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Abstract. Human-computer interaction (HCI) and natural language
processing (NLP) can engage in mutually beneficial collaboration. This
article summarizes previous literature to identify grand challenges for the
application of NLP in quantitative user personas (QUPs), which exem-
plifies such collaboration. Grand challenges provide a collaborative start-
ing point for researchers working at the intersection of NLP and QUPs,
towards improved user experiences. NLP research could also benefit from
focusing on generating user personas by introducing new solutions to spe-
cific NLP tasks, such as classification and generation. We also discuss the
novel opportunities introduced by Generative AI to address the grand
challenges, offering illustrative examples.
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1 Introduction

This article is intended for researchers working on the intersection of AI (specifi-
cally, NLP technologies) and HCI (specifically, quantitative user personas). NLP
refers to natural language processing, defined as a computer’s ability to compre-
hend spoken and written human language [40]. HCI refers to human-computer
interaction, which is a multidisciplinary research field that focuses on the inter-
action between computers and their users, towards the design of more usable
and helpful technology, also referred to as user-centered design (UCD).

AI refers to artificial intelligence, defined as the “simulation of human intelli-
gence processes by machines” [9]. While this term is often used to refer to applied
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machine learning (ML) instead, we use it here because of the current convention
in academic fields, including HCI and NLP, essentially referring to applied ML
and various pseudo-intelligent algorithms and automata. NLP is commonly con-
sidered as a subfield of ML [55]. Generative AI is a subfield of AI that produces
outputs, including text, images, and videos. Large language models (LLMs) are
part of the Generative AI technology, and they can be programmed to generated
text based on instructions (i.e., prompts) given by the user [2,26].

Personas (also known as user personas, design personas, marketing personas,
and so on) are fictitious characters that aim to represent real user types [15] (also
known as segments, clusters, groups... i.e., groups of people that are similar to
each other and different from other groups), providing valuable information to
designers and others working on UCD tasks (collectively referred to as ‘stake-
holders’ in this study) to more empathically connect with users (see example in
Fig. 1). Persona profiles typically contain demographic information (age, gender,
location), as well as various information reflecting the user’s needs, wants, and
pain points. Quantitative user personas (QUPs), in particular, are personas gen-
erated using algorithms; hence, they are sometimes referred to as algorithmically-
generated personas [28,62]. Another common term for QUPs in the literature is
data-driven personas [44] and, with the rise of AI, the QUP terminology has also
incorporated AI personas [23].

Regardless of this conceptual plurality, all QUP methods share the common
trait of using algorithms in the process of persona generation – either fully,
ranging from data collection to segmentation and enrichment – or partially, as a

Fig. 1. An example of a persona profile. Personas typically contain demographic infor-
mation (age, gender, location), and information reflecting the user’s needs, wants,
and pain points, often illustrated using direct quotes. Image source: https://www.
justinmind.com/blog/user-persona-templates/.

https://www.justinmind.com/blog/user-persona-templates/
https://www.justinmind.com/blog/user-persona-templates/
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part of the overall process. Overall, this process of algorithmic persona generation
involves specific challenges where NLP technologies can certainly be useful. We
explore these opportunities.

The purpose of this research is to outline, based on prior research, four grand
challenges for QUPs, and suggest research designs based on prominent NLP
technologies to address these challenges. We focus specifically on QUPs, even
though there are other persona types, such as qualitative personas. The reader
might be interested in further motivation of this work. Why study the grand
challenges of QUPs? Moreover, why study them using NLP? These are both
worthwhile questions, and we address them in the following.

First, studying the grand challenges of QUPs is important because, despite
the popularity of personas in HCI, design, marketing, health informatics, educa-
tion, social media analytics, and so on [33,47,52], there is a consensus that many
crucial challenges in persona creation and application still linger [13,60,64]. Some
of these challenges were observed already in the early 2000s [22,50], but have
not been resolved, lending credence to their difficulty.

This then leads us to the second motivational question - why apply NLP to
QUPs? Due to two reasons: first, as mentioned, many persona problems remain
to be solved; logically, it then makes sense to seek potential solutions from other
fields, as these fields may contain technologies and tools that can be applied to
personas. NLP, in particular, is a field of rapid growth and progress, as evidenced
by the massive increase in the field’s popularity among academics, as well as the
recent breakthroughs such as transformer language models [17,38].

Second, the field of HCI is inherently interdisciplinary and applied - it seeks
inspiration from other fields. Therefore, translating HCI problems as NLP prob-
lems is a logical and likely fruitful activity. In summary, the grand challenges in
this study discuss known problems in the development of QUPs that have yet
to be solved, partially due to the lack of interaction between HCI and NLP (i.e.,
HCI does not fully understand NLP advances, and NLP is not that familiar with
QUPs or personas in general).

2 Related Work

2.1 User Personas in HCI

Personas can be created using qualitative, quantitative, or mixed methods [27].
Due to the strong progress in data science tools, libraries, and frameworks that
help automate data collection and analysis tasks, QUPs are becoming more
common in the field [59]. There are systems such as Automatic Persona Gen-
eration [31], that provide replicable and automatically updating personas for
stakeholders in many fields. Such systems allow researchers to generate personas
based on behavioral data of sizeable volumes for quantitative analysis [4].

Regardless of the creation method, there are some general design goals for
developing good personas. Among others, these design goals include (1) ability
to evoke empathy among the stakeholders, (2) accuracy (i.e., correctness, validity
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of the persona information), and (3) relevance (i.e., the persona contains infor-
mation that helps stakeholders make decisions about the group of people the
persona represents).

First, empathy refers to stakeholders identifying with the persona’s human
qualities [21]. A good persona engages its observer and facilitates the process of
perspective taking, i.e., seeing the world from the eyes of the persona [52].

Second, a good persona does not contain bogus information that would mis-
lead stakeholders about the true characteristics of the user segment it repre-
sents [13]. In other words, the persona is data-driven [25,44]; i.e., based on actual
data about users, whether quantitative, qualitative, or mixed data [27].

Third, a good persona is relevant, containing the necessary information to
be useful for decision making but nothing more – the information should not be
distracting or redundant. A stakeholder has to be able to take action based on
what they learn from the persona [13].

The persona creation process tends to follow two stages: the data about users
is first segmented using either an algorithm or a human analyst, and the result-
ing barebone (or skeletal) persona segments are then enriched with personified
information to create complete, rounded persona profiles [3,71].This personifi-
cation transforms the nameless, faceless segments into identifiable personas that
describe a behavioral and demographic pattern in the data [31]. Personification
aims to result in realistic, well-rounded personas that stakeholders can identify
with and that contain information of value [51,63].

Because there are demanding technical challenges in QUPs [12], we believe
that partnering with NLP researchers can help reach the broader mission of
providing stakeholders with personas that help them create usable products. In
other words, high-quality personas serve stakeholders by facilitating their jobs
and users by enabling usable and user-friendly products that serve real needs.

2.2 Use of NLP in Persona Research

NLP is a field that combines AI, linguistics, and computer science to model
human language, especially to analyze and process large amounts of text [54].
From this definition, we can observe at least two guiding principles (GPs):

a) GP01: NLP is an applied field - whenever language is used, NLP can be of
help.

b) GP02: NLP is particularly designed to handle large volumes of textual data.

Both notions are compatible with QUPs. Language is a vehicle for storytelling
which, in turn, is a route for empathy and learning [41]. Throughout history,
people have learned lessons from others through stories. To this end, personas
have been likened to narratives or metaphors that tell a story [50]. Therefore,
there is an innate compatibility between the purposes of NLP and personas.

Moreover, the ability to handle large volumes of text is a major advantage of
NLP. While QUPs are typically generated from structured tabular data, such as
clickstreams, CRM records, or audience statistics [3,76,77], there is tremendous
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potential in using unstructured textual data, essentially mining the text for infor-
mation about users and using that to feed information into the persona profile.
For example, people express their pain points [66], opinions, needs, and wants
in online posts [10]. This textual data could be utilized to generate insightful
personas.

Despite the above-described potential, using NLP for QUPs has been tenta-
tive [23], with the main efforts summarized in the following five use cases.

First, previous research has applied NLP for classifying personas’ topics of
interest. For this, different methods have been applied, including latent Dirich-
let allocation (LDA) [4], which is a form of unsupervised topic modeling [7],
as well as supervised ML (text classification) in which a topical taxonomy is
first developed together with the organization using the personas, followed by
annotating data and using it to train topic classifiers [8]. Researchers have also
applied zero-shot classification [53] that uses a pre-trained language model for
determining a match between an array of topic words and the persona’s content
(e.g., comments). This approach has been found useful for small organizations
with limited in-house data for training purposes.

Second, researchers have applied sentiment analysis lexicons, such as the
EmoLex [48], to assign a sentiment score to a persona based on the social media
comments associated with the persona [30]. Sentiment aims to indicate the per-
sona’s general attitude towards the channel or organization - however, aspect-
based sentiment analysis has not been implemented, which would indicate how
the persona feels about a specific topic [35] or product [72].

Third, QUPs generated from social media datasets may include abusive or
toxic comments that are then included automatically in the generated persona
profiles. Prior research addresses how these comments can be detected and then,
if the stakeholder wants, removed from the persona profiles [65]. This is done
to improve the user experience (UX) of stakeholders using the personas. This
process involves using NLP, more specifically text classification trained on social
media comments.

Fourth, personas designed for dialogue systems imitate real conversations
by interactively reacting to stakeholder inputs [1,24]. This is similar to using
a chatbot. Persona, in this context, is defined as a linguistic type (personality)
that remains consistent over one or multiple user sessions [34]. The purpose is
to improve the UX for those engaging with the dialogue interface. Unlike other
efforts, this problem describes a specific subclass of generation problems.

Fifth, NLP techniques can also be applied in the segmentation process itself;
i.e., the process preceding personification. This involves identifying latent pat-
terns [5] or clusters [46] from textual data, typically using latent semantic spaces
and associated techniques (e.g., singular value decomposition, cosine similarity,
and so on). When using NLP for segmentation, the process tends to require
the use of external information, such as domain experts’ participation in the
personification process [45].

To summarize, topic modeling, sentiment analysis, toxicity detection, and
user segmentation are all text classification problems in NLP terminology, while
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dialog systems is a text generation problem. While the above use cases demon-
strate how NLP can be of service to QUPs. However, there is room for expand-
ing this interdisciplinary collaboration, given specific unsolved challenges. In the
next section, we discuss four grand challenges of QUPs and outline ideas on how
NLP can help address them.

3 Grand Challenges for Quantitative User Personas

Compatible with previous research [69,70], we define a grand challenge as a dif-
ficult but not unsolvable problem that represents a roadblock or bottleneck for a
field to progress and evolve into the next stage. A classic example of grand chal-
lenges is the list of 23 problems that David Hilbert proposed to the international
society of mathematicians in 1900. This list is said to have “galvanized the efforts
of mathematicians for the next century” [42]. Inspired by this, the grand chal-
lenges presented here are based on the authors’ experience on researching per-
sonas (multiple years, more than a dozen publications, a textbook on the topic)
as well as on NLP research both in and out of the persona domain. The research
team comprises people from diverse backgrounds, including those focused on
NLP (2 people) and those focused on HCI/QUPs (3 people). As such, we aim to
offer researchers thought-provoking problems that (hopefully) help foster inter-
disciplinary collaboration between HCI and NLP.

When formulating the grand challenges, one has to ask, “What is a good
grand challenge like?”. According to above definition, it is unsolved and difficult,
otherwise, it would not be “grand” or “challenge”. In addition, it is vital that the
challenge is interesting to the community to which it is presented. This implies
that the grand challenges need to be translated to technical problems to attract
the interest of NLP researchers. Otherwise, it is unlikely that NLP researchers
will invest any serious effort into addressing the challenges.

In our case, we engaged in an internal discussion between the research team
members specialized in HCI (problem space experts) and NLP (solution space
experts). This discussion represented a “sanity check” to ensure that the chal-
lenges were framed in a way that (1) is likely to advance persona creation, (2)
corresponds to a technical NLP problem, and (3) interests both HCI and NLP
researchers. These assessments are, of course, subjective determinations; other
scholars might add or remove elements from this list. Nonetheless, the following
grand challenges (GCs) passed this internal validation, and we are thus confi-
dent to propose them. They are introduced as follows, in no particular order
of importance. For each challenge, we include (a) a desciption, (b) illustrative
examples, (c) pointers on how to address it, (d) pointers on how to evaluate any
solutions to it, and (e) reflections on how Generative AI could be of help.

GC1: Frankenstein Personas (i.e., Consistency Problem) Description.
Susanne Bødker, a Danish computer scientist, first identified this problem, refer-
ring to it as ‘Frankenstein personas’ [6] (p. 98). The problem is that the creation
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of personas involves combining isolated datapoints into a persona profile that
may appear inconsistent, i.e., contain conflicting information.

The general version of the challenge is:

GC1: How to detect and correct inconsistent information in the persona
profile?

This problem exists for QUPs because the persona creation process can rely
on data collected from multiple sources, processed using different algorithms at
different steps of the process. This can result in a patched-up persona profile
that can contain inconsistent information.

Example Cases. In a system that generates QUPs automatically using social
media data, a male persona says, “us women should stick together” (indicating
wrong sex); there is an Indian persona that says, “You Indians cook really nice
curry” (indicating nationality mismatch); and a Saudi Arabian persona refer to
themselves as Tanzanian (see Fig. 2). The ramification is that the stakeholder
using the persona becomes confused about the persona’s true identity [61].

Fig. 2. Bander is from Saudi Arabia, but a random comment from videos of Bander’s
behavioral viewing type says, “I wish you could understand how meaningful we as
Tanzanian youth need this platform to create positive changes (. . .)”
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How to address? As established, the problem is that the information in the
persona profile may be inconsistent due to a failure to verify consistency between
different information elements. There is no process for ensuring consistency of
each information element relative to other elements. So, developing such pro-
cesses and mechanisms would address this issue.

Here, NLP can be useful. For example, a body of NLP work focuses on
inferring demographic attributes from social media texts [74]. This work typically
aims to identify differences in how demographic groups express themselves [74];
e.g., differences between males and females, or the youth and the elderly, and
then use the identified differences for prediction. Thus, one approach is predicting
the gender, age, and nationality of a user writing a given social media comment.
This, without any additional meta-data and only relying on feature extraction
and engineering from the text, qualifies as an extremely challenging problem.

The challenge is exacerbated by several factors, including (a) the lack of pub-
licly available training data, (b) the large number of demographic group combi-
nations (gender × age × nationality yields thousands of subgroups to consider
on a global scale), and the (c) separation of identity and “true” demographics
(e.g., some males may identify with female characteristics; an older and younger
person might share an interest in the same popular culture, etc.). Given these
constraints, it might be appropriate, in some cases, to relax the requirements of
including specific demographic information in the persona profiles; for example,
omitting gender and age and focusing on other attributes, such as psychograph-
ics [67] or simply a narrative description focusing on user needs. Nevertheless,
regardless of what information is chosen into the persona profile, the informa-
tion must form a coherent whole. When the information originates from multi-
ple sources and undergoes multiple diverging algorithmic manipulations, ensur-
ing consistency becomes a potential issue, requiring consistency verification for
QUPs. Here, the role of NLP to address this issue remains open.

How to evaluate? Ascertaining the success of solving Bødker’s Frankenstein
personas can take the form of technical and stakeholder evaluation. Technical
evaluation would, presuming some test data, apply ML performance metrics
that pertain to classification tasks, such as the F1 and ROC-AUC scores. Stake-
holder evaluation, on the other hand, would relate to whether stakeholders would
observe inconsistencies between the personas’ different information elements.

How could Generative AI contribute? We conducted a simple test with Open
AI’s GPT-3.5, the state of the art large language model (LLM), also referred to
as a type of Generative AI [2]. We provided the following prompt:

Your task is to evaluate and report any inconsistent information in the following

persona description. Inconsistent information means that the details about the persona

are not aligned; something does not match. Here is the persona description:

Bander is a 26-year-old male from Saudi Arabia. Here is a comment from him: “I

wish you could understand how meaningful we as Tanzanian youth need this platform

to create positive changes.”

Is there any inconsistent information in the persona description?
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As evidenced by Fig. 3, GPT was able to detect the inconsistency, showing
promise in addressing this grand challenge. However, a more formal and system-
atic evaluation would be needed to draw more definite conclusions.

Fig. 3. ChatGPT correctly identified the inconsistency in the persona information:
“Yes, there is an inconsistent information in the persona description. The comment
from Bander mentions Tanzanian youth, which implies that he is from Tanzania, not
Saudi Arabia as stated in the initial description.”

GC2: Extrapolate Beyond the Immediate User Data Description. A
general advantage of QUPs is their use of aggregated (i.e., non-personally iden-
tifiable) data, which protects individual users’ privacy [3]. On the other hand,
the dependency on the user data at hand – often a fairly limited one when com-
pared to the full range of human thoughts – hinders the ability to understand the
persona’s needs and wants beyond the specific contexts available in the dataset.
For example, the dataset can contain comments about cars, therefore giving us
information how the people classified under the persona feel about cars. How-
ever, if the dataset is missing information about motorbikes, we do not know
how the persona feels about them. Therefore,

GC2: What does the persona think of Topic x? (Where x is not part of
the training data)

How to address? A potential solution could involve generative tasks that
apply transfer learning via language models. Modern language models in NLP
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are trained on large-scale datasets (up to billions of document samples) and
advanced algorithms (e.g., transformers). One major advantage is that, to some
extent, these models can be fine-tuned using a smaller annotated dataset, thereby
adjusting the model’s broad knowledge to a specific narrow problem. There are
language models that perform prediction, generation (i.e., natural language gen-
eration (NLG), which is a subfield of NLP) or both [16]. There’s also a growing
body of work on “data synthesis” for use cases that require generating textual
data to perform causal inference [75].

Essentially, if we are able to represent a type of user with textual corpus that
represents “who this person is”, then, in theory, we might be able to fine-tune
a language model to query this user type’s opinions in real-time in an accurate
manner. Conceptually, this is compatible with the notion of the persona being
a ‘mental model’ [52] and a surrogate for the real user [15]—an LLM might be
able to capture this mental model and simulate it plausibly and accurately.

In QUPs, the user type can be represented by latent statistical object that
generates language according to grammaticality (‘conformity to language usage’)
and the patterns observed in a group of users’ language use [5]. The intuition
is that, ideally, the language model contributes to grammaticality and the fine-
tuning to the stability of the persona. The stability can be divided into two sub-
parts: linguistic consistency (i.e., the style of speaking remains the same) and
character consistency (i.e., the persona remains the same person throughout the
dialogue — e.g., when the persona is asked, “Do you like ice-cream?” and the user
group it is based on hates ice cream, it is able to respond, “No.”). Furthermore, to
address the scarcity of information , systems such as SenticNet [11] can be helpful
as they analyze multiple dimensions (e.g., sentiment, emotions, personality) from
the same text and therefore can be used for extracting more information from the
same content and, possibly, for building more complete user models by leveraging
the interactions between the extracted information variables.

How to evaluate? A myriad of technical metrics measure linguistic consis-
tency [57]. In addition, we recommend a user-focused evaluation, e.g., develop-
ing a conversational user interface through which a stakeholder can chat with
or talk to the persona; a variation of the Turing test [73]. Herein lies an impor-
tant observation; while the Turing test requires a human to assess whether the
machine is able to execute human behaviors that are indistinguishable from real
humans, the test can be passed by an efficient “impersonator” that speaks flu-
ently, answers rationally, but tells things that are untrue, yet convincing. There
are a myriad of cases where the human evaluator lacks the expertise to assess
the veracity of an LLM; personas being of these.

This is why both aspects - realism (the dialogue persona produces answers
that appear correct) and accuracy (the produced answers actually reflect the
thinking of the group the persona represents) - need consideration. Otherwise,
a situation may emerge where the given answer appears to make sense (i.e.,
the mechanism by which the algorithm generates text works well in terms of
generating grammatically correct text), but the meaning of the text does not
correspond to the specific and distinct group of people that the persona is.

Due to opaqueness of how the text is generated by LLMs, the stakeholder is
able to evaluate realism but not accuracy - i.e., they need to trust the system,
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and the system developers need to verify, in a robust manner, that the meanings
given by the persona are consistent and truthful.

Again, we want to stress the importance of the problem of mimicry - with the
current NLP models, it is not difficult to produce grammatically correct text that
appears sensible. The challenge is not to do that - the challenge is to get one step
closer to intelligence by simulating what the people belonging to the persona’s
group do and would think about topics, past or present. Grammatically correct
text generation is only the first step in this journey. Generating persona dialogue
that passes both scientific and user scrutiny poses a tremendous challenge for
NLP because it requires that the persona remains consistent in its role [18].

How could Generative AI contribute? As previously, we explore the poten-
tial of GPT-3.5 to address this challenge. Below, we show the dialogue with
the model: Bander is a 26-year-old male from Saudi Arabia. He likes to follow
social media content on education and youth development. Using your general
knowledge about people like Bander, tell me, what else does he like to follow?

As can be seen from the exhibit, based on its general knowledge, GPT is able
to locate related topics. However, this information cannot be relied on without
some form of triangulation. How to do such triangulation efficiently and at scale
remains an important aspect of resolving this challenge.

Based on general knowledge about individuals interested in education and youth develop-
ment, there are several other areas that Bander might be inclined to follow. Here are some
possibilities:

1. Current Affairs and News: Bander might be interested in staying updated on local and
international news to understand the broader context of educational and youth-related
issues.

2. Personal Development: Bander may follow content related to personal growth, motiva-
tion, self-improvement, and success stories to enhance his own skills and mindset.

3. Technology and Innovation: Bander might have an interest in keeping up with the
latest technological advancements and innovations that can impact education and youth
development.

4. Nonprofit Organizations and NGOs: Bander may follow the work of nonprofit organiza-
tions and non-governmental organizations (NGOs) focused on education, youth empow-
erment, and social change.

5. Leadership and Entrepreneurship: Bander might be interested in content related to
leadership development, entrepreneurship, and business strategies to gain insights into
effective ways of driving positive change.

6. Social Issues and Advocacy: Bander might follow content related to social justice, equal-
ity, and human rights, as these topics often intersect with education and youth devel-
opment.

It’s important to note that these suggestions are based on common interests and general
knowledge, and individual preferences may vary.

GC3: Engage with the Persona in Real-Time, Asking It Anything
You Need to Know for Your Decision-Making Task (i.e., Meaningful
Engagement Description: The persona does not need to be presented as profile
at all. We have already hinted at the dialogue-based persona systems, where one
can directly interact with the persona using conversational means [14,29,58].
These UIs are likely to replace or complement the traditional persona profiles as
LLMs further evolve. The grand challenge here is, in fact, a series of challenges
for such systems:
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GC3: How to generate personas using LLMs? How to save personas using
LLMs? How to update personas using LLMs?

How to address? The obvious way to address this is to focus on the goal
of creating personas using LLMs. Fortunately, there are efforts to this end [18].
However, the major challenge there is that the NLP and HCI research commu-
nities work on the problem separately, without concentrated efforts and coordi-
nation.

How to evaluate? The ultimate method of evaluation for the successful cre-
ation of LLM personas is end-user adoption. The technology is quickly reaching a
degree of maturity where it can be deployed in real persona systems for commer-
cial and non-profit organizations – the feedback from these entities determines
the success of the research endeavors.

How could Generative AI contribute? As previously, we explore the poten-
tial of GPT-3.5 to address this challenge. Below, we show the dialogue with the
model: “A persona represents a segment of people that share the same charac-
teristics. Generate five personas that describe NEET youth (not in education,
employment, or training).”

Sure! Here are five personas that describe NEET youth:

1. Lucas, the Aspiring Artist:

Age: 20
Background: Lucas is a talented artist who has recently graduated from high
school. He dreams of pursuing a career in fine arts but struggles to find opportuni-
ties to showcase his work. He comes from a lower-middle-class family and lacks the
financial means to pursue higher education or professional training. Lucas spends
most of his time at home, honing his artistic skills and searching for freelance gigs
online.

2. Sarah, the Discouraged Dropout:

Age: 19
Background: Sarah dropped out of high school due to personal issues and a lack of
interest in academics. She comes from a disadvantaged background, with limited
family support and financial resources. Sarah feels discouraged and disconnected
from society, finding it challenging to secure stable employment without a high
school diploma. She spends her days aimlessly browsing the internet and occasion-
ally takes up short-term jobs to make ends meet.

3. Raj, the Technophile:

Age: 22
Background: Raj is a tech-savvy individual who possesses excellent computer skills
and knowledge about the latest technological trends. However, due to a lack of
formal education or certifications, he struggles to find meaningful employment
in the tech industry. Raj spends most of his time at home, engaging in online
communities, learning coding languages, and exploring new technologies. He hopes
to land a remote job or freelance projects that utilize his expertise.
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4. Emily, the Caregiver:

Age: 24
Background: Emily had to drop out of college to take care of her ailing parent. She
is a compassionate and responsible individual, dedicating her time and energy to
provide support at home. Emily’s caregiving responsibilities make it difficult for
her to commit to a full-time job or educational program. She often feels isolated
from her peers and finds solace in online support groups for caregivers. Emily
explores online courses and remote work opportunities to gain skills and earn
income from home.

5. Alex, the Lost Graduate:

Age: 23
Background: Alex recently completed a bachelor’s degree in a field that is cur-
rently experiencing a lack of job prospects. Despite the effort put into acquiring
a degree, Alex faces significant challenges in finding employment relevant to their
qualifications. Lacking guidance and career support, Alex spends their days feeling
demotivated, switching between odd jobs and searching for entry-level positions.
They are eager to gain relevant experience and willing to undergo further training
if the opportunity arises.

Remember, these personas are fictional representations based on common char-
acteristics of NEET youth and should not be taken as specific profiles of real
individuals.

To assess whether it is possible to continue dialogue with one of the personas,
we decided to engage with Emily:

Now, assume the role of Emily, and answer the following question: Emily, how
could we motivate you to continue your studies?

As Emily, to motivate me to continue my studies, consider:
1. Flexible study options that accommodate my caregiving responsibil-
ities.
2. Financial support such as scholarships or grants for caregivers.
3. Providing career guidance and mentorship to help me navigate my
future path.
4. Tailored education programs integrating practical experiences related
to caregiving.
5. Establishing a community of caregivers for support and networking.
These factors would encourage me to pursue further education while
managing my caregiving duties.

Again, GPT shows realistic potential in addressing this challenge. However,
we must bear in mind that the information of “Emily” is based on general
knowledge the model has about NEET youth – this knowledge may be flawed
or biased [2,26]. The information would need to be triangulated with domain
experts and/or using a model finetuned with a domain-specific dataset.
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GC4: Explain Algorithmic Persona Creation Description. Persona cre-
ation involves a degree of complexity that can make stakeholders question the
resulting personas’ validity, applicability, and usefulness [43]. In the case of qual-
itative analysis, it is extremely hard to explain precisely how certain information
was chosen for the persona, and it is nearly impossible to replicate the analy-
sis with an independent researcher and obtain identical results. In the case of
QUPs, the situation appears better at first glance, as one can apply statistical
analysis and other algorithms on a fixed data and achieve identical (or at least
highly similar) results on each run. However, these processes are opaque to a
stakeholder, so the question about how the personas were created still remains
topical. Furthermore, an individual piece of persona information is difficult to
trace back to its constituents, even though stakeholders often pay attention to
details in the persona profiles and ask about how they were derived. So, given
these trust and transparency issues, the challenge is:

GC4: How can the quantitative persona creation process be explained?

How to address? To this end, there has been progress in AI Explainabil-
ity [36,49]. In its simplest form, explanation is a visualization that shows feature
importance of a machine learning task like classification, for example, which
words led to the model to predict a certain class. For example, if the topic of
interest of a persona is “Cars”, then how did the model come to this conclu-
sion? Explainability frameworks, such as LIME [56] and SHAP [39], exist for
both local and global inferences, thereby potentially addressing some aspects of
this challenge. However, in the case of non-tabular data, both LIME and SHAP
show major limitations in global explanations. These approaches are generally
available for NLP, but the explainability of more advanced deep-learning mod-
els is an open research area [37], partly because these models tend to rely on
non-human interpretable features (i.e., they create a numerical representation
of a text sample that is difficult to trace back to individual words or phrases).
Therefore, we invite research on NLP model interpretability towards explaining
how persona information is derived.

How to evaluate? The success of transparency relies on two primary factors:
(a) whether the provided explanations are reliable, i.e., describe truthfully how
a certain decision was made, and (b) whether the stakeholders using the per-
sonas find the explanations satisfactory, informative, and comprehensible. Spe-
cific techniques for assessing concepts [32] and influence [20] can help explain
global patterns and trace their provenance through the model’s processes.

How could Generative AI contribute? For this task, we initially tested GPT-
3.5. However, its explanations were not of optimal quality, so we tested GPT-4
which provided a technically more correct answer to the prompt, “Explain how
NMF can be used for creating personas.” The explanation given by GPT-4 can
be viewed in the online link1. What we find particularly interesting is GPT-4’s
ability to personalize the explanation (see Fig. 4). we asked GPT-4 to make two

1 https://chat.openai.com/share/52da0742-1a00-48c7-988f-1c954570e148.

https://chat.openai.com/share/52da0742-1a00-48c7-988f-1c954570e148
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variations of this explanation, one for children and one for first-year marketing
students. For each, we got satisfactory responses (due to space limitations, these
responses can be viewed online2.

Fig. 4. ChatGPT explaining persona creation using non-negative matrix factorization
to a five-year-old.

As with the other challenges, the explanations given by GPT show great
promise, especially in terms of personalization. However, more testing is needed.

4 Discussion

Although the use of AI and ML for personas is not novel [25], applying NLP in
this domain is nascent and still at its early stages. As such, there is a lack of
guidelines and vision for how to apply NLP in a productive manner to address
persona creation challenges. For this, the challenges need to be first defined.
2 ibid.
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This work represents an attempt to that end. While we do not claim to present
a fully comprehensive list of neither the problems nor the potential solutions, we
nonetheless posit that the proposed challenges are relevant for persona theory
and practice, and the proposed NLP research directions are feasible.

The potential impact of addressing these challenges is substantial, especially
for algorithmic persona generation at scale - the result could be personas that
have consistent and complete information, can be understood through discussion,
and offer stakeholders the possibility to understand and scrutinize the (currently)
opaque information selection process. Better personas, in turn, could lead into
designing more user-friendly products, which is beneficial for all.

We suggest that the potential solutions in this space are evaluated using
a mixed approach - technical metrics (as customary in NLP studies) and user
metrics (e.g., perceptions, subjective feedback; as customary in HCI studies).
This would enable arguing for novelty and value of contribution from multiple
sides. An example of validating stakeholder feedback on personas is the Persona
Perception Scale [68], an instrument that measures several impressions, includ-
ing the persona’s perceived credibility, consistency, clarity, and completeness.
Human assessment is also vital for rating the quality of NLP outputs [19].

The NLP community possesses unique capabilities for addressing the chal-
lenges. Therefore, much depends on its mobilization. For this, it is instrumental
to frame the challenges as NLP problems, simply because NLP researchers seek
to contribute to the field of NLP. This mobilization can be seen as a grand
challenge in itself as cross-disciplinary collaboration can be challenging to cre-
ate. Nonetheless, the mutual exchange of experiences, methods, directions, and
insights is vital for addressing grand challenges [12]. Specific ideas for mobilizing
NLP researchers include (1) workshops and special issues (e.g., ACL, CHI); (2)
competitions in Kaggle and other data science platforms; and (3) reachouts and
evangelization via personal correspondence and research seminars. QUPs should
be advertised as a prominent theme.

5 Concluding Remarks

The potential in NLP for personas is plentiful. Persona profiles can be enriched
with additional information such as sentiment, topics, of interest, pain points,
affinities, and quotes; inferred from text pertaining to the identified persona
segment (e.g., tweets, forum posts) or extrapolated using pre-trained language
models. While the persona information can be artificial to some extent, it needs
to be realistic and truthful, i.e., representative of the persona’s unique nature
among other personas. Even though current QUPs are mostly static, interac-
tivity could be added using NLP technologies (chat and voice interfaces), thus
improving the accessibility and UX of personas. These opportunities require the
mobilization of NLP research that integrates with HCI requirements for per-
sonas. Other scholars are invited to contribute to the discussion on the grand
challenges of QUPs. Particularly, GPT models show promise in addressing each
challenge, calling for further evaluation studies.
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