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Abstract—Prompt tuning has achieved great success in various
sentence-level classification tasks by using elaborated label word
mappings and prompt templates. However, for solving token-
level classification tasks, e.g., named entity recognition, previous
research, which utilize N-gram traversal for prompting all spans
with all possible entity types, are time-consuming. To this end, we
propose a novel prompt-based contrastive learning method for
few-shot named entity recognition without template construction
and label word mappings. Firstly, we leverage external knowl-
edge to initialize semantic anchors for each entity type. These
anchors are simply appended with input sentence embeddings
as template-free prompts. Then, the prompts and sentence em-
beddings are in-context optimized with our proposed semantic-
enhanced contrastive loss. Our proposed loss function enables
contrastive learning in few-shot scenarios without requiring a
significant number of negative samples. Moreover, it effectively
addresses the issue of conventional contrastive learning, where
negative instances with similar semantics are erroneously pushed
apart in NLP-related tasks. We examine our method in la-
bel extension, domain-adaption, and low-resource generalization
evaluation tasks with six public datasets and different settings,
achieving state-of-the-art results in most cases.

Index Terms—Information Extraction, Named Entity Recog-
nition, Few-shot Learning, Contrastive Learning, Prompting.

I. INTRODUCTION

Named Entity Recognition (NER) aims to detect entity
spans from unstructured natural language and classify the en-
tities into predefined types, such as LOCATION, PERSON, and
EVENT. NER lays the foundation of many downstream tasks,
such as Question Answering [1], Recommend System [2],
and Knowledge Graph Construction [3]. Most existing NER
studies [4], [5] are trained with large amounts of annotated
data. However, large-scale manual annotations for supervised
learning NER in a wide range of domains are cumbersome [6].
To this end, utilizing few-shot techniques in resource con-
straint settings is a promising method to mitigate the labour
efforts and cross-domain challenge.
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Input :  Franklin Archibald Dick is a famous lawyer in Franklin.

Is Franklin a Person entity ? 
Is Franklin Archibald a Person entity ? 
Is Franklin Archibald Dick a Person entity ? 

Prompt for 
Person Type:

Is Franklin a Location entity ? 
Is Franklin Archibald a entity ? 
Is Franklin Archibald Dick a Location entity ? 

Prompt for 
Location Type:

...

Fig. 1. The example of redundancy problem when applying prompt tuning
for sequence labeling-based NER task.

Recently, prompt-based research has shown great potential
on few-shot learning tasks by reformulating various down-
stream tasks as mask language learning tasks [7]–[11]. Most
prompt-based methods first construct semantic templates as
prompts to obtain masked word predictions from a pre-trained
language model (PLM), then map these predictions into task-
specific labels [12], [13]. Such a process is termed label word
mappings [14]. However, manual construction of templates
and label word mappings are cumbersome and subjective. The
nuances in prompt templates and label word mappings may
result in a huge difference in model performance [15]. Con-
sidering the above problems, there are more research focusing
on generating prompts automatically and improving label word
mappings [16]–[18]. Some studies achieved improvements
by utilizing soft prompts instead of natural language-based
prompts [19], [20]. These soft prompts are normally continual
embeddings in embedding space, given by a PLM. However,
the study [21] finds that there is no statistically significant
difference in performances when use instructive or misleading
prompts. The work [22] just concatenates a [MASK] special
token with an input, which can achieve competitive perfor-
mances with manually written prompts. This motivates us to
explore whether an elaborately designed template is necessary
and what really works in prompt-based methods.

Besides, prompts-based methods are intrinsically designed
for sentence-level tasks [9], [23]. When prompt tuning comes
to token-level NER, it needs N-gram traversal to query all
the possible combinations of spans and types, or using dif-
ferent prompts with repeatedly forwarding to obtain a single
prediction [24]–[26]. As shown in Fig. 1, given an input
“Franklin Archibald Dick is a famous lawyer in Franklin.
[Span] is a [Type] entity”, a typical prompt-based method



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

needs to iteratively fill all spans in the [Span] position, such
as “Franklin”, “Franklin Archibald”, and “Franklin Archibald
Dick”. Meanwhile, all pre-defined types in a label set need
to iteratively fill in the [Type] position for each span, such as
CITY and PERSON, to differentiate “Franklin Archibald Dick”
and “Franklin”. Obviously, such a method suffers catastrophic
time cost when sentence length or entity types increased.

To tackle these modeling issues, we propose Template Free
Prompting (TFP) for few-shot NER via semantic-enhanced
contrastive learning. TFP employs prior knowledge to ini-
tialize semantic anchors for each entity type in the vector
space. The prior knowledge is obtained from Wikipedia1 to
represent the definition of labels in natural language. Such
prompts are understandable for humans compared with soft
prompts. Then, the semantic anchors are simply appended
with the embeddings of an original sentence as prompts
without template construction and label word mappings. Fi-
nally, semantic anchors are in-context-encoded together with
the input sentence to form the prototypes of entity types.
Noticeably, these prototypes are context-dependent, because
different inputs have different original sentences for the in-
context encoding. By the comparison between each token in
an input sentence with these in-context-encoded prototypes,
TFP allocates a label for each token and parses the results as
normal IO-based NER (namely binary classification for each
token), avoiding the issues of N-gram traversal and appending
different prompts for the same sentence.

Inherently, such a comparison can be achieved by con-
trastive learning [27]. However, traditional contrastive learn-
ing cannot be used in few-shot learning, because it needs
a large volume of negative samples [28] that cannot be
supported in few-shot settings. Furthermore, when previous
contrastive learning [29]–[31] developed a negative sample set,
the negative instances were naively considered as non-positive
instances without comparing the semantic similarity between
positive and negative instances. This results in an issue that
many negative instances share similar semantics to a positive
instance, whereas the negative ones are undesirably pushed
away to the positive one in vector space.

To overcome the learning issues, a hybrid granularity con-
trastive loss is developed in our TFP. The loss aims to optimize
the distances between tokens with calculated semantic proto-
types, instead of typical token-wise distances. Meanwhile, the
loss also optimizes the distances between different prototypes.
Since the above prototypes are initialized with semantic an-
chors, they can alleviate the bias from randomly sampled data
and mean-based prototyping under the few-shot setting [32].
By contrastive learning presentations of introduced semantic
information and input tokens, our loss can be used in few-shot
settings without using many negative samples.

We demonstrated that the proposed TFP is robust and
generalizable by evaluating its abilities in Label Extension
(LE), Domain-Adaption (DA), and No-Adapting (NA) under
few-shot settings. Specifically, TFP is tested with 26 sub-
tasks, six employed datasets, and three different few-shot NER
setups, achieving better performance on 19 tasks.

1https://dumps.wikimedia.org/

For example, compared with the strongest baseline, the
proposed TFP raises averaged F1 measure of 11.37% and
8.95% in 1-shot and 5-shot I2B2 under DA settings. Also,
various analysis experiments are carried out to demonstrate
its effectiveness. Our contributions can be summarized as
follows2:

• We propose an effective template-free prompt-based
method for few-shot NER. The method aims to ad-
dress the cumbersome template construction and N-gram
traversal-based inference, when prompt learning is em-
ployed in token-level labeling tasks.

• We propose a novel semantic-enhanced contrastive learn-
ing loss. The loss can achieve contrastive learning in few-
shot context, yielding more effective and distinguishable
representations for positive and negative samples by their
semantics.

• We conduct detailed comparisons and analysis to explore
what really works in prompt-based methods and find that
in-context encoding plays a more important role than
elaborately designed prompts.

• We conduct three few-shot learning evaluation tasks to
evaluate the capacity of our model in label extension,
domain adaption, and low-resource generalization. Our
proposed method achieves 19/26 state-of-the-art (SOTA)
results in these few-shot NER evaluation tasks.

II. RELATED WORK

A. Few-shot NER

Numerous practical challenges still persist in NER tasks,
such as multi-model NER [33], discrete NER [34], and few-
shot NER [35]. The primary emphasis of this paper is on ad-
dressing the challenges associated with few-shot NER. Many
advanced NLP applications and specific scenes need such
technology, such as dialog systems [36], [37], personalized
recommendations [38], [39], and handling long tail data dis-
tributions [40], [41]. The study [42] represents an early effort
that concentrates on the few-shot NER task. The researchers
have put forth an end-to-end trainable memory network, which
has the ability to identify and differentiate named entities
in an online fashion. The network is capable of performing
one-shot learning and can cope with a limited number of
sparse supervisions. According to METABDRY [43], presently
available NER methods are encountering difficulties in dealing
with sparse boundary tags. Additionally, when the source
domains differ from the target domains, existing methods
require more training data to adapt to the new domains. To
address these challenges, METABDRY employs adversarial
learning to encourage the development of domain-invariant
representations. Furthermore, they utilize meta-learning to
explicitly simulate domain shifts during training, thereby en-
abling effective aggregation of meta-knowledge from multiple
resource domains. The work presented in [44] utilizes syn-
thetic data augmentation to simultaneously tackle few-shot and
incremental learning for NER.

2Code and data will be released after review.
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PCBERT [45] proposes a novel Parent and Child BERT
method for Chinese few-shot NER, where an annotating
model is first trained on high-resource datasets to discover
implicit labels on low-resource datasets. SDNet [46] proposes
a self-describing mechanism for few-shot NER, which can
leverage illustrative instances and precisely transfer knowledge
from external resources by describing both entity types and
mentions using a universal concept set. In contrast to the
aforementioned methods, our proposed TFP method focuses
on a simple yet efficient prompt-based approach that can
unlock the true potential of large language models without
requiring complex changes to the model structure.

B. Prompt Learning
The early studies [9], [23] explore manually constructing

prompts for sentence-level text classifications, which refor-
mulate downstream tasks as cloze questions with a PLM.
Considering manual prompts are troublesome and subjective,
some studies propose automated methods for prompt creation.
P-tuning [15] proposes soft prompts, which employ continual
embeddings as prompts rather than natural language. They
first employed trained parameters as continuous prompts and
further used LSTM to fuse contextual information. Also,
this study found that inserting anchor words can effectively
improve the performance of automatically generated prompts.
This method achieves significant improvement over the tra-
ditional fine-tuning method in the knowledge detection task.
The idea of Prefix-Tuning [8] is similar to P-tuning, where
the model only optimized a small number of parameters in
the process of training. The difference is that Prefix-Tuning
adds a small number of parameters to each layer of the
language model, which do not need to correspond to any
specific word. PTR [12] applied logic rules to construct auto-
generated prompts. AutoPrompt [13] utilizes gradient-guided
search to automatically generate prompts for diverse tasks.
The study [47] further investigated the performance of prompt
tuning on various language models. The study pointed out that
a key advantage of prompt tuning is that it can freeze the entire
pre-trained language model and accomplish a given predictive
classification task by only tuning a small number of param-
eters. Therefore, this method can be of great practical value
in the application of large-scale pre-trained language models.
At the same time, the study concludes experimentally that this
method can only perform on par with the fine-tuning method
when using very large-scale pre-trained language models (10B
parameters or more). On the contrary, our proposed TFP shows
strong prediction ability with small language models.

The above prompt-based methods are designed for sentence-
level tasks. For token-level tasks, such as NER, prompting
each token with all potential classes is challenging. The
work [24] propose a template-based method for prompting
NER, which enumerates all possible spans of input sentences
combined with all entity types to predict labels. This method
suffers serious redundancy when sentence length or entity
types increased. COPNER [48] introduced class-specific words
into prompt tuning, following the idea of distance metric
learning to compare each token with manual selected class-
specific words.

Although this method avoided enumeration of all possible
spans, manual selection for class-specific words is still labour-
intensive and the method is sensitive to selected class-specific
words. The work [49] tries to explore prompt-free method for
few-shot NER. This study proposes the entity-oriented LM
fine-tuning to directly decode input tokens to corresponding
label words, and then maps these labels words to related
labels. However, this method heavily depends on the label
word mapping. Compared with the above studies, our TFP
needs neither template construction nor label word mapping,
which is more effective and high-performing.

C. Contrastive Learning

The goal of typical contrastive learning [50] is constructing
a representations space where instances from the same input
are pulled closer and instances from different inputs are pushed
apart, regardless of their semantic information. Contrastive
Clustering [51] and TCL [52] combine an instance-level
and cluster-level contrastive learning with clustering methods,
achieving significant improvements on CIFAR [53] and Im-
ageNet [54] datasets. Our hierarchical contrastive loss shares
similarities with instance- and cluster-level contrastive learn-
ing. However, for image-related tasks, there is no requirement
to take into account semantic consistency. The partially view-
aligned problem is addressed in PVP [55] using a noise-robust
contrastive loss, which focus on alleviating the influence of the
false negative pairs. In contrast, our loss is designed to handle
true negative pairs that have negative effects on specific tasks.

In Natural Language Processing tasks, randomly inserting,
deleting, or switching tokens are not perfect methods [56]
for data argumentation, because these processes may cause
incoherence or even incoherence meaning. SimCSE [29] pro-
posed a novel method for sentence argumentation by repeat-
edly forwarding a sentence with different dropout results,
achieving strong contrastive learning on textual similarity
tasks. CADAN [57] has introduced a contrastive approach
that involves dividing the feature extractor into two con-
trastive branches. One branch is responsible for capturing
the class-dependence in the latent space, while the other
focuses on achieving domain-invariance. To fulfill these con-
trasting objectives, CADAN shares the first and last hid-
den layers but maintains decoupled branches in the middle
hidden layers. CoLA [58] explores contrastive learning in
anomaly detection task with graph neural network, which
exploits the local information by sampling a novel type of
contrastive instance pair. CLEAR [59] proposed a sentence-
level contrastive learning method, which utilized random-
words-deletion, spans-deletion, synonym-substitution, and re-
ordering as augmentation strategies to learn a noise-invariant
representation. DeCLUTR [60] focused on how to learn better
sentence representations from large amounts of unlabeled data
with contrastive learning. This method assumed that if two
text fragments (span) are from the same document, then their
semantic representations should be relatively close to each
other, otherwise they are far away. Furthermore, when two text
fragments are both from the same document, if they are located
closer together in the document, their semantics indicate
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Fig. 2. TFP framework. (a) The contrastive in-context learning with semantic anchor guarding. (b) The initialization of semantic anchors with prior knowledge.
The BERT in Fig. (a) and (b) shares the same parameter set. yi and desci are label and its description as Eq. 1. Anc is the set of semantic anchors as Eq. 2.
hSEP is the representation of a special marker [SEP ] in BERT. A Template-free prompt consists of the representations of Anc, Dynamic OTHERS and
hSEP as Eq.4.

proximity, otherwise far away. Both the above research are
exploring unsupervised contrastive learning, they cannot take
advantage of semantic information within labels.

III. METHODOLOGY

First, we propose template-free prompt tuning (TFP). TFP
collects external descriptions for all label classes in a used
dataset and encodes these descriptions as semantic anchors
(Fig. 2b). These anchors are used to compose template-free
prompts, and concatenated with the embedded original input
sentences, feeding into a PLM encoder (Fig. 2a). Second, we
introduce semantic-enhanced contrastive learning that achieves
effective latent type prototypes and token representations. TFP
does not introduce extra parameters for classification, which
is an advantage in few-shot tasks.

A. Template-Free Prompt Tuning for NER

An input of TFP consists of two parts. The first part
(Fig. 2a) consists of tokens from an original input sentence,
and special tokens [CLS] and [SEP] at the beginning and
the end of the original sentence (X = [x1, x2, ..., xt]). The
second part (Fig. 2b) is a label set Y = [y1, y2, ...yN ], where
N is the number of pre-defined entity types for predictions
in the current episodes. TFP obtains the representations (H)
of X from the embedding layer of an employed PLM, i.e.,
BERT-base-uncased3 [61], and the initialized semantic anchors
Anc = {anc1, anc2, ..., ancN} (the representations of Y with
prior knowledge) in vector space. For obtaining Anc, we
collect the description set Desc of Y , where each entity type
yi ∈ Y can find a definition sentence (desci ∈ Desc) given by
the first sentence of related Wikipedia page. We define such a
process as a mapping function

desci = M(yi). (1)

For example, the description of an entity type LOCATION
(descloc) is “location or place are used to denote a region

3BERT in following equations shares the same parameter set.

(point, line, or area)”. This description contains the definition
of LOCATION and important entity features, such as “region”
and “place”. TFP encodes this description to obtain a semantic
anchor (Ancloc) with prior knowledge as the initialization
of the prototype of LOCATION. For each u batches (u is a
hyper-parameter), TFP takes {desc}Ni=1 as inputs (namely N
description sentences as an extra batch) to obtain updated Anc
for the construction of prompts

Anc = BERT ({desc}Ni=1). (2)

Different from using mean-based representations of ran-
domly sampled data as prototypes [62], [63], Anc are em-
bedded by external prior knowledge. Hence, a prior anchor
(the green triangle in Fig. 3) is more stable than sampling
from sparse data in different training episodes (the orange
triangles in Fig. 3), because different sampled data can yield
very different prototypes in few-shot learning.

Besides N semantic anchors of N target labels, TFP also
needs an extra semantic anchor for the entity type of OTHER.
Previous works normally defined OTHER with a unique rep-
resentation [24], [48], [64]. However, we believe that OTHER
should have different representations, because it is the label
for the tokens that do not belong to any target types. For
example, for a 3-way sampled data {PERSON, LOCATION,
ORGANIZATION}, a more reasonable OTHER type represen-
tation should represent “non-person, non-location, and non-
organization” types. For another episode with different labels,
OTHER should have a different representation. To this end,
TFP takes the advantage of dynamic OTHER representations in
different episodes. For Anc (Anc ∈ RN×768), TFP randomly
initializes a matrix Tmp with the same size of Anc and applies
orthogonal triangle decomposition to obtain a dynamic OTHER
representation by

Odyn = Anc−
〈
Anc,

Tmp

∥Tmp∥F

〉
Tmp

∥Tmp∥F
, (3)

where ⟨⟩ denotes dot product; F denotes F-norm. The intuition
of using orthogonal triangle decomposition is to obtain an
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Fig. 3. The comparison of prototype representations between our prior anchor-
based method and a traditional mean-based method. The orange circles denote
data distribution.

embedding that is distant from existing N anchors in the
current episode. Then, our template-free prompt is given by

prompt = [Odyn, hSEP , anc1, hSEP , ..., ancN ], (4)

where hSEP is the representation of a special marker [SEP ]
in BERT, which is used to separate different components.
These special markers is used to provide information with the
employed PLM about which part is an input sentence and
which parts are elements in a prompt.

We concatenate (⊕) prompt and the token representations
{hi}ti=1 of Sequence X , where {hi} is obtained from the
BERT embedding layer (BERTemb). With such a concate-
nation, we do not have to design any natural language-based
prompt templates, e.g., “[Span] is a [Type] entity”, or label
word mappings, e.g., “map(place, area) = LOCATION”. Next,
the input instance (inst) of TFP is given by

inst = {hi}ti=1 ⊕ {hj}lj=t+1, (5)

where hj ∈ prompt, l is the length of inst. inst is fed into
BERT encoder (enc) to obtain in-context representations by

[h′
1, h

′
2, ..., h

′
t, h

′
t+1, ...h

′
l] = BERTenc(inst), (6)

where BERTenc means using the encoder of BERT without
embedding layer.

TFP compares token representations {h′
i}ti=1 with proto-

types {h′
j}lj=t+1 to predict probabilities as Eq. 7, from the

normalized cosine-similarity that is denoted as d(·). We only
compute the elements of Anc and Odyn in prompt (the index
set is denoted as J), where hSEP in Eq. 4 are masked.

P (ŷi) =
exp(−d(h′

i, h
′
j))∑

j∈J exp(−d(h′
i, h

′
j))

. (7)

The final predicated label for a token is given by

ŷ = arg maxi∈{1,...,t} P (ŷi). (8)

B. Semantic-enhanced Contrastive Learning

We propose a hybrid granularity contrastive loss guided by
semantic information. TFP takes advantage of using stable
semantic anchors to optimize distances between prototypes
with tokens, as well as prototypes with other prototypes. Our
semantic anchors utilize external descriptions to parameterize
prompts, so they are more stable than prototypes averaged
from random samples in typical prototype network [62].

A typical contrastive loss InfoNCE [65] as

LInfoNCE = −
∑
i

log
exp(vi · v′i/τ)∑
j exp(vi · vj/τ)

, (9)

where vi is the embedding of an input instance; v′i is a
related positive embedding; vj is a positive embedding plus
negative embeddings from other instances; τ is a temperature
hyper-parameter. The idea of InfoNCE is to pull an instance’s
embedding close to its augmentations and far away from other
input instances. This loss optimizes representations with many
negative samples, rather than directly predict labels.

In this paper, we modify InfoNCE for few-shot learning
with semantic guiding. We assume that there are N +1 latent
variables Proto = {oj}j∈J for all entity types, including
OTHER. First, the input of TFP inst contains elements {hi}t1
and {hj}t

′

t+1, where {hi}t1 are the representations of input
tokens X and {hj}t

′

t+1 are the representations of prompts.
Our objective is to optimize the network parameters θ that
maximize the log-likelihood function of an inst as:

θ∗ = argmaxθ

t∑
i=1

t′∑
j=t+1

log p([hi;hj ]; θ). (10)

By assuming the input representations [hi;hj ] are related to
N+1 latent variable Proto = [o1, o2, ...oN+1] for each entity
type, Eq. 10 can be re-write as :

θ∗ = argmaxθ

t∑
i=1

t′∑
j=t+1

log p([hi;hj ], oj ; θ). (11)

We introduce the latent distribution T (oj) (
∑

x T = 1) over
each prototype oj as Eq. 12:

θ∗ = argmaxθ

t∑
i=1

t′∑
j=t+1

log T (oj)
p([hi;hj ], oj ; θ)

T (oj)

≥ argmaxθ

t∑
i=1

t′∑
j=t+1

T (oj) log
p([hi;hj ], oj ; θ)

T (oj)

= argmaxθ

t∑
i=1

t′∑
j=t+1

log T (oj) ∗ p([hi;hj ], oj ; θ)

− T (oj) ∗ log T (oj),

(12)

where

T (oj) =
p([hi;hj ], oj ; θ)∑t′

j=t+1 p([hi;hj ], oj ; θ)

=
p([hi;hj ], oj ; θ)

p([hi;hj ]; θ)

= p(oj ; [hi;hj ], θ).

(13)
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By ignoring the constant

t∑
i=1

t′∑
j=t+1

−T (oj) ∗ log T (oj), (14)

our object is equal to:

θ∗ = argmaxθ

t∑
i=1

t′∑
j=t+1

T (oj) log p([hi;hj ], oj ; θ)

= argmaxθ

t∑
i=1

t′∑
j=t+1

p(oj ; [hi;hj ], θ),

∗ log p([hi;hj ], oj ; θ)

(15)

where

T (oj) =
p([hi;hj ], oj ; θ)∑t′

j=t+1 p([hi;hj ], oj ; θ)

=
p([hi;hj ], oj ; θ)

p([hi;hj ]; θ)

= p(oj ; [hi;hj ], θ),

(16)

With the assumption of there is a uniform prior over cluster
centers, and the prior probability p(ci; θ) for each oj is 1/r:

p([hi;hj ], oj ; θ) = p([hi;hj ]; oj , θ)p(oj , θ)

= 1/r ∗ p([hi;hj ]; oj , θ)
(17)

Furthermore, by assuming that the distribution around each
cluster center (prototype oj) is an isotropic Gaussian, we have:

p([hi;hj ]; oj , θ) =

exp

(
−(hi − o′j)

2

2σ2

)
/

t′∑
j=1

(
−(hi − oj)

2

2σ2

)
(18)

where j′ ̸= j. Then, we compute p(oj ; [hi;hj ], θ) in Eq. 15,
where p(oj ; [hi;hj ], θ) = 1 if hi is related to oj , otherwise
p(oj ; [hi;hj ], θ) = 0. In such condition, combining Eq. 15
with Eq. 17 and Eq. 18, and calculating distances between hi

and oj with function d(·), the log-likelihood function 10 can
be re-written as

θ∗ = argminθ

t∑
i=1

log
exp

(
−d
(
hi, o

′
j

)2
/τ
)

∑t′

j=1

(
−d (hi, oj)

2
/τ
) , (19)

where τ is a constant. Namely, TPF update parameters by
minimizing the loss function with a form of InfoNCE.

Lt2o = −
t∑

i=1

log
exp

(
−d
(
hi, o

′
j

)2
/τ
)

∑t′

j=1

(
−d (hi, oj)

2
/τ
) (20)

TFP employs in-context encoded representations {h′
j}lj=t+1

in Eq. 6 as the estimations for oj . The core difference
between InfoNCE loss and our loss in Eq. 20 is that TFP
constructs a positive pair as (token, related prototype) and a
negative pair as (token, unrelated prototype). These prototypes
are semantic-enhanced label representations. Thus, Eq. 20
can optimize token-wise representations and also distinguish
different classes in few-shot settings.

It pulls token embeddings closer to their related prototypes
and pushes them away from unrelated ones. TFP optimizes
prototypes by training after the prototypes are initialized with
external prior knowledge.

TFP desires prototypes can keep certain distances from each
other (this will be verified in Fig. 4 later). To this end, we
propose an auxiliary component, given by

Lo2o =
N2/τ2∑

d({oj}N+1
1

(
{oj′}N+1

1

)T
)
, (21)

where τ2 is a temperature hyper-parameter for scaling loss val-
ues; j ̸= j′. Such an auxiliary loss can avoid a representation
collision issue that was argued by the work [66]. The overall
loss (L) is

L = Lo2o + Lt2o. (22)

In summary, typical unsupervised InfoNCE loss is regarded
as a class-agnostic auxiliary loss to update token-wised repre-
sentations. Thus, they have to employ an extra class-specific
loss combined with a linear layer to predict labels. Different
from the above method, our semantic-enhanced contrastive
loss optimizes FTP by clustering the nodes with semantic
centers, i.e., latent prototypes. There is no additional parameter
introduced in our model, which is an advantage in few-shot
tasks.

IV. TASK FORMULATION

NER is defined as a token-level sequence labeling task.
Given an input sentence with t tokens, X = {x1, x2, ..., xt},
NER assigns a label yi ∈ Y to each token xi, where Y is a
pre-defined label set. Y usually contains entity types such as
ORGANIZATION, PERSON, and LOCATION. If a token does not
belong to these classes, it is labeled as OTHER. Models can
only learn from limited label-specific data in few-shot NER.
Some existing few-shot NER work under various settings [49],
[64], [67]. With a comprehensive survey, we conduct our
experiments with three different settings, including Label
Extension (LE), Domain-Adaption (DA), and No-Adapting
(NA) few-shot NER. These three settings focus on different
challenges in few-shot NER, which can systematically evaluate
the capacity of proposed TFP in aspects of LE, DA, and low-
resource generalization. LE and DA follow typical N-way-K-
shot settings4 while NA is a stricter few-shot setting.

A. Label Extension

(LE) setting aims to evaluate the label extension ability of
a model. This evaluation is motivated by the fact that new
types of entities often appear in a certain domains in real
world applications. There are eight sub-tasks in this setting,
including the combinations of 5-way and 10-way by 1-2 shots
and 5-10 shots in both FEW-NERD INTER and FEW-NERD
INTRA datasets [69]. The FEW-NERD dataset is designed
with a hierarchical label scheme, which contains 66 fine-
grained entity types that are clustered by 8 coarse-grained
types.

4N-way-K-shot details refer to the work [68].
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TABLE I
STATISTICS OF DATA USED BY LE SETTING. # DENOTES COUNTING NUMBERS.

LE FEW-NERD INTER FEW-NERD INTRA

train dev test train dev test

# Class 36 13 17 35 14 17
# Sent 130,111 18,816 14,006 99,518 19,357 44,058

# Token 3,455,927 425,998 312,762 2,677,915 503,784 1,012,940
# Entity token 582,280 67,002 62,114 404,209 82,462 212,898
Average length 26 22 22 26 26 22

TABLE II
STATISTICS OF DATA USED BY DA SETTING.

DA OntoNotes CoNLL I2B2 WNUT

Train 1 shot
support set

5shot
support set Test 1 shot

support set
5shot

support set Test 1 shot
support set

5shot
support set Test

# Class 18 4 4 4 18 18 18 6 6 6
# Sent 59,924 2.6 8.6 683 13 58 7,527 5 25 1,287

# Token 1,088,503 48.2 192.2 46,665 119 479 120,982 53 382 23,394
# Entity token 149,374 9.6 36.2 8,112 43 188 14,652 15 54 1,740
Average length 18 21.75 22.71 12.67 9.15 8.26 16.07 10.60 15.28 18.18

TABLE III
STATISTICS OF DATA USED BY NA SETTING.

NA CoNLL MIT-Movie OntoNote

5shot 10shot 20Shot 50shot Test 5shot 10shot 20Shot 50Shot Test 5shot 10shot 20Shot 50Shot Test

# Class 4 4 4 4 4 12 12 12 12 12 18 18 18 18 18
# Sent 8 18 34 79 3,683 34 72 138 311 2,443 66 111 240 584 8262

# Token 248 430 837 1968 46,665 434 872 1649 3,833 24,686 1536 2760 5,689 13,629 152,728
# Entity token 23 60 120 306 8,112 135 289 574 1,330 9,757 191 364 781 2,078 20913
Average length 31.00 23.80 24.61 24.91 12.67 12.76 12.11 11.95 12.32 10.10 23.27 24.86 23.70 23.33 18.49

In INTER and INTRA datasets, there is no overlapped fine-
grained entity type between the training and validation/test
sets. However, INTER can share coarse-grained entity types.
If a type, e.g., LOCATION-ISLAND is in the training set, the
test sets of INTRA and INTRA do not contain this fine-grained
type, whereas the type LOCATION-MOUNTAIN can be in the
INTER test set. FTP is fine-tuned by randomly sampling 1-
2 shots each time for each type class. After training, FTP is
adapted5 in the support set of the test/validation set and then
predicts corresponding fine-grained types in the query set of
the test/validation set. Accurate results in INTER/INTRA show
that the model can recognize new types of entities with/without
parts of class information sharing.

B. Domain-Adaption

(DA) setting evaluates the domain transferability of a model.
In this task, training and test data are from different domain.
This setting includes six sub-tasks. There is a common train-
ing dataset OntoNotes 5.0 [70] and three test datasets, i.e.,
CoNLL 03 [71], WNUT 17 [72], and I2B2 [73]. OntoNotes 5.0
data are from a general domain. CoNLL 03, WNUT 17, and
I2B2 data are from newswire, social, and medical domains,
respectively. TFP is evaluated in 1-shot and 5-shot sub-tasks
with the later three test sets.

5Adaptation is defined as training with support sets of a test set [48]. This
process is taken under a high-source scenario. The adapted support sets have
the same label space with its test set but do not overlap with train data.

First, OntoNotes 5.0 is employed as training data to fine-
tune a model. Then, for the test data from CoNLL 03,
WNUT 17, and I2B2, the model adapts with their support
sets and predicts related instances in query sets. The reported
results for CoNLL 03, WNUT 17, and I2B2 are averaged F-
1 measure of the query set when models are adapted with
the five sampled few-shot support sets. The used five sampled
support sets come from the work [67].

C. No-Adapting
(NA) setting has the same pre-defined label set for training

and testing. However, NA does not contain a source-rich
training set to sample episodes for fine-tuning. Thus, NA
strictly tests the low-resource generalization ability of a model.
For example, when performing a 5-shot task with 4 entity
types, all available training data are 4 × 5 instances in this
setting. After training, a model is directly evaluated by test data
without adaptation steps. TFP employs the training data from
work [49] in this setting, which samples three limited support
sets from the whole data of CONLL 03, MIT-Movie [74],
and OntoNotes 5.0. The final results are reported on the
original test sets of these three datasets. This setting focuses
on evaluating models’ few-shot ability in the strictest way.

V. EXPERIMENT

A. Datasets
We report the results of 26 sub-tasks within six employed

datasets under three different few-shot settings (LE, DA, and
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TABLE IV
THE ILLUSTRATION OF DATASETS AND TASK SETTINGS.

Setting Corpus Domain N-way-K-shot High-source Fine-tuning data Valid data Test data

LE FEW-NERDINTER General 5-1,5-5, 10-1, 10-5 Yes 1 common
training set

1 support set
1 query set

1 support set
1 query setFEW-NERDINTRA

DA OntoNotes
(train)

CoNLL(test) News 4-1,4-5
Yes 1 common

training set No 5 support sets
1 query setWNUT(test) Social 6-1,6-5

I2B2(test) Medical 18-1,18-5

NA
CoNLL News 4-5,4-10, 4-20, 4-50

No 3 different
train sets No 1 test setMIT-Movie Review 12-5,12-10, 12-20, 12-50

OntoNotes General 18-5,18-10, 18-20, 18-50

NA) for evaluating the few-shot learning ability of TFP. The
statistics of used data is illustrated in Tables I, II and III, which
shows the challenges of few-shot NER with different setups.
The related settings are summarized in Table IV.

B. Compared Baselines

Totally 9 recent baselines are compared with proposed TFP
under the settings of LE, DA, and NA. All these baselines and
TFP take BERT-base-uncased as the employed PLM.
CONTaiNER [64] uses NER contrastive learning to optimize
Gaussian-distributed token-wise distances.
DML [75] proposes a model-agnostic meta-learning method
to initialize parameters for fast adaptations.
COPNER [48] proposes a prompt-based method that uses
class-specific words as metric referents and supervision signals
to achieve few-shot NER.
ESD [76] studies sequence labeling tasks as a span-level
pipeline, including enhanced span representations, prototype
aggregations, and span conflict resolutions.
NNShot and StructShot [67] use a nearest neighbor classifier
to differentiate each token. StructShot adds a Viterbi decoding
algorithm upon NNShot.
ProtoBERT [69] combines a classical prototypical net-
work [62] with a BERT encoder to classify entity types.
Tagger [49] is a simple but strong baseline. The method uses
a linear classifier on top of BERT, following a full supervision
setting with cross-entropy.
TemNER [24] is a prompt-based method that treats few-shot
NER as a language model (LM) ranking task for a full use of
knowledge transfer in model parameters.
EntLM [49] defines NER as an entity-oriented LM task to
address N-gram traversal. This method is seq2seq-based; it
generates entities in special positions, and mapping them to
manually defined label words.

C. Result

TFP performance on LE, DA and NA tasks is shown in
Tables V VI, and VII, respectively. In Table V, TFP achieves
averaged SOTA results, compared with strong baselines. A
definite trend is that TFP performs better with fewer data.
Given 1-2 shots of 5-way and 10-way, TFP yields gains of
2.06%, 1.44%, 3.45%, 2.79% on FEW-NERD INTER and
INTRA, compared to the strongest baseline (DML). It shows
the label extension ability of TFP under few-shot setting.

Fig. 4. T-SNE visualization for the test set of CoNLL in the NA setting. Four
colors represent four classes in CoNLL.

Table VI shows that TFP achieves SOTA results in all sub-
tasks. On average, TFP exceeds COPNER by 2.15%, 4.38%,
and 10.17% F1. Compared with CoNLL sourced from news,
WNUT and I2B2 are more challenging. WNUT aims to extract
entities from noisy text where sentences are ungrammatical.
I2B2 contains many numerical entity types, which are hard
to distinguish, e.g., a Medical Record entity “#471-90-84-7”
and an ID Number entity “GL735LM”. Meanwhile, training
sentences from OntoNotes are sourced from a general domain
with formal formats. TFP yields large gains in such context,
showing its strong domain transferability.

In Table VII, TFP shows its few-shot generalization ability
under NA setting. TFP achieves 61.93%, 59.25%, 40.96%
F1 on CoNLL, MIT-Movie, OntoNotes, respectively, by only
training with 5 annotated sentences in each class. For 5-shot
of CoNLL and MIT-Movie, TFP outperforms the strongest
baselines by 7.73% and 9.15% average F1.

VI. ANALYSIS

A. Prompt Ablation Analysis

We compare prompts in different forms and perform abla-
tion analysis, which find that in-context learning plays a core
function, rather than various construction formats of prompts
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TABLE V
F1 SCORES (%) IN THE LE SETTING.

INTER INTRA

Model 5-way 10-way Avg. 5-way 10-way Avg.
1-2 shot 5-10 shot 1-2 shot 5-10 shot 1-2 shot 5-10 shot 1-2 shot 5-10 shot

ProtoBERT† 38.831.49 58.790.44 32.450.79 52.920.37 45.75 20.760.84 42.540.94 15.050.44 35.400.13 28.44
ProtoBERT‡ 44.44/ 58.80/ 39.09/ 53.97/ 49.08 23.45/ 41.93/ 19.76/ 34.61/ 29.94
NNShot† 47.241.00 55.640.63 38.870.21 49.572.73 47.83 25.780.91 36.180.79 18.270.41 27.380.53 26.90
NNShot‡ 54.29/ 50.56/ 46.98/ 50.00/ 50.46 31.01/ 35.74/ 21.88/ 27.67/ 29.08
StructShot† 51.880.69 57.320.63 43.340.10 49.573.08 50.53 30.210.90 38.001.29 21.031.13 26.420.60 28.92
StructShot‡ 57.33/ 57.16/ 49.46/ 49.39/ 53.34 35.92/ 38.83/ 25.38/ 26.39/ 31.63
CONTaiNER∓ 59.201.34 64.230.65 50.221.64 58.971.42 58.16 44.111.01 57.680.81 34.851.20 50.890.42 46.88
CONTaiNER‡ 56.10/ 61.90/ 48.36/ 57.13/ 55.87 40.40/ 53.71/ 33.82/ 47.51/ 43.86
COPNER∓ 66.131.12 67.331.32 59.760.72 63.530.69 64.18 53.121.48 57.991.05 45.881.10 51.941.03 52.23
COPNER 65.98/ 67.70/ 59.56/ 62.37/ 63.90 54.26/ 58.84/ 44.26/ 51.18/ 52.14
ESD 66.460.49 74.140.80 59.950.69 67.911.41 67.12 41.441.16 50.680.94 32.291.10 42.920.75 41.83
DML 68.770.24 71.620.16 63.260.40 68.320.10 67.99 52.040.44 63.230.45 43.500.59 56.840.14 53.90

Ours 70.830.62 72.140.40 64.700.72 67.650.15 68.83 55.490.67 63.310.77 46.290.74 54.010.60 54.78
∗ The original baseline results† with standard deviations are cited from the work [69] and the updated baseline results‡ without standard
deviations are cited from the work [64]. Considering that standard deviation is an important measure for few-shot tasks, we replicate
the results∓ for a fair comparison. Noticeably, original CONTaiNER‡ uses incorrect data samples. Our replication of CONTaiNER∓

uses the revised samples published by the authors of CONTaiNER‡ later. We report our five-times averaged results, using the official
data splits from the work [69]. The best results are in bold.

TABLE VI
F1 SCORES (%) IN THE DA SETTING.

Model CoNLL WNUT I2B2 Avg.
1 shot 5 shot Avg. 1 shot 5 shot Avg. 1 shot 5 shot Avg.

ProtoBERT† 53.007.2 65.901.6 59.45 14.804.9 19.805.0 17.30 7.603.5 10.300.4 8.95 28.57
ProtoBERT+† 56.007.3 67.101.6 61.55 18.805.3 23.803.9 21.30 7.903.2 10.100.9 9.00 30.62
NNShot† 61.3011.5 74.302.4 67.80 21.706.3 23.905.0 22.80 16.602.1 23.701.3 20.15 36.92
StructShot† 62.3011.4 75.202.3 68.75 25.305.3 27.206.7 26.25 22.103.0 31.801.8 26.95 40.65
CONTaiNER‡ 61.2010.7 75.802.7 68.50 27.501.9 32.503.8 30.00 21.501.7 36.702.1 29.10 42.53
COPNER 66.502.1 74.603.1 70.55 34.901.8 34.202.6 34.55 35.801.3 43.701.5 39.75 48.28

Ours 67.432.2 77.971.4 72.70 38.860.80 38.992.6 38.93 47.173.5 52.661.3 49.92 53.85
∗ We report averaged F-1 with standard deviations on five different support sets, and run each support set three times.
The results with † and ‡ are from the work [64], [67].

that were studied by recent research [24]–[26], [49]. Besides,
semantic type representations also work. Table VIII shows
the results of ten compared methods. External Prompt (EP)
uses fixed label names with manual label word mappings
as prompts, which are separately inputted into a model with
original sentences, without in-context encoding. Namely, we
first input the first part {hi}ti=1 of input inst in Eq. 5 to BERT,
aiming to get the representations of each token {h′

1, h
′
2, ..., h

′
t}

in Eq. 6. Then, the label set Y = [y1, y2, ...yN ] as a prompt is
separately fed into BERT to obtain the representation of each
class to replace the part {hj}lj=t+1 in Eq. 6. By such method,
we exclude the effects from in-context encoding a sentence
with a prompt. The following ”without in-context encoding”
means the same method to exclude the effects from in-context
encoding. Words Prompt (WP) is from the work [48], which
uses the same prompts with EP but with in-context encoding.
Namely, EP use a label name to replace a description sentence
(replace Eq. 1 into desci = yi ).

Synonyms Prompt (SP) utilizes averaged embeddings of
three synonymous label names from PLM as prompts. SP1

refers to SP without in-context encoding. Continual Prompts
(CP) uses randomly initialized embeddings plus a special
prompt encoder for further encoding, which follows the
work [77]. Our FTP uses prior semantic anchors for initializa-
tion and performs in-context encoding with input sentences.
FTP1 denotes that we separately input the prompts and original
sentences into a model, without in-context encoding. FTP2

uses prompts in which all elements are not shuffled. FTP3

denotes that no specific marker [SEP] is used to separate
input anchors in prompts (see Eq. 4). FTP4 uses the fixed
representation of OTHER instead of dynamic OTHER described
in Eq. 3. By comparing EP with WP, we find that in-context-
learning can significantly improve the results by 10.49%. The
similar results are also observed when comparing SP1 with
SP and FTP1 with FTP, where in-context learning achieves
13.99% and 20.63% averaged F1 gains.
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TABLE VII
F1 SCORES (%) IN THE NA SETTING.

Model 5 shot 10 shot 20 shot 50 shot Avg.

C
oN

L
L
†

Tagger 41.8712.1 59.9110.7 68.665.1 73.203.1 60.91
NNShot 42.318.9 59.2411.7 66.896.1 72.633.4 60.27
StructShot 45.8210.3 62.3711.0 69.516.5 74.733.1 63.11
TemNER 43.046.2 57.865.7 66.386.1 72.712.1 60.00
EntLM 51.327.7 66.863.0 71.233.9 74.801.9 66.05
COPNER 54.207.9 66.202.9 71.801.8 77.001.4 67.30

Ours 61.932.1 69.462.0 71.761.3 77.661.9 70.20

M
IT

-M
ov

ie
†

Tagger 39.576.4 50.607.3 59.343.7 71.333.0 55.21
NNShot 38.975.5 50.476.1 58.943.5 71.172.9 54.89
StructShot 41.609.0 53.195.5 61.423.0 72.076.4 57.07
TemNER 45.973.9 49.303.4 59.090.4 65.130.2 54.87
EntLM 49.158.9 59.214.0 63.853.7 72.991.8 61.30
COPNER 50.103.6 61.901.4 68.902.4 74.600.3 63.88

Ours 59.254.4 65.821.0 70.871.7 75.420.4 67.84

O
nt

oN
ot

es
‡

Tagger 21.011.7 31.711.6 36.231.4 46.18 1.2 33.78
NNShot 38.623.3 42.914.0 48.771.0 50.950.5 45.31
StructShot 38.913.4 43.025.1 49.002.6 51.281.2 45.55
TemNER 39.063.1 50.821.9 59.281.0 67.940.8 54.28
EntLM 36.413.5 53.201.8 61.222.3 68.921.6 54.94
COPNER 38.726.4 50.617.3 59.353.7 64.213.0 54.05

Ours 40.962.5 51.142.2 59.502.5 68.593.1 55.05
∗ The results with † are from three different support sets
sampled by the work [49]. Each support set repeats three
times. The results with ‡ are reported from our sampled three
support sets, because the work [49] exclude seven entity types
from the original OntoNotes. To keep the same OntoNotes
with our DA setting, we include these types in the NA setting.

TABLE VIII
ABLATION STUDY MEASURED BY F1 (%) IN FEW-NERD INTER

5-WAY-1-SHOT (LE), CONLL 1-SHOT (DA), AND CONLL 5-SHOT (NA).

Prompt Form LE DA NA Avg.

EP (w/o. in-context) 48.824.2 49.903.6 56.652.8 51.79
WP (w/. in-context) 66.131.1 66.502.1 54.207.9 62.28
SP (w/. in-context) 67.492.3 66.383.1 56.213.8 63.36
SP1 (w/o. in-context) 46.123.1 47.014.2 55.013.1 49.37
CP (w/. in-context) 68.022.8 63.429.0 58.263.5 63.23

FTP1 (w/o. in-context) 52.962.4 38.838.7 43.833.0 45.21
FTP2 (w/o. shuffle) 69.540.9 68.264.2 50.241.1 62.68
FTP3 (w/o. [SEP]) 67.161.4 65.013.0 60.013.3 64.06
FTP4 (w/o. dynamic O) 68.281.6 66.012.9 59.676.3 64.65
FTP 70.830.6 67.432.2 61.931.2 65.84

∗ w/. and w/o. denote with and without.

TABLE IX
SEMANTIC-ENHANCED CONTRASTIVE LOSS ANALYSIS.

LE DA NA Avg.

Random semantics 26.293.3 30.809.6 49.196.4 35.43
Token-wise contrastive 31.111.1 42.632.4 35.555.1 36.43
Mean-based prototype 56.22.3 58.23.0 57.904.5 57.43
FTP 70.830.6 67.432.2 61.931.2 65.84
∗ The used data and measure keep the same with Table VIII.

TABLE X
THE AVERAGED SEMANTIC SIMILARITY OF POSITIVE AND NEGATIVE

PAIRS ON DA-BASED CONLL 1-SHOT/5-SHOT.

Semantic similarity Pos Neg SimNeg

Initial similarity 13.28 12.88 10.58

Random semantics 76.47/81.57 77.17/78.99 77.67/78.66
Token-wise contrastive 37.63/37.25 31.93/31.35 18.72/18.24
Mean-based prototype 42.66/42.64 27.77/27.12 19.37/18.30
FTP 84.15/84.46 66.39/65.03 66.28/64.52
∗ A higher value denotes more similar. Pos and Neg means
the average distance of instances to all positive and negative
pairs, respectively. MinNeg denotes the minimum Neg distance.
Pos means the average distance of all positive pairs and Neg
for negative pairs. Min neg stands for the minimum distance
of negative pairs with most similar semantic. All distances are
calculated with the same scaling parameter.

By comparing FTP with WP, SP, and CP, it is apparent that
using our proposed semantic anchors to construct prompts is
better than using label names with manual mappings, label
name synonyms, and continual embeddings, as F1 improve-
ments by 3.56%, 2.48%, and 2.61% showing in Table VIII.
The F1 gains of FTP over FTP{2,3,4} show the effectiveness of
prompt element shuffle, using [SEP] markers, and introducing
dynamic OTHER learning.

B. Semantic-enhanced Contrastive Loss Analysis

In Table IX, we analyze the utility of our semantic-enhanced
contrastive learning. Random semantics means we replace our
semantic anchors {anci}Ni=1 in Eq 4 with random vectors.
Token-wise contrastive means we adopt typical contrastive
learning without semantic-enhancement. This method uses
InfoNCE for representation optimization and a linear layer
combined with cross-entropy loss for predictions. Mean-based
prototype means we randomly sample some embeddings from
label-specific tokens and take mean representations instead of
the semantic anchors. In Table IX, TFP surpasses random
semantics, and token-wise contrastive with large margins
(30.41% and 29.41% in F1). Most of existing contrastive
learning is token-wise [29], [57], which will wrongly push
away the presentations of negative instances that share similar
semantics. Notably, this is particularly important in NLP
tasks, where it is necessary to maintain consistent and proper
semantic information for input tokens, even when they are
negative pairs. Besides, the improvements of TFP over the
mean-based prototype indicates that our method alleviates the
bias of random sampling in few-shot NER.

Fig. 4 illustrates the effects of our semantic-enhanced con-
trastive loss in NA-based CoNLL test set. Compared with
external baselines, TFP can generate the most distinguishable
representations optimized by our loss. The distribution of
token embeddings (h′

1:t in Eq. 6) shows four separated clusters
via T-SNE. The nodes from four classes are pulled to four
directions by TFP. This finding is statistically supported by
Table X, which shows the averaged semantic (cosine) similar-
ity between instances and positive samples (Pos), negative
samples (Neg), and semantically similar negative samples
(SimNeg).
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The semantically similar negative samples are given by
original BERT hidden states and cosine similarity. We use h′

1:t

in Eq. 6 to compute cosine similarity. The values are based on
DA-based CoNLL test set (1-shot and 5-shot). In Table X, ini-
tial similarity shows that the representations of instances and
the representations of positive and negative samples are not
well distinguished, because Pos, Neg, and SimNeg are small
and close. After training, the representations of the random
semantics-based method are still indistinguishable in vector
space, because the values are near. However, FTP shows a
large gap between Pos and Neg, which means the positive and
negative pairs are well distinguished. More importantly, the
semantically similar negative examples are not further pushed
away from the instances, because its SimNeg is similar to its
Neg. In contrast, the benchmarking methods, e.g., token-wise
contrastive and mean-based prototype push those semantically
similar negative samples further (their SimNeg is smaller
than their Neg). Thus, it proves that our semantic-enhanced
contrastive loss can distinguish positive and negative samples
by inputting instances in vector space and also can prevent the
distance of semantically similar negative samples from being
pushed too far.

VII. CONCLUSION

In this paper, we have introduced the TFP framework,
which utilizes prompt tuning to improve token-level NER
tasks without the need for template construction or label
word mapping. Our prompt-based approach is straightfor-
ward to implement and achieves significant performance gains
without requiring any complex modifications to the neural
architecture. By incorporating the proposed hybrid granularity
loss, TFP achieves semantic-guided contrastive learning in
few-shot tasks. We demonstrate that our proposed semantic
guided loss can effectively address the problem of wrongly
pushing away the presentations of negative instances that share
similar semantics in typical contrastive learning. Through
comprehensive evaluations, we show that our model exhibits
strong performance in label extension, domain adaptation, and
low-resource generalization, achieving 19 out of 26 SOTA
results on few-shot NER tasks. Moreover, we find that in-
context encoding plays a more critical role than elaborately
designed prompts, which is the primary reason why prompt
tuning works effectively.
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