-sense concept are being continuously
learnt).

The use of multiple ELMs was inspired by Minsky's theory of
the mind, according to which brain activity consists of different
independent resources and that emotional states result from
turning some set of these resources on and turning another set
of them off. Along these lines, we plan to further explore how the
ensemble application of sentic computing and ELM can enable
multi-level affective common-sense reasoning. Current thinking in
cognitive psychology suggests that humans process information at
multiple levels.

Most commonly, a dual-mode model [46,47] has one system
employing slow, effortful, serial, conscious processing, and another
which involves fast, effortless, parallel, unconscious processing.
While for the former mode (conscious reasoning) traditional
techniques [4,5] may be applied, for the latter mode (unconscious
reasoning) ELM is clearly more suitable, especially for cases in
which affective analogical reasoning has to be performed on
common-sense concepts for which few semantic features are
available, e.g., newly learnt concepts.

In all such cases, a good-guess would be preferable than a
no-answer caused by inconsistency and sparseness of the
common-sense data. An important difference between traditional
AI systems and human intelligence is our ability to harness
common-sense knowledge to inform our decision-making strate-
gies and behavior on the fly. This allows humans to easily and
quickly adapt to novel situations where traditional AI fails cata-
strophically for lack of situation-specific rules and generalization
capabilities, which instead ELM-based models can potentially
master for the fast learning speed, low computational complexity,
and high generalization performance that characterize them.
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