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A B S T R A C T

The field of explainable artificial intelligence (XAI) is gaining increasing importance in recent
years. As a consequence, several surveys have been published to explore the current state
of the art on this topic. One aspect that seems to be overlooked by these works is the
applied presentation methods and, specifically, the role of natural language in generating the
final explanations. This survey reviews 70 XAI papers published between 2006 and 2021 and
evaluates their readiness with respect to natural language explanations. Thus, together with a set
of hierarchical criteria, we define a multi-criteria decision-making model. Finally, we conclude
that only a handful of recent XAI works either considered natural language explanations to
approach final users (see, e.g.,(Bennetot et al., 2021)) or implemented a method capable of
generating such explanations.

. Introduction and motivation

The need for eXplainable AI (XAI) systems is growing as modern Machine Learning (ML) algorithms, particularly ‘‘deep learning’’
nes, are becoming increasingly powerful yet so complex that is difficult to understand their behaviour and why certain results were
chieved or some mistakes were made. However, understanding the behaviour of those models is as relevant as their performances,
ecause it allows users to develop appropriate trust and reliance (Hoffman, Klein and Mueller, 2018). The goal of eXplainable AI
s to render the behaviour of black-box models more understandable, accountable and transparent to humans (Burkart & Huber,
021). This goal can be achieved either by targeting the general decision-making process of a model (Caruana, Lundberg, Ribeiro,
ori, & Jenkins, 2020) or by providing insights about a specific outcome (Cambria, Liu, Decherchi, Xing, & Kwok, 2022; Ehsan,
ambwekar, Chan, Harrison, & Riedl, 2019; Hohman, Srinivasan, & Drucker, 2019; Przybyła & Soto, 2021).

Despite the prominence of XAI methods in recent AI literature and the ever-widening range of their application domains, the
ttention paid to the ‘‘last mile’’ of the XAI-based systems, i.e., the presentation of explanations to end-users is still in a growing
hase. This could lead to solutions that, while potent and practical from a technical point of view, cannot be directly utilized by
on-expert or non-technical users, defying the principal objective of an XAI system (Miller, 2019). According to the most recent
urvey on XAI for machine learning models (Burkart & Huber, 2021), the communication type of an XAI system can be classified
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into textual, graphics, and multimedia descriptions. While the former uses explanations in a text form and the second is a visual one,
the latter combines different types of content: text, graphics, reports, images, audio, video, animation, etc.

Considering the works that the authors are aware of, textual explanations can be expressed by rules (Guidotti et al., 2018),
codes (Kitzelmann, Schmid, Olsson, & Kaelbling, 2006; Mao, Gan, Kohli, Tenenbaum, & Wu, 2018) or natural language explana-
tions (Mariotti, Alonso, & Gatt, 2020) and dialogues (Jentzsch, Höhn, & Hochgeschwender, 2019). The explanations made through
natural language, as pointed out by Mariotti et al. (2020), are the key component of future intelligent interactive agents, given their
ability to offer interpretability to people with diverse backgrounds and to better mimic humans, which usually explain their decisions
verbally (Burkart & Huber, 2021; Cambria, Hussain, Havasi, & Eckl, 2009). Moreover, in Gkatzia, Lemon, and Rieser (2016),
the authors mention that the use of natural language improves decision-making under uncertainty compared to graphical-based
presentation methods.

In Sokol and Flach (2018), the authors argue that natural language explanations are suitable for a lay audience given that their
interaction mode gives the process a natural feel, while Chaves and Gerosa (2020) and De Gennaro, Krumhuber, and Lucas (2020)
make a step further by observing that natural language presentation increases the trustworthiness of the explanations and help in
garner user acceptance. These explanations are more efficient (Alonso, Ramos-Soto, Reiter, & van Deemter, 2017), more insightful for
specific cases concerning the visual methods (Park et al., 2018) and target a broader range of users. Mariotti et al. (2020) argue that
these explanations leverage the common language with the user, profiting from the mental concepts which are already established
in the human language (Reiter & Dale, 2000). Krahmer and Theune (2010) argue that generating a text that mimics how humans
use natural language to explain, describe, or inform is not a straightforward task, neither to choose the message communicated nor
to transform it to natural language.

It is worth mentioning that the majority of works that use natural language presentation methods (i.e., a small part of the
XAI works) utilize primary forms of natural language generation (NLG) techniques (Li, Pan, Wang, Yang, & Cambria, 2018) like
mail-merge (template-filling) which, while effective and easy to control, as Mariotti et al. (2020) point out, some times produce
outputs that are non-natural due to their static nature. The minimal attention paid to the presentation techniques by the current
state-of-the-art methods and XAI surveys, makes the process of the XAI method selection by researchers and practitioners time-
consuming and error-prone, as the XAI literature lacks a consolidated study on the presentation methods and the way an XAI
method should be chosen based on its presentation power. For instance (Burkart & Huber, 2021) allocate a short paragraph to what
they call communication or Vilone and Longo (2020, 2021) that only briefly mention textual explanations understandability of the
explanations for laypeople.

Motivating example. To clarify the matter, let us consider an imaginary conversation between a user ( ) and the system ( ) that
has been trained and deployed to classify million online job ads over a standard occupation taxonomy (Giabelli, Malandri, Mercorio,
Mezzanzanica, & Seveso, 2020).

: Why have you classified this job ad as ‘‘Data engineer’’?
: I saw ‘‘Data’’ and ‘‘Architect’’ words.

: What is the most important word for classifying this job ad?
: ‘‘Architect’’

: Which word you didn’t consider for the classification?
: ‘‘Senior’’

: What if the input was ‘‘Senior Python data architect’’?
: Then, the class would be ‘‘Data Scientist’’.

: Why, instead of classifying it as ‘‘Software Engineer’’, you have chosen ‘‘Data engineer’’?
: I never saw titles containing the word ‘‘architect’’ being labelled as ‘‘Software engineer’’ in the training data.
: Why you ignored the word ‘‘senior’’?
: I consider this word as ‘‘too general’’.

: Answer me what ‘‘too general’’ means by considering me a data scientist.
: The TF-IDF score of the word ‘‘senior’’- calculated based on the training data- is distant from the score of the rest of the

terms.
: What if I tell you that I’m your developer?
: In that case, I would say that I took that decision because the word senior is on the list of stopwords.

: Thanks! That’s it.
: Before you go... I’ve noticed that while the word ‘‘senior’’ is on the stopword list, the term ‘‘experienced’’ which has a high

similarity to this word, is not.

To our knowledge, neither in the academic nor in the business world, some methods or frameworks can satisfy all the points
entioned in the above imaginary conversation. Such a system should be able to directly and dynamically interact with the user

hrough natural language, access the black-box, training data and the pipeline, probe them autonomously, identify and act upon
sers’ knowledge, and warn them about possible abnormalities.

Our survey aims to assess the readiness of the current state of the art towards such a solution by mapping them into a collaborative
2

oadmap as shown in Section 2.1, which can provide guidance to academics and practitioners in the study and choice of XAI methods.
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We opt for a collaborative roadmap because the research on XAI is growing at a fast pace, both in terms of relevance and the number
of methods proposed. According to Vilone and Longo (2021), 250 relevant methods were proposed only between 2016 and 2020,
more than four times the ones proposed in the previous five years. Therefore, a static survey would soon become obsolete, losing
part of its usefulness.

Contribution. The contribution of this work is two-fold:
1. We provide a survey of presentation techniques used in XAI systems proposing a roadmap covering the whole process of

explanation generation, from the black-box to the end-user. Despite the availability of several XAI surveys in the literature (Biran
& Cotton, 2017; Burkart & Huber, 2021; Guidotti et al., 2018; Vilone & Longo, 2021), this is the first one that focuses on the
presentation methods.

2. Given the short life of classic survey studies, we propose (and make available to the reader) a multi-criteria-decision-making
model to allow readers to select the most suited XAI work based on her needs.1

2. Does XAI need natural language explanations?

As was mentioned in the introduction section, the literature report various advantages of using natural language methods in
explanation creation.

As mentioned in the introduction section, using natural language methods in explanation creation has various advantages like
higher efficiency (See Alonso et al. (2017)) and coverage (in terms of audience) (See Sokol and Flach (2018)). Another element is
the power of these presentation techniques to convey social cues (Chaves & Gerosa, 2020), interacting with users and reinforcing
their trust in the information system as a whole which goes beyond the black-box model and its underneath data (De Gennaro
et al., 2020). Such potential benefits can be achieved when XAI solutions, starting from static, one-directional messages, go towards
dialogues that directly engage the end-user in the explanation process by offering rich and personalized interactions that mimic how
humans explain their decisions.

2.1. A roadmap for selecting XAI-based systems

The definition of XAI is discipline-dependent (Doran, Schulz, & Besold, 2017). Fields close to social and cognitive sciences tend,
when defining explanations, to focus on the problem of providing to the end user sufficient information to establish causation (Lipton,
1990; Miller, 2021) while on the other hand, researchers studying human–computer interactions focus on the interactivity,
information transition flow and the effectiveness of explanations (Holzinger, Langs, Denk, Zatloukal, & Müller, 2019; Raman et al.,
2013). In this paper, we rely on the definition provided by Ribeiro, Singh, and Guestrin (2016), which relates explanations to ML
systems and their components (i.e., independent and dependent variables) and is general regarding the study domain: ‘‘textual or
visual artefacts that provide a qualitative understanding of the relationship between the instance’s components (e.g., words in a text, patches
in an image) and the model’s prediction’’.

Paper selection criteria. We reviewed 70 XAI papers that make use of natural language. Only those which met these criteria have
been included:

• for journal papers, to be either Q1 or Q2 of SCImago journal ranking in any computer science-related topics in the year of
publication;

• for conference papers, to be classified as A/B for all those rankings: (i) CORE Conference Rating, (ii) LiveSHINE, and (iii)
Microsoft Academic.

Google Scholar was searched for papers from 2006 to 2021. We identified search terms as combinations of XAI and NLG set of
erms and further extended them, identifying new keywords from those papers. The final term sets are XAI (XAI, Explainable Artificial
ntelligence, Interpretable AI, Interpretable Artificial Intelligence, Interpretable Machine Learning, IML) and natural language
Natural Language Generation, Natural Language, NLG, verbalization, text).

Finally, we designed a roadmap for the selection of XAI systems studied based on their characteristics. This roadmap consists of
hree layers, namely, Context definition, Explanation generation and Message generation, in a way that the input of each layer is the
utput of the previous one. Sections 3 to 5 describe these layers in more detail. A similar approach has been proposed in Hall et al.
2019), that summarized XAI methods by drawing a list of predefined characteristics. However, our proposed roadmap is different
rom the mentioned work since (i) it uses categorical measures with simple graphics which are faster both for insertion of new
apers and interpretation of method comparison (in contrast to textual descriptions used in the above-mentioned work) (ii) it can
e used to compute a rank for each entry based on the relative importance of the features based on the demand of the user. In the
ollowing three sections we detail each layer of the roadmap based on the literature review mentioned before.

. Context definition

In our roadmap, the context indicates a layer of information that identifies how the explainer targets the black-box and the
eed of the end-user (who should use the generated explanations). The context information is used as the input of the explanation
eneration layer. The building blocks are described below.

1 A GitHub repository with the ranking model in a machine-readable structure will be provided in case of paper acceptance.
3
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Fig. 1. A roadmap for selecting XAI systems that make use of natural language explanations.

.1. Explanation goal

In their survey, Guidotti, Monreale, Ruggieri, Turini et al. (2018) divide XAI problems into two broad categories of black-
ox explanation problems and transparent box design, with the first one further has been categorized into the following three
ub-categories:
odel Explanation: Explanations are made through the generation of an interpretable model that tries to mimic the black-box,

.e., generating the same output. If such an interpretable model is successful, generating outputs that are similar to those created
y the original model, or in other words, have high fidelity to it, such model can be used as a proxy to understand the general
ecision-making process of the black-box. By doing so, we can claim that we globally explained the initial black-box.
utcome explanation: In this case, unlike the model explanations, we are not trying to explain the black-box as a whole; instead,
iven the record, we want to explain its output as a local explanation. Using such a method means we would not comprehend any
ore the entire mechanism of the black-box but only a specific outcome of it.
odel inspection: While the outcome of the previous two methods is a model (an interpretable model) which is able to mimic

he black-box behaviour (globally in the first and locally in the second case), model inspection, on the other hand, consists of the
echniques that instead of generating an interpretable model, provides a visual or textual representation of the model’s internal
echanism.

.2. Audience

XAI studies can be divided into two main groups based on how they address the target users. The first group that makes most
orks are studies that do not mention the target or audience altogether for their proposed solutions. Almost in all cases, it means

hat they generate explanations that target technical users who are able to interpret the complex/technical explanations (Goldstein,
apelner, Bleich, & Pitkin, 2015; Kim, Shah and Doshi-Velez, 2015; Sturm, Lapuschkin, Samek, & Müller, 2016). The second
ategory includes works in which authors mention a general division among different types of audiences (i.e., dividing them into
echnical and non-technical users), target a specific group of audience or, in rare cases, propose solutions that have a certain level
f customization (Alonso & Bugarín, 2019; Hohman et al., 2019).

Tomsett, Braines, Harborne, Preece, and Chakraborty (2018) defines six types of agents – direct and indirect users of an XAI
ystem – in their proposed ecosystem:

• Creator: Agents who create the system, divided into owners and implementors subgroups.
• Operator: Agents that directly interact with the machine.
• Executor: Agents that make decisions based on the output of the AI system.
• Decision subject: Agents that are affected by the decisions.
• Data subject: Agents whose data is used in the targeting of the model.
• Examiners: Agents that audit or investigate the machine.

Similar categories are introduced by previous research, for instance, Bhatt et al. (2020) divides what they called stakeholders of
xplainability to Executive, machine learning engineers, end-users and other stakeholders and Langer et al. (2021), dividing such
takeholders into five groups of users, (system) developers, affected parties, deployers, and regulators.

Several researchers emphasize the importance of providing explanations that are adequate for the audience, fostering interdis-
iplinary collaboration to maximize the effectiveness of XAI methods in their context of application (Johs, Agosto, & Weber, 2020;
ayrovnaziri et al., 2020; Xu et al., 2019). In line with those arguments, we believe that to convey the desired message to the target
ser successfully and, at the same time, stimulate trust in her, it is necessary to generate explanations tailored to that specific user
oth in terms of content and form. In our roadmap we use End users, Developers and Decision-makers, as the mostly addressed
4

argets in the literature.
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4. Explanation generation

The need for XAI methods is expressed in different forms in the literature; with objectives that sometimes are quite different
rom each other. Here we mention some works which try to answer the question What is the necessity of explanations?:

• Identification of bias & improving fairness (e.g., Guidotti, Monreale, Ruggieri, Turini et al., 2018; Ribera & Lapedriza, 2019;
Sokol & Flach, 2020; Wang, Yang, Abdul, & Lim, 2019)

• Trust in the AI systems and algorithmic decision-making processes (e.g., Abdul, Vermeulen, Wang, Lim, & Kankanhalli, 2018;
Guidotti, Monreale, Ruggieri, Turini et al., 2018; Hoffman, Mueller, Klein and Litman, 2018; Lucic, Haned, & de Rijke, 2020;
Sokol & Flach, 2020)

• Having better control of the AI systems (e.g., Abdul et al., 2018; Wang et al., 2019)
• Debugging and improvement of black-box models (e.g., Kenny, Ford, Quinn, & Keane, 2021; Kulesza, Stumpf, Burnett, & Kwan,

2012; Mittelstadt, Russell, & Wachter, 2019; Sokol & Flach, 2020; Wang et al., 2019)
• Ethical issues (e.g., Apicella, Isgrò, Prevete, & Tamburrini, 2019; Muller, Mayrhofer, Van Veen, & Holzinger, 2021; Stöger,

Schneeberger, & Holzinger, 2021)
• Legal issues (e.g., Apicella et al., 2019; Mittelstadt et al., 2019; Ribera & Lapedriza, 2019)
• Improving Transparency (e.g., Abdul et al., 2018; Apicella et al., 2019; Werner, 2020)

Observing from a different angle, Lecue, 2020 identifies the application of explanations in the following fields of AI:

• Machine Learning (except neural networks) (e.g., supervised learning)
• Artificial (Deep) Neural Networks
• Computer Vision
• Constraint Satisfaction and Search (e.g., Conflict resolutions)
• Game Theory (e.g., Zero-sum games)
• Uncertainty in AI (e.g., Probabilistic Graphical Models)
• Robotics (e.g., Information processing)
• Distributed AI (e.g., Multi-Agent Systems)
• Automated Planning and Scheduling (e.g., Unmanned vehicles)
• Natural Language Processing (e.g., Question answering)

Due to its importance, here we briefly describe three types of cognitive processes used in explanations, as outlined by Miller
(2019):Causal connection or inferring explanation based on the observations and the prior knowledge, Causal selection or selecting
the inferred explanations and finally, explanation evaluation or evaluating the quality of the explanations by the explainee (see
e.g., Holzinger, Carrington, & Müller, 2020). He further argues that the ideal outcome of the ‘‘explanation evaluation’’ phase,
which is the best evaluation is not equivalent to choosing the most likely or the most accurate case, since what is perceived as
the best explanation by the explainee is not based on the probability with which the explanation occurs but its pragmatic influence,
e.g., usefulness and relevance (see McClure (2002)).

4.1. Explanator type

Regardless of the explanation goal one pursues, there are a variety of explanators (i.e., ‘‘part of the AI system which generates
xplanation artefacts’’ (Hall et al., 2019)). Choosing a model depends on several characteristics of the system like the type of input
ata and query, accessibility of the black-box, its cost and finally, the context of the explanation as described in Section 3. Burkart
nd Huber (2021) did a thorough job identifying the principal explanator types. The most used types are: Decision Trees (DT),
ecision Rules (DR), Salient Masks (SM) and Feature Inspection (FIN). Here, we briefly describe the most used models in the

iterature these methods:

• Decision tree (DT): Being one of the most-used techniques. Decision trees offer both global and local explanations.
• Decision rules (DR): Decision rules describe the inner mechanism of black-box models by extracting such rules through various

methods. Though it is not technically generated through NLG techniques, decision rules often offer explanations that are easy
to understand and interpret by a wide range of users.

• Salient mask (SM): Mainly used with image data, salient (or saliency) masks cover certain parts of the input to emphasize
the segments used for generating the output.

.2. Structure

The general form through which the explainer formulates the explanations can be categorized into the following groups:

• Feature importance (FI): Providing a complete or limited set of features with their contribution to the final results. As we
discussed in Section 3, such ‘‘final results’’ could refer to a single record’s output or the general decision-making logic of the
black-box model. While used on a large scale, feature importance is not able to demonstrate the root cause of a phenomenon
or, in other words, the answer to the ‘‘why’’ question.
5
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• Sensitivity analysis (SA): This kind of explanation can be done for both data features and training parameters. In the first
case, the hypothetical output as a result of modifying (adding/removing/altering) the data features will be generated. In
contrast, the second case deals with alterations in output as the result of modifications of the black-box’s internal parameters
(e.g., hidden layers in a deep neural network).

• Direct what/how/why answers (DA): This category includes the most intuitive type of explanations, those which directly
answer a question of type what is, what happens if, why rather, how come and other similar questions (see e.g., Holzinger, Malle,
Saranti, & Pfeifer, 2021).

While being different in forms, we should emphasize that the first two structures mentioned above are special cases, or in other
words, limited cases of the latter category. We have divided them into three groups to address the way they are being used in the
XAI field. In the majority of works, often the origin of the feature importance and sensitivity analysis remains unmentioned that is,
to which question (Why, How, etc.) are they responding, while in fact, many times explanations are rooted in a question which was
raised by a specific user with a set of particular needs. We should emphasize that this is not the case for all types of explanations for
instance those which are inspired by mathematical equations (See e.g. Layer-wise Relevance Propagation (LRP) Bach et al., 2015).

In our opinion, not elaborating on the choice of the explanation structure can damage the overall effectiveness of the XAI system,
as the wrong structure will risk the knowledge transferring process as the final goal of any XAI system.

4.3. Explanation type

Working on explanations applied in information systems (IS), Hovorka, Germonprez, and Larsen (2008) proposes an expanded
concept of explanations, arguing that the choice of explanation types depends on the reference disciplines through which research
phenomena are understood and the research agenda is shaped. Below we briefly introduce these explanation types by providing a
general form for each of them:

• Covering-law(deductive-nomological) explanations: ‘‘Whenever phenomenon X is observed to occur in the setting of
conditions C, Y will be observed’’.

• Statistical-relevance explanations: ‘‘Based on empirical data, factors A, B and C contribute to the probability of Y by the
amount of X’’.

• Contrast-class explanation: ‘‘In this context and given my purpose, why did X (rather than X*, X**, etc.) occur?’’
• Functional explanations: ‘‘Identification of the mechanism by which desirable goal A ensures the continued existence of the

phenomenon’’.

As the result of his survey, Miller, 2019 argues that a vast amount of such works (e.g., Dennett, 1989; Kass & Leake, 1987)
are based on the four ‘‘modes of explanation’’ proposed by Aristotle, which are: Material (a substance which makes something),
Formal (Form of something which its identity depends on), efficient(the proximal mechanism cause a change) and Final (the end
goal of something). Miller further declares that ‘‘explanations are contrastive’’ and throughout his work, confronts it with ‘‘complete
explanations’’ which, unlike the former, respond to straightforward plain-fact questions of the type ‘‘why does object a have property
P?’’, by listing the entire causal chain which results in the observed output.

Contrastive explanations (e.g., Lipton, 1990; Miller, 2019, 2021) are the natural response to a why questions, while some argue
that how and what questions are also considered as such. Miller, 2019 points out that contrastive explanations provide a window
in the questioner’s mental model by showing their knowledge gap while at the same time, these explanations, with respect to the
complete explanations discussed earlier, are more straightforward, more feasible and cognitively less demanding for both parties
engaged in the explanation process. Different types of contrastive explanations are introduced in the literature and we go through
some of them in the following part, but before doing so, we should mention what parts these different proposals of contrastive
explanation have in common: Contrast class, fact and foil. For these concepts, we rely on the definition done by Robeer (2018): ‘‘A
contrast class 𝐹 are all possible alternatives to a decision given the context (i.e., the range of values for a decision 𝐸). The fact is the actual
decision 𝑓 ∈ 𝐹 , while the foil is any other member of the contrast class that is not fâ, i.e., g ∈ 𝐹⧵{𝑓}’’. As noted by McGill and Klein (1993),
such definition of the counterfactuals, as the hypothetical outcome for event E, hold only for contrastive explanations while the same
concept in the causality and its closely related concept, causation, is a ‘‘non-cause’’ in which the event-to-be-explained (Miller, 2019)
does not occur. Van Bouwel and Weber (2002) goes further and introduces three types of contrastive questions:

• P-contrast: Why does object a have property P, rather than property Q?
• O-contrast: Why does object a have property P, while object b has property Q?
• T-contrast: Why does object a have property P at time t, but property Q at time t?

As Miller (2021) puts it, P-contrast – or the standard ‘‘rather than’’ question – happens within an object, O-contrast among objects
themselves and T-contrast within an object over time. Furthermore, using the framework of Halpern and Pearl (2005), Miller
categorizes the concept of P-contrast as ‘‘Alternative explanations’’ while labels O-contrast and T-contrast concepts as ‘‘Congruent
questions’’, formalizing them in the Miller (2021).

Ylikoski (2007) provides another classification for contrastive questions as ‘‘incompatible’’ and ‘‘compatible’’ cases, while the
former is when fact and foil are inconsistent and unlike the fact, the foil does not happen and is hypothetical (similar to P-contrast
mentioned above), while in the latter case, fact and foil (or as he calls it, surrogate) are compatible and they both happen in diverse
6

situations/times.
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Finally, Counterfactual explanations answer to questions about the hypothetical outcome of a hypothetical event, or as Wachter,
ittelstadt, and Russell (2017) puts it, ‘‘how the world would have to be different for a desirable outcome to occur’’ (see e.g., Byrne,

019; Verma, Dickerson, & Hines, 2020).

. Message generation

Given the focus of our paper on the usage of natural language techniques in the XAI field, we provide a more detailed description
f NLG techniques and dialogue systems as a presentation category and a sub-category of the text presentation.

The Explanation generator layer provides explanations of the black-box that cannot be delivered directly to the end-user as
hey are in a raw format, often using model-dependent notations. Hence, the role of this layer is to transform these raw outputs to
xplanations (e.g., Messages) that are comprehensible by the end-user.

.1. Presentation technique

One of the less explored aspects of XAI is the presentation layer, where the explanations made by the explainer are transmitted
o the end-user. The output of an XAI system can be multimodal, thus presenting natural language explanations and other content
ypes. We grouped the presentation methods together: Graphics/plots, Texts, Images and Reports.

The choice of the representation methods depends on various interrelated factors. In our opinion, the most contributing ones
nclude the ease of producing the representations (e.g., out-of-the-box solutions) and overlooking the importance of the presentation
ethod on users’ comprehension (Huysmans, Dejaeger, Mues, Vanthienen, & Baesens, 2011). In the following part, we briefly
escribe the typical presentation methods in the literature.

raphics/Plots contain the most popular methods in the literature. Such popularity in our opinion is rooted in the presence of tools
nd the relative simplicity of generating such graphics. This group is mainly consists of the following types: Bar plots, Line plots,

Trees, heatmap plots, histograms, scatter plots and bubble plots.
Bar Plot is the most used method in this category and can be further divided into Horizontal and Vertical Plots (Lou, Caruana,

& Gehrke, 2012; Poulin et al., 2006; Ribeiro et al., 2016).
Line Plot vary from simple vertical bar plots to sophisticated custom plots made to represent a particular subject, often mixed

with other types of methods like destiny plots or changing hue for adding additional attributes (Adler et al., 2018; Goldstein et al.,
2015; Olden & Jackson, 2002).

Trees can be divided into two main categories: (i) Boolean Rules Trees which use the logic decision gates to classify records,
and (ii) Decision Trees which utilize the Boolean decisions instead (Johansson, Niklasson, & König, 2004; Kato & Harada, 2014;
Martens, Baesens, Van Gestel, & Vanthienen, 2007).

Heatmap Plot (not to be confused with Heatmap Images) are rather simple visual presentations that map a numeric value to its
corresponding colour (Selvaraju et al., 2017; Zeiler & Fergus, 2014).

Histogram among the presented methods so far are the most technical methods as their interpretation might be complicated for
the layman user without statistical knowledge (Baehrens et al., 2010; Olden & Jackson, 2002).

Scatter Plot , often boosted with other visualization methods, is used to map two or more dimensions into two or three-dimension
space (Baehrens et al., 2010).

Bubble Plot, visually similar to scatter plot, can be considered as an augmented version of scatter plot and is often used to
combine categorical and continuous values (Turner, 2016).

Images
Image-based presentations are considered more sophisticated with respect to the previous group (plots/graphics) and, at the

ame time, are more limited since they can be applied only if the target input is an image. The main types of this category are image
heatmap, saliency masking, and image manipulation.

Image Heatmap, not to be confused with heat map plots, use an image as their base and add different layers of visualization,
mostly coming from continuous data (Kim, Shah et al., 2015).

Saliency Masking is similar to image heatmaps as they utilize an image as their basis, but instead of adding heatmaps of values,
they partially mask/cover the image to communicate a specific message (Bach et al., 2015; Ribeiro et al., 2016; Simonyan, Vedaldi,
& Zisserman, 2014).

Image Manipulation, being the less sophisticated method in its family, image-manipulation consists of adding indicator shapes
to an image in order to indicate a specific part of the image (Ribeiro, Singh, & Guestrin, 2018; Turner, 2016).

Reports
Although this family is close the text category, described below, reports have a more structured approach respect to texts and

often are combined with other methods (e.g., graphics). The main techniques in this category are: tabular reports, decision tables and
graphical table reports.

Tabular Report. The most basic method of this family, reports, conveys the desired message in a structured and direct
manner (Henelius, Puolamäki, & Ukkonen, 2017; Poulin et al., 2006).

Decision Table. Like tabular reports, decision tables use the tabular structure, but since they solely represent the rules and
mostly, no other info, they have less flexibility in the data types and other representations (Verbeke, Martens, Mues, & Baesens,
2011).
7
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Graphical Table Report. This method, using tabular reports as the basis, integrates other methods in a very flexible way which
llows one to customize the table based on the specific message desired to be communicated (Kim, Glassman, Johnson and Shah,
015). Texts. This group contains methods that use the text as their basis. Notice that it does not mean that the output of these
epresentations are necessarily expressed in natural language but indicates that the main message is conveyed through the text and
ot the other techniques mentioned before. The main textual representations are rules, word annotations, and natural language texts.

Another subcategory of AI which can mitigate the lack of explicit, symbolic representation of knowledge, i.e what prevents
humans from fully comprehending black-boxes is Symbolic AI (Ciatto, Schumacher, Omicini, & Calvaresi, 2020). In this subcategory
of AI the output can be in the textual/code (See Kitzelmann et al. (2006), Mao et al. (2018)). Inductive Logic Programming
(ILP), a subfield of symbolic AI and more specifically a technique called Learning from Interpretation Transition (LFIT) can learn
a propositional logic theory equivalent to a given black-box system under certain conditions (Ortega, Fierrez, Morales, Wang, &
Ribeiro, 2021). Another example of Symbolic AI can be seen in the work of Malandri, Mercorio, Mezzanzanica, Nobani, and Seveso
(2022b) that uses Binary Decision Diagram (BDD) to derive T-contrast explanations for text classifiers.

Natural Language Explanations. As part of text explanations, natural language explanations are text written in plain English
or other human languages (see e.g., Hendricks et al., 2016; Hendricks, Hu, Darrell, & Akata, 2018a). Most of the approaches for
generating explanations in natural language belong to the families of NLG and Dialogue Systems. Notice that, while the sentence
eneration task in dialogue systems is an application of NLG, they are more closely related to dialogue management since
anagement and realization policies are usually learned together (Gatt & Krahmer, 2018). For this reason, we treat them as two
ifferent types of output.
NLG. In the seminal work of Reiter and Dale (1997), NLG is defined as ‘‘The sub-field of artificial intelligence and computational

inguistics that is concerned with the construction of computer systems that can produce meaningful texts in English or other human languages
rom some underlying non-linguistic representation of information’’. In essence, NLG is a branch of natural language processing (NLP)
esearch (Cambria, Schuller, Xia, & White, 2016; Minaee et al., 2021; Zhao, Peng, Eger, Cambria, & Yang, 2019) focusing on
he transformation of computer language to natural language. Traditionally, NLG tasks are divided into two main categories;
ata-to-text and text-to-text. As the name suggests, the data-to-text group deals with generating natural language mainly from
umerical data. As examples of this category, we can mention Robo-Journalism or automatic reporting (e.g., automatic weather
orecast Sripada, Reiter, & Davy, 2003 and sports event reports Chen & Mooney, 2008). Text-to-text category, on the other hand,
overs a wider and somehow more significant applications like machines translation (e.g., Devlin et al., 2014; Koehn et al., 2007),
ext summarization and simplification (Webber, Egg, & Kordoni, 2012) and paraphrasing (Androutsopoulos & Malakasiotis, 2010).

hile the mentioned categories of NLG are the major players in the NLG field, in the past decade, another group, vision-to-text, has
merged, mainly thanks to the proliferation of the Deep Neural Network methods. Although this category is not yet as mature as the
ethods mentioned above, there already exist numerous applications like image captioning (Yang, Tang, Zhang, & Cai, 2019) and

he generation of natural language explanations using Deep Learning techniques (e.g. Chang, Harper, and Terveen (2016), Costa,
uyang, Dolog, and Lawlor (2018) and Ehsan et al. (2019)) As Mariotti et al. (2020) clarifies, NLG works can also be divided
onsidering the technology used for generations of the text: Template-based, which structure templates that present the output in
extual form and End-to-end generation which utilizes large humanly labelled data-to-text corpora.
Rules. Rules are simply a list of decision rules written in natural language (Letham, Rudin, McCormick, Madigan, et al., 2015;

artens et al., 2007; Zhou, Jiang, & Chen, 2003).
Word annotation. Word annotation is the fastest and simplest method of the text category, in which a message is conveyed by

ighlighting or changing the colour of a specific part of the text (Kim, Glassman et al., 2015; Lei, Barzilay, & Jaakkola, 2016; Liu,
hang, & Gulla, 2020; Ribeiro et al., 2016).
Dialogue Systems. Essentially, a dialogue system is a system that enables the conversation between two parties. Neither the term

ialogue system nor its definition, however, have a clear consensus among the researchers. While there are various alternatives for
his term, we can mention conversational Agent, Conversational User Interface and Chatbots are the most commonly used in academia
nd business (Li, Shao, Ji, & Cambria, 2022; Ma, Nguyen, Xing, & Cambria, 2020; Xu, Peng, Xie, Cambria, Zhou, & Zheng, 2020;
oung et al., 2018; Young, Pandelea, Poria, & Cambria, 2020). Although such systems have been around for the past fifty years,
heir usage as a presentation layer in XAI systems is minimal. Hilton (1990) defines an explanation as ‘‘someone explains something
o someone else’’, which emphasizes the conversation form of a causal explanation. What we saw in the proposed roadmap until this
oint was generating explanations using context and presenting them as a fixed explanation. An alternative to such presentations
s to communicate the message (explanation) as a part of a conversation between the system (explainer) and the user (explainee).

. Keeping the roadmap up-to-date

One of the significant limitations of survey studies is that they rapidly become obsolete as soon as the research on the topic
dvances. Aiming at overcoming this issue, Qian et al. (2021), propose an interactive browser-based system called XNLP.2 which
ynthesizes the state of the field at different levels of abstractions and from different perspectives Although this tool, in our opinion, brings

2 https://xainlp2020.github.io/xainlp/home.
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Table 1
Mapping selected papers to our roadmap. (Example and Benchmark) → Not provided/used: f, Provided/used once: m, Provided/used multiple times: g ; (Dataset)
→ Not mentioned: , Private dataset: , Public dataset: ; (Code) → Not provided: , Provided no documentation: , Provided with documentation: ;
(Rest of features) → Not mentioned: , Mentioned but not applied: , Applied: (see below-mentioned reference for further information: Amarasinghe & Manic,
2019; Donadello & Dragoni, 2021; Hendricks, Hu, Darrell, & Akata, 2018b; Sreedharan, Srivastava, & Kambhampati, 2021)

Experiments Evaluation Explanation goal Audience Explanator type Structure Explanation type Presentation

Paper Ex
am

pl
e

Be
nc

hm
ar

k

Da
ta

se
t

Co
de

U
se

r-
Ev

al
ua

tio
n

M
et

ric

M
od

el
Ex

pl
an

at
io

n

O
ut

co
m

e
Ex

pl
an

at
io

n

M
od

el
In

sp
ec

tio
n

en
d

us
er

De
ve

lo
pe

r

De
ci

sio
n-

M
ak

er

De
ci

sio
n

Tr
ee

De
ci

sio
n

Ru
le

Sa
lie

nt
M

as
ks

Fe
at

ur
e

In
sp

ec
tio

n

Fe
at

ur
e

Im
po

rt
an

ce

Se
ns

iti
vi

ty
An

al
ys

is

Di
re

ct
An

sw
er

s

Pl
ai

n-
fa

ct

Co
nt

ra
st

iv
e

Co
un

te
rf

ac
tu

al

Gr
ap

hi
c

Im
ag

e

Ru
le

Te
xt

Di
al

og
ue

Sy
st

em

Costa et al.
(2018)

g f

Ehsan et al.
(2019)

g f

Chang et al.
(2016)

g m

Hendricks
et al. (2018a)

g f

Alonso and
Bugarín (2019)

g f

Sokol and
Flach (2018)

m f

Core et al.
(2006)

g f

Rosenthal,
Selvaraj, and
Veloso (2016)

g f

Amarasinghe
and Manic
(2019)

g f

Hohman et al.
(2019)

g f

Park et al.
(2018)

g m

Malandri,
Mercorio,
Mezzanzanica,
Nobani, and
Seveso (2022a)

g m

Zhao, Huang,
Huang, Robu,
and Flynn
(2021)

g m

Donadello and
Dragoni
(2021)

g f

Hendricks
et al. (2016)

g m

Hendricks
et al. (2018b)

g m

Sreedharan
et al. (2021)

g m

alue to the XAI community by providing a dynamic hub of recent works, it lacks a feature that directs researchers to the most
elated works to their field of research.

To bridle this limitation, we propose to model the roadmap depicted in Fig. 1 as a multi-criteria-decision-making (MCDM)
roblem where columns of Table 1 are criteria whilst the rows are the alternatives on which decide. Hence, the decision goal is to
ecide which is the most suitable XAI system that makes use of natural language explanations. Modelling such a decision as an MCDM
roblem allows deciding, taking into account the user needs (criteria) and their relative importance of them (weight of criteria).

.1. Multi-criteria decision-making at a glance

In essence, MCDM refers to a set of methods that allows constructing a global preference relation for a set of alternatives to be
valuated by using several criteria. A literature review on MCDM falls out of the scope of this paper; the reader can refer to Figueira,
reco, and Ehrgott (2005) for a survey. The MDCM approaches are able to deal with dependence amongst criteria (e.g., ANP Saaty,
9
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Fig. 2. The AHP hierarchy built from Table 1 weighted by a user. Any user can contribute weighting the hierarchy at https://tinyurl.com/XAI-NLG-AHP.

2004), conflicting criteria (ELECTRE), synthesize compromise solutions (TOPSIS), as well as to deal with uncertainty over the
judgments (Fuzzy sets theory applied to the previous methods). In our work, we use the Analytic Hierarchy Process (AHP) (Saaty,
1987), as it is beneficial for evaluating complex multi-attribute alternatives involving subjective criteria to capture stakeholders’
knowledge of phenomena under study. AHP consists of the following main steps.

(i) Build up the criteria/alternatives tree. In this step, the criteria that compose the decision problem are identified and
organized hierarchically so that a criterion may have sub-criteria, and so on. The leaves of this tree are the alternatives that the
decision process aims at selecting. Our hierarchy of criteria is drawn following Table 1.

(ii) Pairwise Comparison of Criteria. In this step, the users are required to perform a pairwise comparison of each criterion at
each level of the hierarchy, and the results are collected in a matrix summarizing the local priorities for each domain expert. The
main intuition here is that it is easier (and more accurate) to compare the importance of two criteria at a time than simultaneously
evaluating all of them. There are two characteristics of AHP that deserve to be highlighted. First, the same preference scale, i.e., the
Saaty’s Scale (Saaty, 2004), is used to evaluate both (quantitative and qualitative) criteria and alternatives. Second, the expert does
not provide any absolute numerical judgment but a comparative evaluation, which is more familiar to people. Comparisons are
recorded in a positive reciprocal matrix, in which 𝑎𝑖𝑗 represents the comparison between element 𝑖 and 𝑗.

The rationale of the relationship 𝑎𝑗𝑖 = 1∕𝑎𝑖𝑗 is that if A is four times more important than B, then B is 1∕4 important with respect to
A. Thus, if the matrix is perfectly consistent, the transitivity rule is satisfied for all the comparisons, namely 𝑎𝑖𝑗 = 𝑎𝑖𝑘 ⋅𝑎𝑘𝑗 . Intuitively,
it is expected that if A is moderate important (3) than B, and 𝐵 is weak important (2) than C, thus a consistent judgment would have
that A is 3 ⋅ 2 = 6 strong important than C. As inconsistencies are natural in human judgments, AHP provides the consistency ratio
to the final user. It was proved that inconsistencies in answers could be tolerated if the consistency ratio remains within a small
interval, that is 10% (Saaty, 2004).

At the end of this process, a weighted hierarchy that encodes the user preference is obtained, as in Fig. 2. Notice AHP allows
group decision-making by averaging judgments into one unified weighted hierarchy.

(iii) Synthesize Global Priorities of Alternatives. The last step requires synthesizing the global priorities (i.e., the priority
vector) from the pairwise comparisons to determine the ranking of alternatives, taking into account the user judgments computed in
10
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Fig. 3. The paper ranking based on the hierarchy shown in Fig. 1.

the previous step. Mathematically speaking, the priority vector is the solution of an Eigenvalue problem over the matrix previously
introduced. The results of the pairwise comparisons are arranged in a matrix. The matrix’s first (dominant) normalized right
Eigenvector gives the ratio scale (weighting), while the Eigenvalue determines the consistency ratio. At the end of this step, a
list of alternatives ranked is provided, as in Fig. 3; the figure shows the paper rankings user got based on the created hierarchy,
after a pairwise comparison of papers. In our approach, once the weighted hierarchy of criteria is obtained, the pairwise evaluation
of alternatives is automatically performed drawing from Table 1, by normalizing the values on the Saaty’s scale. One might note
that the user assigned 44% of importance to both the Presentation and Explanation layers, whilst the Context account for the 11%.
Looking at global priorities, having a Dialogue System accounts for the 24.4% on the final decision, as well as being able to provide
Feature Importance (FI) accounts for the 16% globally, more than having text (11.1%).

Based on these results, the paper that better fits the preferences of the decision hierarchy in Fig. 3 is Sokol and Flach (2018)
with the consolidated weight of 14.3%. This paper can explain this output is one of two using dialogue systems, which have the
highest priority in the hierarchy defined by the user. The reason why the output is not (Core et al., 2006) – the other paper using
a dialogue system – is that, unlike the latter, Sokol and Flach (2018) uses Decision Trees which is another relevant criterion in the
hierarchy. In essence, AHP allows one to capture and keep track of the reason behind the decision, taking into account the relative
importance of the XAI characteristics.

One should note that users are able to update the roadmap criteria and add new alternatives (papers) to adapt the framework
and update it based on their specific needs. In order to demonstrate how the framework transforms specific users’ needs into paper
rankings, in the following part we provide three simulated cases including the initial need, hierarchy weights of criteria and paper
rankings.

Case 1 Working with a dataset which has both images and separate features the researcher’s goal is to classify EMG hand movement.
To do so, the researcher wants to be able to explain individual outcomes of the black-box to final users. Such explanations should
be able to satisfy both plain-fact (why questions) and contrastive (why not or why this and not that) questions of end-users, using
either rules or images. It is also acceptable to receive such explanations through a conversation.

Case 2 The researcher’s goal is to classify job vacancies and have a clear understanding of the characteristics of the classification.
The explanations are destinated for the decision-makers who act upon the obtained results. The preferred mode for explanations to
be conveyed are decision trees and rules while the preferred presentations are through rules, graphics or natural language.

Case 3 Having tabular data of credit landing the researcher aims to inspect the model and assess its fairness. The target of the
explanations are the developers and the most efficient way for them to comprehend and act upon them is through decision rules
and trees and in form of plain-fact and counterfactual explanations. Similarly, the preferred modality of presentation for this specific
target is textual or rule explanations.

Discussion Figs. 4–6 show the decision hierarchy and the resulting ranking of papers based on these preferences. As it can
be observed, the paper ranking accurately reflects the preferences of researchers in terms of explanation goal, audiences and
presentation choices. For instance, in case 1, the researcher working with image data prefers to receive the explanations in a plain-
fact manner and thorough images, which is aligned with the paper ranking provided by the tool, with Zhao et al. (2021) as the first
paper. Similarly, in case 2, where the preferred explanations are rules and natural language, the top-ranked papers are Hohman
et al. (2019) and Malandri et al. (2022a) which provide such explanations. Finally, in case 3 the users is a developer that need a
XAI algorithm able to process tabular data and to provide explanations in the form of rules and trees, like the proposed ones. Note
that, given that both case 2 and case 3 require decision rules and trees as explanations, the first three suggestions point to the same
methods, while the following differs. For instance, the verbalization model proposed by Rosenthal et al. (2016) is not designed for
text classification. Therefore, it appears as fourth best-fit for case 3, but it is much lower in the ranking for case 2. Those examples
show the usefulness of the proposed approach, which helps the users in narrowing the search among the vast range of available
XAI methods, pointing the one that better fits their need and tasks.
11
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Fig. 4. Hierarchy (A) and paper ranking (B) of case 1.

Fig. 5. Hierarchy (A) and paper ranking (B) of case 2.

7 Conclusion and future work

In this work, we surveyed XAI methods that make use of natural language to provide explanations (i.e., either through text or
dialogue systems) of what has been done, what is done right now, what will be done next and unveil the information the actions
are based on. We considered 70 XAI papers that encompass natural language explanations published in top-tier conferences and
journals between 2006 and 2021. We proposed a roadmap to analyse the whole explanation process, from the black-box model to
the final user, going through three main layers: context definition, explanation generation and message generation. Furthermore, we
mapped the main methods in XAI literature to a list of the characteristic of each layer. As a further contribution, we modelled the
12
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Fig. 6. Hierarchy (A) and paper ranking (B) of case 3.

roadmap as a multi-criteria-decision-making problem and employed the analytic hierarchy process to select the XAI technique that
better fits user preferences. Finally, to foster knowledge-sharing among XAI researchers, the model allows for adding new papers on
top of the ones already reviewed here to keep the evaluation framework updated over time. As for future works, there is a need for
an in-depth study of explanations generated within Human–Machine Teams (HMT) (see e.g. Paleja, Ghuy, Ranawaka Arachchige,
Jensen, and Gombolay (2021)) which go beyond interactive dialogues, where the explainer is not considered a mere tool but a
team member which is present in every step of the decision-making process and is capable to predict and act upon alterations in
the context and environment parameters.
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