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Foreword

I am fortunate to be a witness for the completion of this book. I came to know
Dr. Frank Xing around 2 years ago when he approached me to seek collaboration.
At that time, both of us were interested in working on using natural language
processing techniques for solving problems in the stock market. This is a highly
interdisciplinary area where knowledge in both finance and artificial intelligence
would be useful. When we were introduced, I had been working on event-driven
stock prediction for some time, having proposed some seminal work by leveraging
deep learning algorithms. In parallel, Frank was fascinated about introducing
sentiment signals to the forecasting of stock price movements.

We turned out to have a very pleasant collaboration project, learning a lot from
each other. Frank has given me much inspiration from his passion and unique
background with both financial and computational linguistics expertise, which has
benefited from his interdisciplinary studies from Peking University and his devoted
self-education in his doctoral research. As a computer scientist, I have gained more
insight into the problem of financial market prediction that considers more than one
asset by interaction with him. By the time he finished his doctoral research, Frank
has become a leading expert in the field of intelligent asset management.

The application of artificial intelligence in the financial field has generated a lot of
excitement in the past few years. Many financial institutions are facing real-world
problems that are very close to what Frank discussed in this book. For example,
Rebellion Research is a forefront quantitative asset management company that uses
machine learning to invest in global equity. It launched its first pure AI investment
fund in 2007. Based on machine learning, combined with predictive algorithms, and
the support of decades of historical data, the company’s trading strategy consistently
outperforms in stocks, bonds, commodities, and foreign exchange transactions.
Also, Bridgewater Associates, the world’s largest hedge fund, established a new
AI team in 2013 to automatically learn about market changes through probabilistic
models. Similar companies include Point72 Asset Management, Renaissance Tech-
nologies, Two Sigma, and more. In terms of including sentiment signals, Sentient
Technologies, a company founded in 2008, developed its first practical application
in financial trading.
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vi Foreword

Many scholars would agree that apart from machine learning, the market has
a growing interest in natural language processing techniques. The information
obtained from historical data is very limited, and exploitation of textual data such
as news, policies, and social media posts is powerful. In 2015, I proposed an
event-driven method for stock market prediction using deep learning and natural
language processing jointly. The events are extracted from news text and represented
as dense vectors, trained using a novel neural tensor network, and then a deep
convolutional neural network is used to model the combined influence of long-term
events and short-term events on stock price movements. In simulations, a simple
greedy strategy allowed our model to yield effective performance on the S&P 500
index prediction and individual stock prediction.

AI technology is evolving faster than expected and is already taking over
human decision-making in certain instances. While many are alarmed by this, AI
is producing some of the most effective and dramatic results in business today.
This book, written in collaboration with my colleague Professor Erik Cambria
and Professor Roy Welsch, has been a much-extended version of Frank’s doctoral
thesis. It is based on two well-established asset management models in the finance
literature, injecting various AI approaches for better linkage between financial texts
and market models. It provides a succinct and useful review of asset allocation
models and then introduces the basis of how to model financial texts. In particular,
computational semantic representations and texts, as well as sentiment knowledge
encodings, are discussed. Finally, recent advances in knowledge engineering and
dialogue techniques are discussed with regard to asset management. Theoretical
introductions are accompanied by empirical results, which make the content of the
book more practically informative.

I enjoyed reading this book much. Compared to the plethora of materials on
intelligent stock trading, the book is unique in the following aspects. First, it
provides a solid framework for asset allocation, considering expected returns and
asset correlations in a unified base. This is different from most of the automatic
trading algorithms in the literature, which have an overly simplistic model of asset
allocation. Second, it gives much background on natural language processing, and
in particular sentiment analysis, which is highly relevant to market prediction but
typically oversimplified in the financial literature. Thus, I find this book a dedicated
discussion of the cutting-edge techniques on intelligent asset management, which
can be a useful reference for both academic research and industrial practice.

School of Engineering, Westlake University Yue Zhang
Hangzhou, China
April 2019



Preface

The scenario when investors need to manage a large number of financial assets
has an essential difference from what most of the people do for stock movement
prediction today. Unlike the situation of considering a single stock, investors need
to consider co-movement of related stocks and control risk within a certain level.
In traditional asset allocation models, expected returns and correlations of financial
assets are difficult to estimate from historical price series, which are nonstationary
and volatile. Therefore, we resort to textual knowledge hidden behind the huge
amount of unstructured market information produced by human beings. In fact, one
of the central research topics of this book include incorporating natural language
processing techniques into several asset allocation models and finding the proper
variables in financial models that naturally link to the contents of financial reports
and the market sentiment.

New perspectives investigated in the book extend the current framework of the
Markowitz model and the Black-Litterman model by re-thinking asset expected
returns and asset correlations. Instead of relying on the price series themselves,
external information can be used. We try to inject into these two concepts new
connotations—asset expected returns and asset correlations not in terms of numer-
ical calculation but in terms of what we know about the assets. Both sub-symbolic
AI and symbolic AI approaches are explored in this book, for semantic linkage and
market view modeling, which are associated with key variables in asset allocation
models.

In the introductory chapter, types of financial texts are reviewed and categorized.
However, most of the existing approaches in financial text mining treat heteroge-
neous information sources with no difference at the current stage. We propose here,
as a value-adding step, to separately consider semantics conveyed in financial texts
and the sentiment time series formulated from social media posts. We also introduce
to the readers basic concepts of asset management.

Afterward, recent advances in computational semantic representation of words
(word2vec) and documents (doc2vec) are leveraged to construct a dependence
structure of financial assets. This dependence structure (termed vine dependence)
is known to be useful in robust estimation of the covariance matrix of asset returns,
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which is a critical risk indicator of the asset combination held by investors. As our
main contributions, a vine-growing algorithm is proposed, and a large empirical
vine structure for main US stocks is constructed. The readers will benefit a lot from
this original research and step-by-step explanations and may apply this method in
their own asset management models and practices.

Furthermore, we study adding the market sentiment to infer the posterior
distributions of asset expected returns. Specially, augmented sentic computing, a
concept-level sentiment analysis method that takes advantages of syntactic features,
is used in processing short Internet texts and forming mass opinion streams. A
novel recurrent neural network design termed ECM-LSTM is used to transform
market sentiment to subjective investor views and benchmarked with popular
neural network architectures, such as DENFIS and LSTM, and linear forecasting
models, such as ARIMA and the Holt-Winters methods. The sentiment views
enable explaining asset reallocation decisions in a storytelling manner. In the end,
optimizing the polarity scores in a sentiment knowledge base is discussed.

Another important feature of the book is that a series of experiments were
conducted to test the simulated portfolio performances, the validity of sentiment
time series, and the model scalability. We describe the experiments in much detail
so that the methods are convincing and well-supported with data. We find the robust
estimation of asset correlations by semantic linkages to be superior to estimation
using historical price data in a sense that with the help of a proper semantic
vine, the portfolio outperformed 80% to 90% of its peers (arbitrary vines) in
terms of annualized return. The improvement in annualized return is circa 2% for
incorporating sentiment and more than 10% for employing ECM-LSTM compared
to those fundamental settings.

Finally, we discuss storage and adaptation of knowledge and robo-advisory.
This part is not directly related to the asset allocation models but an indispensable
infrastructure to facilitate the model accuracy and human-computer interaction
processes. To the end users, robo-advisory may be the only observable image and
what all it means with the term “intelligent asset management.” We hope that this
book will increase readers’ understanding of how to systematically integrate textual
knowledge and market sentiment for financial asset management and incentivize
researchers, policy-makers, professors, and entrepreneurs as a useful handbook.

Singapore, Singapore Frank Xing
Singapore, Singapore Erik Cambria
Cambridge, MA, USA Roy Welsch
February 2019



Acknowledgments

The main contents of this monograph are extended and orchestrated from my
doctoral research work, which would not have been accomplished without the
help of many people. My foremost gratitude goes to Erik Cambria, who gave me
sufficient independence as well as guidance on my research. Erik is not only a great
supervisor but also a reliable old friend. He knows the oriental humility and often
says “I did nothing for it,” which, of course, is not true. Without his encouragement,
I may never think of systematically organizing such a lot of material into a book. I
am also deeply indebted to Roy Welsch, for he opened the door to robust statistics
for me. I would cherish the discussions we had when he, getting on in years, after a
long flight, arrived in Singapore.

I would like to thank Biya Wu for his help in providing perspectives from the
finance and investing industries, Okan Duru for sharing his knowledge and expertise
in forecasting, Xiaomei for helping me with some experiments, and Lorenzo for our
beneficial discussions on deep learning and the unforgettable trip to Java. Besides, I
am really proud of and thankful to Filippo for he started without much background
but implemented and added a great deal to my ideas.

I also would like to thank Professor Chai Quek and Sundaram Suresh for
their helpful comments during the years of my postgraduate study at Nanyang
Technological University, where I was mainly supported by a scholarship from
Temasek Laboratories. Professor Doug Maskell, Anupam, Weichen from my oral
defense panel, and anonymous examiners also gave useful suggestions on an early
draft. I am grateful to Professor Weihong Huang for the sound training I received
from his mathematical economics course.

The journey of doing multidisciplinary research is tough and solitary, but I am
very fortunate to have had encouragement from many friends and comrades on
campus, outside campus, and even back in China: Harry Xia, Sipiao, Rui Yin, Te
Bao, Cláudia, Soujanya, Yukun, Yang Li, Chen Qian, and others. I am grateful for
Win-Bin and Yang Xu who gave me sound advice and still keep in touch after my
graduation from Peking University. A special thanks to Jennifer for checking and
pointing out an error in algorithms, and of course, I am responsible for the rest of
the errors that are not found.

ix



x Acknowledgments

Most dearly, thanks to my Jessie for visiting Singapore very often for me and pull
me through difficult times (even before our marriage). Above all, I would like to
thank my family, especially my mama, Zhifei, for her everlasting and unconditional
support.

Singapore, Singapore Frank Xing
June 2019



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Text Mining for Stock Market Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Text Source and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Investigated Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Assessment and Performance Measurement . . . . . . . . . . . . . . . . . . 16

2.2 Asset Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Asset Allocation Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 The Markowitz Model: Mean-Variance Portfolio . . . . . . . . . . . . . 19
2.3.2 The Black-Litterman Model: Views on Market . . . . . . . . . . . . . . . 23

3 Theoretical Underpinnings on Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Language and Its Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Three Ways of Looking at the Structure of Language. . . . . . . . . . . . . . . . . 29

3.2.1 Lexicon, Grammar, and Pragmatics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Knowledge, Reasoning, and Emotion . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Yet Another Time Arrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Anchor in a Tumultuous Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Time Series of Asset Return and Sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Predictability: Test of Causality and Residuals. . . . . . . . . . . . . . . . 34

4 Computational Semantics for Asset Correlations . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Distributed Document Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Similarity Measure for Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Vine Dependence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Copula and Vine Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Vine Structure and Its Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Growing the Semantic Vine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Estimating the Robust Correlation Matrix . . . . . . . . . . . . . . . . . . . . . 48

xi



xii Contents

4.3 Data Used for Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Obtaining the Semantic Vine and Asset Correlation
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Robust Asset Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Benchmarking Arbitrary Vines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.4 Model Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Sentiment Analysis for View Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Concept-Level Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Sentiment Analysis in the Financial Domain . . . . . . . . . . . . . . . . . . 66
5.2 Market Views and Market Sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Market Views: Formats and Properties . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Estimating Volatility, Confidence, and Return . . . . . . . . . . . . . . . . 71
5.2.3 DENFIS, LSTM, and ECM-LSTM .. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.4 The Optimal Market Sentiment Views. . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Market Sentiment Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 The Hourglass of Emotions and SenticNet . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Augmented Sentic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Examples of Applying Augmented Sentic Patterns . . . . . . . . . . . 80

5.4 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.1 Simulation: Effectiveness of Market Views . . . . . . . . . . . . . . . . . . . 89
5.5.2 Simulation: Effectiveness of ECM-LSTM .. . . . . . . . . . . . . . . . . . . 92

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Storage and Update of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Storing Semantic and Sentiment Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 From Sentiment Lexicon to Sentiment Knowledge Base . . . . . 98
6.2 Cognitive-Inspired Domain Sentiment Adaptation . . . . . . . . . . . . . . . . . . . . 100
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Vectorization of Sentiment Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.2 Exploration-Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.3 Convergence Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.4 Consistency Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.5 Dealing with Negators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.6 Lexicon Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.7 Boosting and Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5.1 Interpreting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.5.2 A Showcase for Sentiment Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



Contents xiii

7 Robo-Advisory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1 Industry Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Robo-Advisory and Dialog System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Robo-Advisory and Recommendation System . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Robo-Advisory and Active Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.1 Concepts, Algorithms, and Theories Derived. . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Stock List and Vine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



List of Figures

Fig. 1.1 Evolution of NLP techniques and NLFF waves . . . . . . . . . . . . . . . . . . . . . 4
Fig. 1.2 Rethinking asset expected returns and asset correlations

with two extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Fig. 1.3 The organization diagram of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Fig. 2.1 Different asset allocation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Fig. 2.2 A 3-D visualization of the portfolio optimization

problem [191] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Fig. 2.3 The power of portfolio diversification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Fig. 2.4 Posterior distribution of expected returns as in the

Black-Litterman model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Fig. 3.1 A hierarchy of various types of knowledge [116] . . . . . . . . . . . . . . . . . . 28
Fig. 3.2 Hierarchical mental representations of concepts [132] . . . . . . . . . . . . . 29
Fig. 3.3 Various types of grammatical information . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Fig. 3.4 A narrative space for financial information . . . . . . . . . . . . . . . . . . . . . . . . . 32
Fig. 3.5 Mapping hierarchical structures of language . . . . . . . . . . . . . . . . . . . . . . . 32
Fig. 3.6 An example of XBRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Fig. 4.1 Ability of analogously organizing concepts and learn
relationships by word embedding [114] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Fig. 4.2 Real distribution and Gaussian fitting of returns of Apple’s
stock price (2009–2017) [191] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Fig. 4.3 Example of a vine structure on three financial assets . . . . . . . . . . . . . . 44
Fig. 4.4 Examples of C-vine and D-vine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Fig. 4.5 The semantic vine constructed for the stocks [191] . . . . . . . . . . . . . . . . 52

xv



xvi List of Figures

Fig. 4.6 Performance with different experiment settings [191]. (a)
Single period (static) portfolios. (b) Multi-period portfolios,
daily rebalancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Fig. 4.7 Performance with different vine structures [191]. (a) rMVO
portfolio with C-vines. (b) rMVO portfolio with D-vines . . . . . . . . . . 57

Fig. 4.8 The first layer dependence structure of stocks selected from
the US market [191] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Fig. 5.1 The suitcase metaphor for sentiment analysis [25]. . . . . . . . . . . . . . . . . . 64
Fig. 5.2 The five-eras vision of the future web [127]. . . . . . . . . . . . . . . . . . . . . . . . . 65
Fig. 5.3 Model training process for generating market views. . . . . . . . . . . . . . . . 73
Fig. 5.4 Operations inside a LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Fig. 5.5 The 3D model of the Hourglass of Emotions [27] . . . . . . . . . . . . . . . . . . 78
Fig. 5.6 The sentic computing algorithm working at sentence level [189] . . 80
Fig. 5.7 Sentiment score propagates via the dependency tree

(Example 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Fig. 5.8 Sentiment score propagates via the dependency tree

(Example 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Fig. 5.9 PsychSignal sentiment stream (cashtag “AAPL”, normalized) . . . . . 86
Fig. 5.10 The time series of positive and negative message counts

from two sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Fig. 5.11 Trading simulation performance with/without market

sentiment views. (a) No views. (b) Random views.
(c) DENFIS + sentiment. (d) LSTM + sentiment. (e)
BL + sentiment, t = 90. (f) BL + sentiment, t = 180 . . . . . . . . . . . . . . . . . . 90

Fig. 5.12 Trading simulation performance with different sentiment sources. 94

Fig. 6.1 Visualization of the ontology of semantic knowledge . . . . . . . . . . . . . . 98
Fig. 6.2 Entry for concept “meet_friend” in SenticNet. . . . . . . . . . . . . . . . . . 99
Fig. 6.3 Illustration of the polarity score adaptation process of word

small [194] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Fig. 6.4 Sentiment shifts of words in different domains [194].

(a) Apparel. (b) Electronics. (c) Kitchen. (d) Healthcare.
(e) Movie. (f) Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Fig. 7.1 Mapping between robo-advisory and the traditional financial
advisory process. (Adapted from [81]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Fig. 7.2 Design principles for a robo-advisor [81] . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Fig. 7.3 System architecture of a conversational robo-advisor

proposed in [45]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Fig. 7.4 The system panel of “Zara”, a dialog system that detects

human personality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Fig. 7.5 The candidate portfolios to choose from at RoboInvest

of OCBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



List of Tables

Table 2.1 Financial texts from different sources and examples.
(Partially adapted from [190]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 2.2 Type of financial texts leveraged and how are they
processed. (Partially adapted from [190]) . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 2.3 Results achieved and reported using different measurements.
(Partially adapted from [190]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 4.1 Keywords used to generate vector representations for the
selected stocks [191] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.2 Major statistics of the portfolio performance [191] . . . . . . . . . . . . . . . . 55
Table 4.3 Major statistics of the portfolio performance, those

measures better than EW are in bold [191] . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 4.4 Significance test of the hypothesis that the semantic vine is

superior to an arbitrary C-vine or D-vine [191] . . . . . . . . . . . . . . . . . . . . . 58
Table 4.5 Comparisons of empirical and theoretical time complexity

at different problem scales [191] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 5.1 Confusion matrix between user labeling and sentic
computing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 5.2 Correlation of message sentiment time series [189] . . . . . . . . . . . . . . . 87
Table 5.3 Performance metrics for various view settings [189] . . . . . . . . . . . . . . . 91
Table 5.4 Performance metrics for different sentiment sources [189] . . . . . . . . 94

Table 6.1 Positive and negative word lists of Opinion Lexicon . . . . . . . . . . . . . . . 99
Table 6.2 Statistics for domain-specific datasets [194] . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 6.3 Examples of record in finance domain [194]. . . . . . . . . . . . . . . . . . . . . . . . 107
Table 6.4 Sentiment classification accuracies for six domains,

showing competition before/after domain adaptation.
(Adapted from [194]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 7.1 Representative robo-advisory companies and their products
(Data collected on 2019-04-09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xvii



Acronyms

AI Artificial Intelligence
API Application Programming Interface
ARIMA Autoregressive Integrated Moving Average
ASCII American Standard Code for Information Interchange
BOW Bag-of-Words
CAGR Compound Annual Growth Rate
CAPM Capital Asset Pricing Model
CDAHS Cognitive-Inspired Domain Adaptation with Higher-Level Supervision
CFA Chartered Financial Analyst
CLSA Concept-Level Sentiment Analysis
CPU Central Processing Unit
DENFIS Dynamic Evolving Neural-Fuzzy Inference System
DNN Deep Neural Network
ECM Evolving Clustering Method
EMH Efficient-Market Hypothesis
ETF Exchange-Traded Fund
EW Equal-Weighted Portfolio
FNN Fuzzy Neural Network
GARCH Generalized Autoregressive Conditional Heteroscedasticity
GECKA Game Engine for Commonsense Knowledge Acquisition
GICS Global Industry Classification Standard
GMRAE Geometric Mean Relative Absolute Error
JSON JavaScript Object Notation
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
MDD Maximum Drawdown
MPT Modern Portfolio Theory
MVO Mean-Variance Optimization
NLFF Natural Language Based Financial Forecasting
NLP Natural Language Processing

xix



xx Acronyms

NLTK Natural Language Toolkit
NT Neural Trading Portfolio
NYSE The New York Stock Exchange
OMCS Open Mind Common Sense
PDF Probability Density Function
PMI Pointwise Mutual Information
POS Part of Speech
POMS Profile of Mood States
RBM Restricted Boltzmann Machine
RDF Resource Description Framework
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RSS1 Really Simple Syndication
RSS2 Residual Sum of Squares
SGD Stochastic Gradient Descent
SVM Support Vector Machines
SWF Sovereign Wealth Funds
TF-IDF Term Frequency-Inverse Document Frequency
TRBC Thomson Reuters Business Classification
URL Uniform Resource Locator
VW Value-Weighted Portfolio
WNA WordNet-Affect
XBRL eXtensible Business Reporting Language



Symbols

a financial asset
b bias (perceptron)
C capital amount
C clustering centroid
D a document or dimension
E expectation
E edge (graphical model)
F function approximator
G Gaussian function
I identity matrix
I conditional frequency
� loss function
L lag operator
L sentiment lexicon
M iteration times
O time complexity
P asset mentioning matrix
Q subjective expected returns
r probability distribution for returns
R asset return
R the set of real numbers
s cosine similarity
S semantic linkage matrix
S sentiment information
T a tree or a record in training dataset
U neural network parameters
v trading volume
V a vine structure
w portfolio weights of asset
w∗ optimized portfolio weights
W state transition matrix

xxi



xxii Symbols

x a word or a concept
X explanatory variable
y sentiment label
Y response variable
Z the set of integers
α system performance
β volatility measure
γ polarity score
δ risk aversion indicator
ε white noise
ζ heuristic search range
η desired system performance
θ threshold
μ expected asset return
π asset price
� semantic partial correlation
℘ semantic partial correlation matrix
Π equilibrium risk premium
ρ partial correlation
σij covariance between two assets
Σ covariance matrix
τ confidence level of CAPM
φ autoregressive coefficients
ψ augmented regression coefficients
Ω view confidence matrix



Chapter 1
Introduction

All models are wrong, but some are useful.
— George E. P. Box

Abstract This introductory chapter revisits the historical progress of financial
news analytics. In particular, the chapter emphasizes the importance and necessity
of having asset allocation models for automatic asset management, superseding
the first wave of predicting individual asset prices. We explain the development
stages of natural language-based financial forecasting and summarize the scientific
contributions of this book. Our extension brings new features to the current asset
allocation models, such as transparency, flexibility, and robustness. The organization
of chapters is provided as a roadmap at the end.

Keywords Artificial intelligence · Natural language based financial forecasting ·
Fin-tech · Asset management · Sentiment analysis

The recent boom of artificial intelligence (AI) has influenced many other fields,
revolutionized the modes of thinking, and created interdisciplinary areas such as
computational finance, contract review, and e-health. Stock market prediction is
probably the most intriguing part of finance that draws comprehensive attention.
Although many people simply define it as a classification or regression problem and
build the model to predict prices from scratch, there has already been a number of
theories and results on stock returns in the past decades [54, 108, 112]. It would be a
pity to overlook those results, and the most straightforward approach can sometimes
be naïve. For instance, since it is impossible to predict future prices with a very high
accuracy from a very noisy background, it remains unclear how to compare two
methods with different levels of risk. Moreover, practitioners are faced with multiple
assets and instruments in the market. The price prediction paradigm also never
elaborates how to incorporate multiple forecasting outcomes and decide holding
positions. The asset allocation paradigm, therefore, is more powerful for market
modeling.
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2 1 Introduction

This book focuses on the asset allocation problem and aims to address a
central question: how to leverage natural language processing (NLP) techniques
to strengthen asset allocation models. We call this process textual knowledge
integration, because it concerns an ecosystem comprising not only text mining
but also curating and updating of knowledge. In this chapter, we first provide the
background of natural language based financial forecasting (NLFF) [190] and our
motivation for paying special attention to the asset allocation problem. Furthermore,
we explain the goals of this book. Finally, we summarize our scientific contributions
and describe the structure of the book.

1.1 Background and Motivation

Computer usage in finance industries has a longer history than many people would
imagine. In the early 1950s, IBM began manufacturing proof machines that help
with process automation.1 Afterward, investment science also automated some of
its numerical computation. However, the idea of using a computer to process human
language was limited to academia for many years. Although reading and utilizing
textual data to improve our understanding of the financial market dynamics has long
been the tradition of trading practice, there were prevailing doubts on whether this
professional practice can be automated, e.g., the Turing test [173].

Approaches that try to dispense with natural languages were developed by
econometricians parallel to expert analysis. Numerical financial data are more
accessible, because they are carefully curated since the establishment of financial
markets. However, this resource is exhausting faster than many people imagined.
Interestingly, apart from econometricians’ increasingly complicated pattern mining
models, market prediction that solely explores historical data seems more and more
difficult. According to the analysis of [137] using the Hurst exponent,2 the correla-
tion between Dow Jones daily returns and its historical data receded from the 1990s.
This result casts a shadow on the effectiveness of a group of autoregressive models.

Looking back at the nonnumerical data, the growing volume of financial reports,
press releases, and news articles again galvanizes the wish to run the investment
analysis automatically to keep a competitive business advantage. The earliest
attempts to import other predictors employed discourse analysis techniques devel-
oped from linguistics [61] and naïve statistical methods such as word-spotting [23].
However, many challenges are unsolved at that time for the idea of automatically
analyzing textual information. For example, the most popular way of representing
sentences and paragraphs was bag-of-words (BOW), which may not be adequate to
the task of comprehensive or deep understanding because the context information

1http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/bankauto
2The Hurst exponent is an index of long-range dependence that measures the rate at which the
autocorrelations of the time series decrease as the lag between pairs of values increases.

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/bankauto
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get lost; the paradigm of knowledge engineering research also bounds the focus on
a small portion of highly structured texts, while financial texts cover much broader
topics. The construction of domain ontologies or semantic networks relies on very
reliable and noise-free materials, for this reason, information about corporations
from Internet Stock Message Boards and forum discussions [3] (recently often
referred as “alternative information sources”) were seldom considered.

In the first decade of the twenty-first century, the standard financial news
analyzing system usually involved a mixed collection of news articles and stock
quotes, as described in [148]. News articles are represented with their concatenated
statistical feature vectors, for instance, word frequencies together with a one-hot
representation of key noun phrases and name entities. Popular machine learning
algorithms at that time, usually Support Vector Machines (SVM) [62] or evolution-
ary heuristics [22], are applied to blend the vector feature together with numerical
data, to predict stock movements.

From 2010 onward comes the big data era. Social media websites such as
Twitter, Facebook, and professional platforms such as StockTwits, eToro, etc.
have generated an exponentially increasing amount of user content. The news
analytics community once developed a special interest in mining this real-time
information for mass opinions. Numerous papers especially pore over Twitter
contents because of the relatively simple semantics conveyed in a restricted 140
character length [19, 154, 181]. Besides of the enrichment in different types of text
sources, in this stage, more sophisticated NLP techniques are proposed. Sentiment
analysis resources, such as Opinion Lexicon [76], are proposed; topic model [15]
is used to discover both aspect and the related sentiment [122]. Machine Learning
methods and knowledge-based techniques are simultaneously used for sentiment
analysis as a core component. Neural networks, including a myriad of deep learning
variants like convolutional neural networks (CNN) [49], restricted Boltzmann
machines (RBM) [198], long short-term memory (LSTM) networks [94], etc., are
experimented with prediction algorithms. Sometimes these models are also applied
together with classic time series models such as autoregressive integrated moving
average models (ARIMA) [99, 199].

Stepping back for a holistic view, we are at the dawn of the semantics curve
of NLP technologies [30]. NLP systems start to approach human understanding
accuracy at the sentence level. For instance, on categorical classification tasks such
as distinguishing positive and negative sentences and choosing the best answer
for reading comprehension, AI has achieved human-level performance. Processing
more complex sense groups on a larger scale is becoming promising. On the
other hand, although many text mining techniques have been experimented with
NLFF, most of the studies still regard financial assets as discrete, independent, and
broken pieces. Just like the performance of NLP systems is fueled by the increasing
capability to understand concepts, contexts, progression, and opposition, NLFF is
empowered by mastering the relationship between different assets. Finally, with
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Fig. 1.1 Evolution of NLP techniques and NLFF waves

more peripheral knowledge, an artificial fin-tech expert would help clients with their
lifelong financial plans, customize investment portfolios3, and control risk (Fig. 1.1).

3Investment Portfolios refer to any combination of financial assets such as different stocks, bonds,
cash, etc.
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Our motivation is to automate the asset allocation process and to better under-
stand what is going on when people make investment decisions. The current practice
of analyzing fundamentals of specific companies can be dull and overwhelmed by
the huge amount of information, while the underlying decision process remains in
the dark. We have special interests in the following research questions. Are the posts
people share on social media really consistent with what they think, especially on
financial topics? Are the market prices driven by dominant opinions agreed to by
the majority, or does truth always rest with the minority? What is the mechanism of
interactions between market participants’ opinions and their behaviors?

Asset allocation models are developed upon hypotheses, e.g., investors’ risk
tolerance is knowable a priori, and latent variables such as expected returns of
assets do exist. However, little agreement has been achieved on how to estimate
these variables. Most of the existing approaches employ past observations of these
variables as the source of information, though detailed statistical method varies.
As is known to many, the stock prices are non-stationary, and very volatile across
time. The estimation of expected returns therefore is very sensitive to the choice of
time span. Similar difficulties exist for estimation of correlations between different
assets. People realize that relying solely on historical data is not a good idea. Besides
behavioral finance, another way to explore these variables is via social experiments,
which were considered expensive and impracticable in the past. Thanks to the advent
of Web 2.0, large survey and opinion mining such as using the Amazon Mechanical
Turk is becoming possible. We know the individuals in financial markets better
than almost any time in history. This subsequently brings us new visions on how
to allocate financial assets.

1.2 Objectives and Specifications

The research described in this book aims to provide an overview of the current
approaches to text mining for financial forecasting—how financial indicators are
formed and integrated to the operations that investors can take. In concrete terms,
we investigate new perspectives to extend the current framework of asset allocation
by rethinking asset expected returns (μ) and asset correlations (Σ).

More specifically, inspired by Bayesian asset allocation theories [4] and the
Black-Litterman model [72], we extend the scalar representation of asset expected
returns to a probabilistic distribution characterized by two parameters. As a result,
the expected returns are accompanied by their confidence levels. This distribution
is decided by fusing both the estimation from historical data and a subjective
distribution inferred from the sentiment of market participants. Sentic computing
methods are applied to analyze the user content from social media. This process
provides the transparency required by most of the financial applications and enables
quality assessment of the sentiment data stream.

Another extension we made is on the robust estimation of asset correlations.
Instead of the historical price data, we use business descriptions to model the
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Fig. 1.2 Rethinking asset expected returns and asset correlations with two extensions

relation between company pairs. The target strength of linkage is estimated by
similarities of various semantic representations of textual descriptions, which is less
temporal-variant. A vine dependence structure is introduced to allow robustness of
high-dimensional matrix estimation. This also saves computing power, because the
traditional sliding window approach requires updates of correlation estimations for
each time step of allocation. Figure 1.2 illustrates the two extensions.

Finally, the effectiveness of these two extensions depends on the hypothesis
that NLP methods employed can capture the financial information as well as
language nuance accurately. This cannot be achieved without domain-specific
linguistic resources and tools. We investigated an algorithm to adapt general domain
sentiment lexicon for the finance domain. This resource could be later applied to
both aforementioned extensions.

1.3 Scientific Contributions

One of the main contributions of this book is blending scientific theories of asset
returns and risks with the rapid development of NLP. Both communities will benefit
from this research for it fills the gap between two narratives. Practitioners will find
a more systematic guidance to apply sentiment analysis, name entity recognition
(NER), and natural language representation for financial forecasting as the scope of
computer-assisted asset management expands. Other contributions of this book are:
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• The book rejuvenates knowledge-based approaches to asset allocation and
portfolio management.

• Formalization of a Bayesian asset return estimator that incorporates mass
opinion, linking sentiment and its adjustment to asset returns.

• Conceptualization of a semantic vine for financial assets, robust estimation of
stock correlations based on a semantic vine.

• Proposal of a supervised algorithm that adapts sentiment lexicons to the target
corpus domain, with potential financial applications.

• Extensive experiments and real-world applications to validate the efficacy of the
above three contributions.

• Collection of textual financial data, including the over 80 MB Stocktwits R©
data stream spanning around 1 year (with user labeling), and over 50 business
description articles from professional information vendors on major US stocks.

The remainder of this book is structured as follows. Chapter 2 is a retrospective
chapter that surveys the text mining approaches and measurement people used
for stock market prediction. The majority of them come from the computer
science community and, therefore, belong to the first paradigm of NLFF waves.
Preliminaries about asset allocation models are introduced as well. Chapter 3
discusses three different models of language structures and provides examples of
leveraging semantics and sentiment in financial applications. Chapter 4 explains the
recent advances in computational semantic representation of words and documents
and how this representation could actually be used to construct a vine dependence
structure for robust estimation of a covariance matrix of asset returns. Chapter 5
investigates the relation between market sentiment and the expected value of asset
returns. The sentiment time series calculated from social media data streams are
incorporated into the market sentiment views. Chapter 6 discusses storage form and
update mechanism of semantic and sentiment knowledge. A sentiment adaptation
algorithm is introduced to leverage user labels of sentiment from social media
posts. Chapter 7 elaborates the key AI techniques that support the automation of
the financial advisory process. Chapter 8 is a conclusive chapter that also includes
limitations and future work. See Fig. 1.3 for the roadmap of this book. Finally,
Appendices A and B provide some more details of the dataset used in this research
and the data acquisition method.

The results and algorithms developed in this book have a direct impact on
the asset allocation models and wealth management theories. Conventionally,
quantitative method application is limited in this last fortress of finance as lots
of uncertainties are involved, and customization is required to reflect investors’
preference. By considering the shared knowledge and interaction with the virtual
market participants, our framework shows several approaches that consistently
improve the classic Markowitz’s model and the state-of-the-art Black-Litterman
model [72]. The book may have potential impacts on relevant fields of research,
including NLP, machine learning, and econometric models. Researchers may realize
the emergence of NLP techniques involved and advocate them for more application
scenarios such as biomedical analysis, e-health, and education. These techniques are
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Fig. 1.3 The organization diagram of this book

representation learning, interpretable sentiment analysis, and domain adaptation.
The book also leaves more questions unanswered, for instance, the theoretical
aspect of ECM-LSTM, or more generally recurrent neural networks with filtering,
is less explored. The machine learning community may find this type of network
interesting, in spite of the famous attention mechanism [6]. Econometric models
may also get inspiration by thinking about more complex nonlinear operations and
stochastic optimization techniques rather than closed solutions.



Chapter 2
Literature Review and Preliminaries

Novelty emerges only with difficulty, manifested by resistance,
against a background provided by expectation.

— Thomas Kuhn

Abstract This chapter reviews the text mining approaches employed and the prob-
lem formalization of stock market prediction by previous studies. A fine-grained
categorization of text source is provided. The basic concepts and preliminaries of
asset returns and portfolio optimization techniques are given in this chapter as well.
The Markowitz model and the Black-Litterman model are the roots that connect
financial variables with semantic modeling and sentiment analysis.

Keywords Stock market prediction · Text mining · Trading strategies · The
Markowitz model · The Black-Litterman model

Creating an AI system equipped with investment guidelines and financial knowledge
is not building castles in the air. We dedicate these ideas to the lost pearls [38, 171]
that were never recognized as the mainstream in history. As the community
appreciates data-intensive approaches more in recent days, it is even harder to realize
the intellectual value of those early studies. Half a century ago, Clarkson [38]
conjectured investment policies based on modeling of risk aversion of trust fund
managers, and in fact, if they can really judge stock growth and income correctly, the
chosen stock list would be at “the efficient frontier”. The expert system (K-FOLIO)
proposed by Trippi and Lee [171] is a good extension of the Markowitz model if
the company grades integrated from its rulesets well-reflect the stock returns. If we
have stepped further, it is by leveraging the flourish of opinion mining techniques
and the wisdom of crowds.
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2.1 Text Mining for Stock Market Prediction

2.1.1 Text Source and Preprocessing

It has been noticed that there is a very diversified continuum of text sources from
commercial to public, and the format, content, and authority can be systematically
different. In a previous review article [190], we categorized the financial texts into
six main groups according to three criteria: length of the texts, subjectivity level,
and how frequently are they updated. The categories are listed below and examples
are shown in Table 2.1.

Table 2.1 Financial texts from different sources and examples. (Partially adapted from [190])

Type Characters Example

Corporate
disclosures

Long length, Subjective
tone, Low frequency

Apple quarter reports: The company posted quarterly
revenue of $84.3 billion, a decline of 5 percent from
the year-ago quarter, and quarterly earnings per
diluted share of $4.18, up to 7.5 percent. . . . . . .“While
it was disappointing to miss our revenue guidance, we
manage Apple for the long term, and this quarter’s
results demonstrate that the underlying strength of our
business runs deep and wide,” said Tim Cook,
Apple’s CEO. . . . . .

Financial
reports

Long length, Objective
tone, Low frequency

Quamnet portal: Gold prices went through a week of
uncertainty due to mixed economic data. First there
were weak retail sales data, which led gold prices to
surge, yet investors remained uncertain how the data
will affect the upcoming decision of the Federal
Reserve. . . . . .

Professional
periodicals

Variable length,
Objective tone, Mid
frequency

Financial times: US consumers start to pay price of
trade war with China. Economists fear households,
and retailers face mounting burden as prospect of
rising tariffs mounts. . . . . .

Aggregated
news

Mid length, Variable
tone, Variable frequency

Yahoo! Finance: Tesla Inc. said on Thursday that it
would roll out a software update to protect batteries
while it conducts an investigation into incidents in
which its vehicles caught fire. In a statement, Tesla
said the software update will revise charge and
thermal management settings on the company’s
Model S and Model X vehicles. . . . . . .

Message
boards

Short length, Objective
tone, High frequency

Amazon’s board: The fact is. . . . . . The value of the
company increases because the leader (Bezos) is
identified as a commodity with a vision for what the
future may hold. He will now be a public figure until
the day he dies. That is value

Social media Short length, Subjective
tone, High frequency

Twitter: Big turnaround in #AAPL, it is now over the
190 level up to 4 pts from morning lows
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• Corporate disclosures are first-hand, reliable channels that the companies directly
use to announce new information. The relation between price movement and
corporate releases is self-reinforced as derived news relies on these materials.
However, due to the lengthy nature and their relatively complicated structure,
only a few studies managed to exploit this kind of source automatically with
mixed news data. For example, Groth and Muntermann [68] investigate a
collection of corporate disclosures required by the German security regulations.

• Financial reports are often written by market research institutions. Financial
reports can have similar format as the corporate disclosures, but the content is
more independent, reorganized according to themes, and verified by a third party.
It is considered hard to maintain a balanced source of financial reports because
they have to be individually accessed and have different standpoints. However,
some research can still leverage financial reports because of their rigorous logic
and high quality [32].

• Professional periodicals are the issued press of media companies printed regu-
larly that have a special authority in finance, like The Wall Street Journal (WSJ),
Financial Times [187], Dow Jones News Services (DJNS), Thomson Reuters [62],
Bloomberg [49], and Forbes [140], to name a few. Most studies that we surveyed
mix several from the abovementioned sources.

• Aggregated news, unlike professional periodicals which produce their own
content, is a service that simply gathers the information from various professional
periodicals. News Wire Services or news feeds (RSS) also belong to aggregated
news. Some representative sources are Yahoo! Finance [88, 123, 148], Google
Finance, and Thomson Reuter Eikon, which was formerly known as the product
“TR3000 Extra” [62].

• Message boards are places that hold and store discussions like a forum. There
is a directory of different topics, and market participants express their opinion
under certain sections. Raging Bull [3], Yahoo’s message board, and Amazon’s
message board [42] are message boards mentioned in the literature.

• Social media is an emerging and fast-developing source from which financial
news and events can also be extracted. The majority of studies paid their attention
to Twitter [19, 124, 154]: the econ-political influence of this platform becomes
clearer as the US president starts to use it often. Another tool to monitor social
media is Google Trend, for which further natural language processing is not
required to obtain a time series with the help of a search engine [35]. Generally,
social media is noisy and covers the general domain. Hence for practical use, one
needs to filter the data by a list of financially related keywords. The advantage
of social media content is that they can be used to monitor real-time information
outbursts, though users need to bear the risk that their access may be deprecated.

The production process of the news also naturally brings about repetition and
conflicts among different text sources; therefore, choosing the correct match for
the task to be completed is vital for its success. Table 2.2 summarizes the specific
information on what kinds of text sources are investigated and the way they are
processed for previous studies in chronological order. We can observe that from
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Table 2.2 Type of financial texts leveraged and how are they processed. (Partially adapted
from [190])

Reference Text type Processing

Wuthrich et al. [187] Professional periodicals Manually crafted keyword tuples
spotting

Lavrenko et al. [88] Aggregated news Alignment with trends

Fung et al. [62] Professional periodical Alignment with other stocks

Antweiler and Frank [3] Message board Naïve Bayes classifier

Das and Chen [42] Message boards Manually crafted sentiment lexicon

Tetlock et al. [168] Professional periodical Bag-of-negative-words

Schumaker and Chen [148] Aggregated news Bag-of-words, name entities, noun
phrases

Bollen et al. [19] Social media Sentiment classification tool

Chan and Franklin [32] Financial reports Semantic class, instance-attribute pair

Groth and Muntermann [68] Corporate disclosures Risk model & indicator

Ruiz et al. [143] Social media Graph representation

Schumaker et al. [149] Aggregated news Pos/Neg & Sub/Obj classification

Si et al. [154] Social media Dirichlet processes mixture model

Si et al.[155] Social media Semantic stock network

Li et al. [96] Mixed type Emotion word dictionary

Ding et al. [49] Professional periodicals Neural tensor network (NTN)

Nofer and Hinz [124] Social media Sentiment classification tool

Nguyen et al. [123] Message board Latent Dirichlet allocation (LDA)

Yoshihara et al. [198] Aggregated news Recurrent neural network, RBMs

the starting point of this research field, professional periodicals are regarded as
an important and primary text source. In preprocessing stages, filtering text source
with a list of keywords or hashtags to a domain-specific or even company-specific
materials rather than making use of the dataset as a whole with noise is a common
practice. A more radical preprocessing in the case of “bag-of-negative-words”
uses only negative keywords based on the belief that negative sentiment is more
important in the context of financial forecasting.

Only in the past 5 years has the community started to gain increasing interest
in social media. And because information disseminates at the second level, the
data collected usually contain hundreds of thousands of messages. In such a
circumstance, machine learning techniques are considered more often to output a
sentiment index or summarization of the gist.

Processing or preprocessing of textual data is the procedure of preparing a well-
formatted input. This input can be directly taken by a predictive model, which makes
forecasts by running algorithms on the input. We roughly divided the popular text
processing techniques into three groups.

The first group uses one-hot representation of keywords, keyword tuples, multi-
word expressions, sentiment words, or more advanced statistics of them. Take
market sentiment as an example; the percentage of positive mood on all relevant
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word occurrences (sum of positive and negative mood states) is defined as “Social
Mood Index (SMI)” by Nofer and Hinz [124]:

SMI = Positive Mood

Grief +Hopelessness+T iredness+Anger+Positive Mood
.

(2.1)
Zhang and Skiena [201] defined sentiment polarity as:

Polarity = positive count − negative count

positive count + negative count
. (2.2)

Similarly, a daily weighted mood word density time series in postings is defined as
the optimism-pessimism mood scores (M+

s and M−
s ) by Li et al. [96].

The second group contains input formats suitable for specific machine learning
algorithms, for instance, word embeddings [49], or probability distributions of
that price moving up, moving down, or keeping steady condition on different
words [3]. Yoshihara et al. [198] used a standard bag-of-words (BOW) model to
represent the news articles. Although the temporal information of the articles are
still preserved by utilizing a combination of recurrent neural network (RNN) and a
restricted Boltzmann machine, the article representations obtained from the training
phase were later incorporated to tune deep belief networks (DBN) that output the
probability of an uptrend or a downtrend. The third group emphasizes to gather
the alignments from texts to different trend motifs [88], triggers for related stocks,
or simply the directional categories without further semantic or sentiment analysis
of these alignments. In other words, this third group abandons the meaning of
input format, and thus the learned model is similar to association rules between
representations and the desired actions.

The text sources may not be always available for analysis. Although there
had been multiple XML-format text sources distributed by the major financial
information companies such as the Thomson Reuters News Feed Direct, Dow Jones
Elementized News Feed, NASDAQ OMX Event-Driven Analytics, and Bloomberg
Event-Driven Trading Feed. Probably affected by some commercial considerations,
all these text data are no longer available as products. Instead, the raw data are
transformed to more compressed formats, mostly from content vendors, that directly
provide the processed sentiment data as a service. The most recently released
products include Thomson Reuters MarketPsych Indices (TRMI),1 RavenPack
News Analytics, (RPNA)2 PsychSignal,3 YUKKA Trend,4 TITAN5, and so forth.
The flagship product TRMI claims to cover a diversified range of text sources from

1http://https://www.marketpsych.com/
2http://https://www.ravenpack.com/page/ravenpack-news-analytics/
3http://psychsignal.com/
4http://www.yukkalab.com/yukkalab-news-trend/
5http://www.accern.com/

http://https://www.marketpsych.com/
http://https://www.ravenpack.com/page/ravenpack-news-analytics/
http://psychsignal.com/
http://www.yukkalab.com/yukkalab-news-trend/
http://www.accern.com/
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personal blogs to those major social media sites. However, the detailed data source
list and how the texts are actually processed are not revealed. The similar situation
goes for most of the commercial products mentioned above. Uhl [175] examined
the correlation between the Thomson Reuters datastream and the corresponding
stock returns qualitatively, but except for this, few studies attempted to evaluate
the accuracy of these sentiment data.

2.1.2 Investigated Algorithms

In the past decades, linear regression and SVM have been classic yet dominant
predictive models. Regression models are particularly preferred by econometricians
because the model coefficients can be explicitly interpreted as the impact or
elasticity of each factor included, and statistical tests are easy by comparing the
current model with its alternatives by dropping out each variable. SVM is based
on the sound Vapnik-Chervonenkis theory and has a key advantage that the support
vectors which determine the hyperplane can be well-observed. Therefore, according
to the recent survey by Kumar and Ravi [86], 70% of previous studies have
adopted “regular” methods (decision trees, SVMs, etc.) and regression analysis.
Our investigation roughly reconfirms this finding. Taking into account the nature
of sparse, noisy, and unstructured financial data, excessively complicated models
generally have a poor performance. However, one challenge in calibrating linear
models is that they rely on strong hypotheses, for example, that errors are Gaussian
and independently distributed. However, those hypotheses usually do not stand
up for real-world problems. In spite of this, there are efforts to estimate some
singular distributions that violate the strong hypotheses [9, 139, 166]; the outcome
model is thus often bound to problems and cannot be generalized to different
financial indicators. As beneficial supplementaries, neural network models and
other statistical learning methods, such as Bayesian networks, are also prevalently
experimented with.

In most of the studies, the features generated from the texts are not the only
source of input. In fact, the features are combined with the numerical data,
e.g., historical prices, to form an input datastream with richer information for
prediction. In such cases, an ensemble method is required to fuse multiple models
either on a feature level or a decision level. We are at a very primary stage to
answer the question as to what category of algorithms is exclusively appropriate for
the task of natural language-based financial forecasting [86]. Nevertheless, we can
put popular algorithms of such kind into four categories: regressions, probabilistic
inferences, neural networks and deep learning, or a hybrid of them.

Regression models have their special advantages in impact analysis. When the
causality is clear, a linear regression can be enough and directly used with ordinary
least square (OLS) or iteratively reweighted least squares (IRLS) to estimate
coefficients [120]. Tetlock et al. [168], for instance, use a linear regression model
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to illustrate that appearance of negative words in firm-specific news stories robustly
predicts slightly lower returns on the following trading day. If we only consider
prediction of directional market movements but not the intensity, the regression
problem degenerates to a classification problem. SVM can naturally serve as a
binary classifier and structured SVM for multiclass classification. Numerous pioneer
studies indeed consider financial forecasting, or to be more specific, stock market
prediction as a classification task. Support Vector Regression (SVR) [96, 148] is
proposed to make discrete forecasting. Inspired by the idea that the empirical risk
minimization objective can be used to build a regression model as well, SVR has the
best from both SVM and linear regression. The hyperplane for SVR is also solved
by deriving support vectors from the training data with a sensitivity threshold. A
SVM calculates hinge loss for each wrongly classified data point. Unlike SVM,
SVR gives more weight to data far away from the classification hyperplane due to
the fact that this type of error would cause a huge loss in practice. Those data points
close to the epsilon margin are not penalized. One drawback of SVR, however, is the
requirement of introducing a kernel to project the training data into a linear separable
higher dimension and an extra threshold parameter. These hyperparameters are
often manually selected according to the features of data or without many fixed
reasons. For instance, in the AZFinText system [148], the best performing SVR
model combines both news articles terms (binary coded) and the baseline stock
price, which is per se not linearly separable.

From many species of neural networks, Bollen et al. [19] select a self-organizing
fuzzy neural network (SOFNN). The model is specially suitable for time series
forecasting and regression problems. Compared to other fuzzy neural network
(FNN) models, such as the most widely applied adaptive neuro-fuzzy inference
system (ANFIS), SOFNN is faster due to its settings of how new membership
function will be added. The topological structure of SOFNN is not different from
other common fuzzy neural networks. However, the learning process is different
and divided into two phases: structure learning and parameter learning. That is,
in the first phase which is called “self-organizing learning,” the number of fuzzy
rules is fixed. After the establishment of neural network structure, the second phase
only adjusts weight parameters of neurons, which is called “optimization-learning.”
Following the ideas of [148], Bollen et al. [19] simultaneously set the lagged Dow
Jones Industrial Average (DJIA) value and generalized POMS (GPOMS) as two
inputs of a SOFNN model. The output is a prediction of the current value of DJIA.
Along with the recent advances in deep learning, neural networks can also be used
to model the relationship between two entities by introducing an additional tensor to
the entities. This modification increases the expressive power for text data. Ding et
al. [49], for example, used a neural tensor network (NTN) to train event embeddings,
which contains much more information than article terms and keywords. Later, a
sequence of event embeddings with different time spans are fed into a convolutional
neural network (CNN). The CNN model outputs a binary prediction of whether the
stock price will move up or move down.
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2.1.3 Assessment and Performance Measurement

Text mining for stock market prediction can be assessed indirectly through the
reduced error in predicting (directional) price movement, the future prices [19, 148],
or directly through a trading simulation [96, 143]. Error measures include precision,
recall, F-score, and accuracy for binary or ternary classification and MAPE,
GMRAE, RMSE, MASE, and DNME for forecast error [79, 172, 190]. However,
it is difficult to know in the latter assessment whether the effectiveness should be
attributed to trading strategy or text mining, given the fact that every research uses
a slightly different trading strategy. Table 2.3 lists measurement and performance of
previous studies. Note that some of them focus on descriptive research and do not
provide any trading strategy.

For the rest of the studies, literature reported at least two threads of popular while
unsophisticated trading strategies:

• Buy up/sell down: this strategy models the behavior of an investor. With daily
rebalancing or other frequencies, the investor buys the stocks that will perform
well according to his prediction or sell the stocks that will perform badly. Taking
buy up as an example, the investor sells all the stocks at the closing time and
holds the capital for the next round of investment. When the investor has multiple
predictions, he will first calculate and rank the return ratio of stocks, and uniform
split, or weight the “best-n” stocks. Ruiz et al. [143] used a very simple heuristic
for the bin packing problem, which defines the weight for a stock as price
difference over open price. The vague part is that why inferior stocks are still
selected to diversify the portfolio.

• Short-term reversal: this strategy leverages the phenomenon that stocks with
relatively low returns over the last period tend to earn positive abnormal returns
in the following time period. Instead of relying on the prediction of future
prices, the strategy focuses on nowcasting observations. For instance, if the
sentiment for a specific stock is very pessimistic and returns are low at time
t , the investor’s nowcasting is that at time t + 1 the returns would “reverse.”
Consequently, the investor would like to buy in this stock at time t and hold long
position through time t + 1 and vice versa [41]. Although critics argue against
the hypothesis that reversal strategies require frequent trading and rebalancing in
disproportionately high-cost securities, this strategy remains famous. In practice,
though, stocks with relatively low returns over the last period are hard to trade
and can have liquidity problems. So the strategy could lead to a situation that
trading costs are higher than the normal standard and prevent profitable strategy
execution. Lavrenko et al. [88] and Ding et al. [49] specified it as a timing
practice. This makes it almost impossible for any theoretical analysis because the
strategy executions will depend on the price trajectory. It seems that positions are
completely determined by thresholds (hyperparameters). If we remove the timing
mechanism, the strategy becomes very naïve and has some defects, e.g., assuming
the investor can borrow an infinite amount of capital.
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Table 2.3 Results achieved and reported using different measurements. (Partially adapted
from [190])

Reference Measurement & performance Trading strategy

Wuthrich et al.
[187]

Direction accuracy of five main indices, around
50%

Buy up/sell down,
rebalancing daily

Lavrenko et al. [88] Trading simulation of 127 stocks, average gain
per transaction 0.23%

Short-term reversal,
rebalancing hourly

Fung et al. [62] Trading simulation of 33 stocks, cumulative profit
6.55%

Buy up/sell down,
rebalancing daily

Antweiler and
Frank [3]

Statistical testing for correlation with DJIA &
DJII, significant predictor

Not mentioned

Das and Chen [42] Statistical testing for correlation with MSH-35,
correlation is weak

Not mentioned

Schumaker and
Chen [148]

Closeness, direction accuracy, trading simulation,
MSE 0.04261, Acc 57%, Return 2.06%

Not mentioned

Bollen et al. [19] Closeness, direction accuracy for DJIA, MAPE
reduction by 6%

Not mentioned

Chan and
Franklin [32]

Even sequence correct accuracy, significant
improvement (>7%)

Not mentioned

Groth and
Muntermann [68]

Accuracy, precision, recall, option simulation,
Acc 70%, p 47%, r 70%, many false positive

Not mentioned

Ruiz et al. [143] Trading simulation on a 10-company portfolio,
return of 0.32%

Buy up/sell down,
rebalancing daily

Schumaker et al.
[149]

Direction accuracy & trading simulation, Acc
59%, Return 3.30% (sub. news only)

Triggered short-term
reversal

Si et al. [154] Direction accuracy of S&P100 index, 68.0% Not mentioned

Si et al. [155] Direction accuracy on $AAPL, 78.0% Not mentioned

Li et al. [96] Closeness, direction accuracy, trading simulation,
RMSE 0.63, Acc 54.21%, est. Return 4%

Short-term reversal

Ding et al. [49] Direction accuracy, trading simulation, Acc
65.08%, Avg. Profit Ratio 1.679

Short-term reversal

Nofer and
Hinz [124]

Statistic testing for correlation with DAX, trading
simulation, AROR 84.96%

Buy up/sell down of
ETF

Nguyen et al. [123] Direction accuracy, Acc 54.41% Not mentioned

Yoshihara et al.
[198]

Direction accuracy, trading simulation, improved
error rates and profit gain compared to SVM

Buy/sell at MACD
turning point

These deficiencies impede comparing different approaches and more severely
leave the accordingly constructed portfolios far from state of the art. Therefore, we
propose to take a serious look at asset allocation models, which is an elephant in the
room for stock market prediction in the wild. This paradigm shift from considering
a single stock to managing many assets also helps to better understand properties of
financial variables, which are more or less absent in the current paradigm of stock
market prediction in computer science.
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2.2 Asset Management

When talking about asset management, and even in the more specific context of
financial asset management, there are many aspects to consider such as who is the
asset owner, what is his/her objectives, and the accessibility to investment tools.
Different asset owners, from Sovereign Wealth Funds (SWF) to trustees, university
endowment, and individuals, have diversified level of tolerance to take risk. And
exposure to (good) risk is actually the only way to be rewarded certain type of
premiums. In different phases of a life cycle, asset owners’ objective may change
to meet the current needs: exploring opportunities or preparing for retirement. So
it might be a bit oversimplified to stop at asset classes level—abstract the average
expected returns and risk, and pass them to a calculator. At a practical level, one will
also have to face asset liquidity problems, principal-agent problem in delegation,
and make tax-efficient arrangements. Ang [2] provided a comprehensive discussion
of these topics. In terms of intelligent asset management, these factors should all be
naturally collected and considered.

There are at least three popular types of objectives for asset management:

• To meet requirements from the client, for instance, achieving certain levels of
return. This objective can be formulated as a “goal programming” problem, and
it is how artificial intelligence and operations researchers understand the purpose
of asset management in the early days of the last century [90].

• To mitigate risk and generate return: this is the most widely acclaimed objective,
especially after Markowitz developed the core idea of the modern portfolio
theory (MPT). Though many issues arguably arise, such as misalignments
between the incentives of the industry and its ultimate clients, short-termism [71],
increased frictional cost, and the paradox of growing correlation between assets.

• To provide sustainable financial solutions, which is a combination of many
personalized factors. Some realized the bad externality of thinking of asset
management as a zero-sum game and systematic risk out of control, approaches
that consider environmental and social impacts can eliminate fees and enjoy
the first-mover advantage. This idea moves closer to general asset management;
according to standard ISO 55000, the mixed objective contains political, social,
and legal goals and more.

In the rest of this chapter, our focus will be on the second objective, where the most
sophisticated theories are built.

2.3 Asset Allocation Models

Asset allocation models are rigorously defined implementations that consider not
only stocks but a broader range of financial assets, including cash, fund, treasury
bonds, foreign currency, derivatives, and many other tradable instruments on the
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Fig. 2.1 Different asset allocation strategies

market. When people invest in a single asset, they have concern for two core issues:
what is the expected return for the investment and how big is the risk. When the
investor will have to share out a given amount of (initial) capital to multiple assets
with different expected returns and risks, this problem becomes nontrivial because a
bad combination achieves a lower potential return at a given risk level (see Fig. 2.1,
adapted from [176]). This is because assets have their “idiosyncratic” risk. When
the combination contains diversified and heterogeneous assets, some will zig while
others zag, so to cancel out the overall fluctuation in the combination [71].

2.3.1 The Markowitz Model: Mean-Variance Portfolio

We introduce the widely acknowledged portfolio construction framework named
after Harry Markowitz [108]. Consider a market with N assets. Define the percent-
age return6 of an asset i as the increase in its value divided by its price per share:

Ri = πi, t+1 − πi, t

πi, t

. (2.3)

6Log returns are more frequently used in machine learning; however, percentage return is easier
to understand for the purposes of portfolio optimization and risk management. The two forms are
interconvertible and should be used in different environments.
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Assume Ri is a random variable and its mean μi and variance σ 2
i exist. Assume no

other information is available and the investment is one-period.
If the investor decides to split his/her money to invest on multiple assets, then

overall expected return of his holding will be the weighted average of expected
returns of selected assets:

μpfl = E(Rpfl) =
N∑

i=1

μiwi , (2.4)

where 0 ≤ wi ≤ 1 denotes the holding weights of each asset species i in the
portfolio and μi denotes the expected return on asset i.

The idea of Markowitz’s mean-variance method is that, since the expected return
of a portfolio can be calculated as the mean of its component asset returns, the
overall risk of a portfolio can be thus represented by the variance of portfolio
expected return, which is already known:

σ 2
pfl = var(Rpfl)

= E(Rpfl − μpfl)2

= E[
N∑

i=1

(Ri − μi)wi][
N∑

j=1

(Rj − μj )wj ]

=
N∑

i=1

N∑

j=1

wiσijwj

= w′Σw (2.5)

where σij is the covariance between the returns on asset i and asset j and can be
estimated from multiple observations. The holding weight variable w is a N × 1
vector over the portfolio assets, Σ is a N ×N (symmetric) covariance matrix where
the element at the i-th row and j -th column is σij . It is not difficult to understand
the variance can be used as a simple measure of risk: the more “variable” of Rpfl,
the larger σ 2

pfl is. If the portfolio return Rpfl is certain, its variance is equal to zero,
and so such a portfolio is called “risk-free” [53].

The investor wants to meet two objectives: (1) he wants to maximize the
portfolio expected return, and (2) for a given return level, he wants to minimize
the risk [108]. If we use the variance of portfolio return as a risk metric, we will
have an optimization problem as follows: maximize μpfl − δ

2σ 2
pfl, where δ is an

indicator of risk aversion or tolerance that trades off between the investor’s two
abovementioned objectives. More rigorously, without short selling or borrowing,
the portfolio weights should be nonnegative normalized real numbers:
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max
wi

N∑

i=1

μiwi − δ

2

N∑

i=1

N∑

j=1

wiσijwj (2.6)

s.t.

N∑

i=1

wi = 1, i = 1, 2, . . . , N.

One good property of the optimization problem (2.6) is being quadratic concave
regarding wi . The optimized weights of an efficient portfolio are, therefore, given
by the first-order condition of equation 2.67:

w∗ = (δΣ)−1μ. (2.7)

where μ denotes a N × 1 vector consisting of μi .
If we control the expected return of the whole portfolio to a fixed value e just like

the “goal programming” problem setting, we will obtain sectional portfolio weight
combinations. These combinations meet both the constraint on weight sum and the
constraint on expected return. Under these constraints the optimization problem can
be restated as:

min
wi

w′Σw (2.8)

s.t. 1′w = 1, and μ′w = e.

Figure 2.2 provides an illustration of the constraints visualization with a portfolio
of three assets (see equation 2.8). The green plane denotes the weight constraint,
and the cyan plane shows the expected return constraint. At the intersection of both
planes is a segment, which is the feasible domain. For points on this segment, the
heat map from black (minimum) to white (maximum) denotes the value range of
w′Σw. Note that the Markowitz model requires a positive-definite Σ . This means
σ 2

i is strictly positive and all the assets i = 1, 2, . . . , N are risky. Otherwise, there
must exist some leading principal minor of Σ that is not strictly positive (Sylvester’s
criterion for symmetric real matrices). Actually, the covariance matrix geometrically
defines the slope of planes in Fig. 2.2 and also guarantees the solution (2.7) exists
and is unique [53].

We further illustrate how risk is mitigated with a higher expected return
by diversification of the portfolio. Assume three financial assets with Gaussian
distributed returns: r(a1) ∼ N (0.001, 0.022), r(a2) ∼ N (0.002, 0.052), and
r(a3) ∼ N (0.003, 0.082). Since the covariance of two independent variables is
zero, the covariance matrix has a form of:

7The derivation process is based on applying the method of Lagrange multipliers and Karush-
Kuhn-Tucker conditions.
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Fig. 2.2 A 3-D visualization of the portfolio optimization problem [191]

Σ =
⎡

⎣
0.022 0 0

0 0.052 0
0 0 0.082

⎤

⎦ ,

According to Eqs. 2.4 and 2.5, if we hold a portfolio consisting of 20% of a1, 50%
of a2, and 30% of a3, expected return and variance of the portfolio would be:

μpfl = 20% × 0.001 + 50% × 0.002 + 30% × 0.003 = 0.0021 (2.9)

σ 2
pfl =

3∑

i=1

σ 2
i w2

i = 4% × 0.022 + 25% × 0.052 + 9% × 0.082 = 0.0342. (2.10)

This portfolio is strictly superior to holding only a2 because it has a higher expected
return (0.0021 > 0.002) and a lower risk (0.034 < 0.05). Figure 2.3 exhibits a
simulation result showing the power of diversification.
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Fig. 2.3 The power of portfolio diversification

2.3.2 The Black-Litterman Model: Views on Market

Despite its theoretical elegance, many details have to be specified when applying
Markowitz’s mean-variance approach in real-world cases. For example, if we take
a different number of observations of Ri , the calculated means tends to be signifi-
cantly different. Generally speaking, the two moments of asset returns are extremely
difficult to be estimated accurately from historical stock price series [153], as they
are nonstationary and volatile.

Despite the fact that the Markowitz model suggests non-robust ways to estimate
the expected asset returns and volatilities, the situation can be worsened. Because
the Markowitz model itself is very sensitive to the inputs, that is, the estimated asset
returns and volatilities. If a small error occurred in the estimation of μ or Σ , the final
optimized weights outputs will have very different values, leading to very different
rebalancing decisions. To address this error dispersion limitation of the Markowitz
model, a Bayesian approach was proposed in [14]. The approach integrates the
additional information of investor’s judgment, which is usually from experts in
finance, to the market fundamentals and the priors from the Markowitz model.

Traditional approaches to expected return estimation assume the equilibrium risk
premiums are the same as that in the capital asset pricing model (CAPM). CAPM
states that for certain asset, the expected return is higher because investing on such
an asset is more risky. The model assumes that for one unit of risk, each asset
requires for the same premium when the market is in equilibrium. Therefore, the
equilibrium risk premium for asset i is proportional to the market premium:
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Πi = μi − μf = βi(μmkt − μf ) (2.11)

where μmkt is the market expected return and μf is the risk-free interest rate, usually
taken from the US Treasury Bond. βi measures how volatile asset i is comparing to
the market average. Equation 2.11 reveals that the estimation error in μ is further
passed to Π . Generalized CAPM tackles this problem by allowing asymmetric and
fat-tailed estimator of the return distribution [9], while the Black-Litterman model
directly adjusts the expected return by allowing investor’s subjective opinions.

The posterior expected returns in the Black-Litterman model μBL of the portfolio
are inferred from two antecedents: the equilibrium risk premiums Π of the market
as calculated by CAPM and a set of subjective views on the expected returns from a
professional investor. The Black-Litterman model is based on probabilistic inference
of equilibrium returns. We start with the simple assumption that the equilibrium
returns are normally distributed with a mean equal to the risk premium and a
variance proportional to the portfolio volatility, that is, req ∼ N (Π, τΣ). Note that
Σ is the covariance matrix of asset returns as above elaborated and τ is an indicator
of the confidence level of the CAPM estimation of Π , which links up volatilities of
individual assets. To facilitate easy computation, the market views on the expected
asset returns held by an investor are assumed to be normally distributed as well,
denoted by rviews ∼ N (Q,Ω). We will explain the physical meanings of Q and Ω

in later parts. This assumption helps to induce Gaussian posteriors.
If we denote the posterior distribution of the expected asset returns providing

the CAPM model and the market views by rBL, subsequently, it is mathematically
clear that rBL can also be written as a normal distribution characterized by two
parameters: rBL ∼ N (μBL,ΣBL), where both μBL and ΣBL are dependent on the
aforementioned variables (Fig. 2.4), that is:

[μBL,ΣBL] = F(τ,Σ,Ω,Π,Q). (2.12)

Fig. 2.4 Posterior distribution of expected returns as in the Black-Litterman model
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We provide the analytic solution of Equation 2.12 based on Bayes’ theorem:

pdf (μBL) = pdf (μBL|Π) pdf (Π)

pdf (Π |μBL)
(2.13)

With μBL and ΣBL, the optimized Bayesian portfolio weights according to
the mean-variance optimization framework will be similar to equation 2.7, only
substituting the original variables Σ and μ by their Bayesian counterparts ΣBL

and μBL:

w∗
BL = (δΣBL)−1μBL. (2.14)

The reason why the Black-Litterman model became so popular is that instead
of explicitly giving the probability density function (pdf ) of Bayesian posterior
returns, it provides new interpretations to the probability distribution of expected
returns. Since the distribution has a second-order expectation, understanding those
parameters is not an easy work. By introducing the concept of market views, the
Black-Litterman model describes one of the antecedents in a more natural and
human-understandable manner. Because the views are subjective, this human-model
interface using market views makes life easier for inserting investor’s opinions. The
definitions of market views are elaborated in Chap. 5.

The most common criticism on the Black-Litterman model is the same as what
it extends the Markowitz model: the subjectivity of investor’s views. However,
since expected returns cannot be accurately estimated from historical returns, it
is unfair to attack adjustments on them, which also brings more flexibility. The
problem depends on how to obtain reliable and trustful views, which is the main
topic of Chap. 5. To summarize, the Black-Litterman model makes substantial
improvements on stabilizing the Markowitz model, though its performance heavily
depends on the quality of the subjective market views. The Black-Litterman model
leaves the question of how to resort to the finance experts and actually obtain these
good quality views unanswered. This reality motivates us to think about possible
solutions to automatically extract financial information as well as public mood on
the Internet and form market views from such information.



Chapter 3
Theoretical Underpinnings on Text
Mining

We should look at problems from different aspects, not from just
one.

— Mao Zedong

Abstract This chapter provides multiple perspectives on the structure of natural
language. We try to answer two fascinating questions in this chapter: what kind of
information can we extract from human language, and is the extracted information
sufficient or effective for financial forecasting? Three hierarchical representations
of language and its functions are compared and aligned. We propose a dichotomy
of semantics and sentiment underlying natural language, which is ideally suited for
financial applications and takes into account facts about time. Finally, we present
some examples to show that utilization of natural language in business areas has
inadvertently followed this structure.

Keywords Language structure · Mental representation · Predictability ·
Grammar · Emotion · Financial information

3.1 Language and Its Fabrication

Language is an exclusive channel for human communication. Though some linguists
would dispute, mature language ability is not found in other species. Therefore, the
relation between language and human intelligence is believed to exist. Turing [173]
proposed to judge intelligent behavior by natural language conversations, and today,
NLP is a core subject of AI.

Cognitive science developed many hierarchical models to describe the emergence
of intelligence, which is called the computational theory of mind. For instance,
Pinker [132] discussed four functional aspects of intelligence: perception, reason-
ing, emotion, and society. These aspects comply with a psychological pyramid. The
most fundamental computational intelligence, including memory and calculation,
serves the base of the pyramid; perceptive intelligence, including visual, auditory,
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Fig. 3.1 A hierarchy of various types of knowledge [116]

and tactile reactions serves the second layer; cognitive intelligence, i.e., language,
knowledge, and reasoning, forms the third; and at the top is creativity, self-
consciousness, etc.

The same hierarchical structure also exists inside the mental representations of
language. We enumerate two models. In the first one, Minsky [116] even extends the
strata to biological structures of our brain (Fig. 3.1). He assumes low-level processes
use the forms of connectionist networks. However, this representation become an
obstacle to using high-level ways to think. Consequently, symbolic representations
duplicate at larger scales. In the second model, various mental representations are
connected with one concept, e.g., elk [132]. These representations serve different
purposes and together weave a knowledge graph or an encyclopedia. Figure 3.2 is
a fragment of the encyclopedia and how-to manual we keep in our heads. When
retrieving knowledge about elk, we work at higher levels and would not realize how
the word “elk” is actually printed or pronounced. But when we need to leverage
these resources, e.g., for motion control, attention can fast switch between different
levels of representations.

This perspective of language analysis is so prevalent that many theories of lan-
guage follow the same pattern: from microscopic to macroscopic. Our intuition from
the hierarchical representations of language is that we can extract information from
every layer of the structure. The final formation may have fairly big redundancy,
while that is how our mind works and how language is used.
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Knowledge:
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Fig. 3.2 Hierarchical mental representations of concepts [132]

3.2 Three Ways of Looking at the Structure of Language

3.2.1 Lexicon, Grammar, and Pragmatics

The idea that language is a set of lexicons and, at the same time, a syntactic system
has been proposed even before the inception of NLP. Aligned with this tradition, the
early popular approaches of NLP research as well take a view that emphasizes either
the expressiveness [159] or language rules [37]. Lexicography starts by analyzing
meaning and formation of words. Word is defined as the smallest element that
can be uttered independently with objective or practical meaning, and lexicon is
a collection of words. If we investigate the language acquisition process of very
young children, the primary expressions they learned is “holophrastic.” People say:
“I can’t think of the right word,” but never say “I can’t think of the right prefix” [17].

Word is where most linguists start with semantic analysis. A figurative descrip-
tion of how phrases and sentences are structured is building a house with blocks,
while the construction follows certain rules, which are called “grammar.” For
example, an adjective can precede a noun, but an adverb cannot precede an adverb.
Another example is that a sentence usually has a subject. These syntactic features
also contribute to meanings, that is, two sentences can have the same BOW
representation but different word sequences. Chomsky [37] believes that these rules
are more or less rooted as innate ability of human beings and play an important role
for sentence formation.

Part-of-speech (POS) tags assist identifying grammatical features, so do princi-
pled types for word combination and dependencies. Figure 3.3 shows various types
of grammatical information, including a tree of how a sentence can be decomposed
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Fig. 3.3 Various types of
grammatical information

to a noun and a verb phrase (VP) and a (transitive) verb can take two noun phrase
arguments ((S\NP)/NP). Recent studies, e.g. [93], have attempted continuous one-
dimensional representations that incorporate this kind of structured information
(dependency and constituent grammar).

Beyond grammar are the long-range dependencies in discourses that almost
cannot be captured by atomic analysis on sentences. In other words, the context
of an utterance provides further information for understanding. This starts to enter
the physical world or rhetorics that deviate from the literal meaning, such as impli-
cature, metaphor, and sarcasm [135, 195]. Recent research in dialog systems [20]
develops many mechanisms to look up and store key information from conversation
history, which is the state-of-the-art model so far to capture long-range dependencies
in discourses.

3.2.2 Knowledge, Reasoning, and Emotion

As described in Sect. 3.1, the third layer of the psychological pyramid concerns
language, which is the vent of various mental activities. Our mind possesses a huge
semantic network representing knowledge types such as “is-a,” “has,” and other
predicates by relations. Knowledge discovery from natural language is the task of
identifying resources and extracting these tuples. Automated reasoning based on
knowledge unions can exponentially increase the number of knowledge pieces. The
following example illustrates how reasoning is conducted:

Men are mortal. ∪ Socrates is a man.

⇒ Socrates is mortal.
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Our mind adapts this process probably because we do not have enough memory
to keep records of every knowledge tuple. It is estimated that human beings store
around 250,000 knowledge tuples, which includes those important and frequently
recalled ones [69]. Other knowledge tuples are derived from reasoning on the
existing ones.

Emotions and affective expressions arise only when language is in use, that
is, the ego is present. Liu [98] echoes this point by defining an opinion as a
quadruple (g, s, h, t), where h is the opinion holder and g, s, and t are the sentiment
target, sentiment value, and time of expression, respectively; similarly an emotion is
defined as a quintuple (e, a,m, f, t), where f is the feeler of the emotion and e, a,
m, and t are the target entity, target aspect of the entity, the opinion type, and time of
expression, respectively. When negative emotion is conveyed in the sentence “The
movie is boring,” the latent meaning is that “I think the movie is boring,” where
“I” is the opinion holder or the feeler of the emotion. Consider an example given
by [136]:

“I disliked the movie you love.”

The conveyed emotion is negative because “I” is the subject of “disklike.”
“You” is the subject of “love” but this is less important in the scenario where this
conversation happens. We can conclude here that emotion aligns with the pragmatics
of language, which is the most advanced layer. This layer is of course supported by
words that activate emotional reflection, but cannot be thoroughly explained by low-
level features of language.

3.2.3 Yet Another Time Arrow

Our language comprises a large number of time expressions. However, in the
abovementioned ways of looking at language, time factor has not been emphasized.
Causal-temporal relation is everywhere in our daily life, while little progress
has been made on this topic. The definition of emotion includes the time when
emotion is expressed because, in examples, time markers like past tense changes
the sentiment polarity of emotion [98]. Only until recently, annotation systems for
time expressions and time tags have been studied [202].

This time arrow is especially important in financial text analysis because
investment opportunities are ephemeral. News impact decays along this arrow and
timing of news influences the decision made by investors. Sentiment on the financial
market is changing its orientation and intensity for every moment, such that if we
relate sentiment to the time arrow, other stable financial information can all be
described as semantics. This dichotomy of semantics and sentiment provides the
roughest landscape of what can be extracted and analyzed from natural language.
In fact, even in the world of finance, it is not difficult to conceive a kind of
invariant connection between financial assets, and the separated volatility attributes
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Fig. 3.4 A narrative space
for financial information
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to the sentiment (temporal) component (Fig. 3.4). This idea of separating temporal
effects from invariance is analogous to CAPM in a sense that expected return is
decomposed to a risk-free market return and a risk premium. Outside this narrative
space, there is nothing to say.

We make an effort to map among the three ways of describing the structure
of language (Fig. 3.5). In the red column, only two dimensions, namely, semantic
and sentiment as in Fig. 3.4 are considered. In the green column, we consider the
lexical and commonsense knowledge as related to semantics, while sentence level
reasoning and discourse emotions are related to financial sentiment. The hierarchy
from basic units to high level language structure can also describe the blue column.
Notice that this rough mapping is from a perspective of developmental stages and
in terms of different scales of analysis. The elements do not have superordinate
relations. Particularly, we will extend the semantics-sentiment structure later and
show examples of how this mental structure has already been applied to analyze
stable and dynamic aspects of financial markets [102].
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3.3 Anchor in a Tumultuous Market

Semantic knowledge is recognized as the anchor in a financial market because
it serves the basis of our mental activities. Business decisions are made on
agglomerating relevant knowledge and planning future actions. Knowledge such as
answers to “what is the mission of a company” and “which category does their main
business belong to” keeps the same for years and is the starting point for financial
statements analysis and other investment behaviors.

To involve computational methods in these activities, machine-readable knowl-
edge representation is a prerequisite. We noticed that there are already business
applications of markup language, e.g., Business Intelligence Markup Language
(Biml) and eXtensible Business Reporting Language (XBRL). Researchers [161,
197] also tried to enhance the interoperability and build ontologies from the business
descriptions. Figure 3.6 provides an example of XBRL snippet describing some
accounting information.1

However, resistance to adopting these formats exists due to the high cost and fear
of losing informational barriers in commercial competitions. Consequently, BOW,
TF-IDF, and sub-symbolic methods, which are less resource-dependent against
this uncooperative attitude, dominate knowledge representation practice, analysis
of social media, and even financial statements.

Fig. 3.6 An example of XBRL

1http://www.investinganswers.com/financial-dictionary/businesses-corporations/xbrl-5714

http://www.investinganswers.com/financial-dictionary/businesses-corporations/xbrl-5714
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3.4 Time Series of Asset Return and Sentiment

The application spurt in monitoring public sentiment over the past decade has
manifested people’s interest in employing this aspect for business and political
purposes. Evaluating the effectiveness of financial sentiment is much easier than
of semantic representation because temporal effects are added in as basic elements.
Imagine the sentiment extracted from financial information as S and the time series
of asset return as R, it seems reasonable to believe that the effectiveness of a
representation of S is justified as we find “S predicts R.” In terms of predictability,
we investigate the explanatory power of sentiment and measure of fit of the
constructed model.

3.4.1 Predictability: Test of Causality and Residuals

Assume Xt and Yt are the differenced stationary time series from S and R; Granger
proposed considering two regression models [66]:

Yt = φ0 +
m∑

i=1

φiYt−i + εt (3.1)

Yt = φ0 +
m∑

i=1

φiYt−i +
h∑

j=g

ψjXt−j + εt (3.2)

Recall the definition of RSS:

RSS =
N∑

t=1

(Yt − Ŷt )
2,

The F-statistic, F = (RSS1−RSS2)(N−m+h−g)
RSS2(h−g)

, is calculated to test the null hypothesis
that ψj = 0,∀j . If null hypothesis is rejected, we say X Granger causes Y . The
same test is sometimes conducted for Y on X. Consistent with our intuition, it is
often reported that Granger causality exists from both sides [19, 157]. This implies
the effect of sentiment on asset returns may not be one-directional. However, passing
the Granger test is not a strong evidence. Financial time series are almost persistent
series and that is when spurious positive results are likely to occur.

It is worth clarifying that the Granger test has some weak points in the sense
that it does not help in identification of metaphysical causality and is very strict
in a sense that it only concerns first-order statistical causality. It is possible that X

provides other information on the distribution of Y through probabilistic reasoning
and this still helps in the asset allocation models, but not the price prediction models.
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The F-statistic provides some information on the significance of having sentiment
in the model. Furthermore, we may want to know if there are other factors and to
what extent is the model complete. This is possible by considering the measure of
fit. We take εt from both regressions (3.1) and (3.2) and calculate the Q̃-statistic,
respectively, given by [101]:

Q̃(residual) = N(N + 2)

m∑

k=1

residual2
k

N − k
(3.3)

where residualk measures the k-th order autocorrelation in residuals

residualk =
∑N

t=k+1 εt εt−k
∑N

t=1 ε2
t

.

We can have overall effect of autocorrelations in the residuals by summing them
up. Then, the quotient defined as Q̃1/Q̃2 can be used as a measure of reduction
in autocorrelations of residuals of having X. The larger the quotient is, the more
the (non-white noise) predictable component is explained and eliminated by X.
Besides the Granger test and measure of fit, the predictability test can be plotted
and conducted by rule-of-thumb observations in practice, especially when the
information source S is of high quality.



Chapter 4
Computational Semantics for Asset
Correlations

We use a machine, or the drawing of a machine, to symbolize a
particular action of the machine.

— Ludwig Wittgenstein

Abstract This chapter explores the possibility to leverage semantic knowledge for
robust estimation of correlations among financial assets. A graphical model for high-
dimensional stochastic dependence termed a “vine” structure, which is derived from
copula theory, is introduced here. To model the prior semantic knowledge, we use a
neural network-based language model to generate distributed semantic representa-
tions for financial documents. The semantic representations are used for computing
similarities between the assets they respectively refer. The constructed dependence
structure is experimented with real-world data. Results suggest that our semantic
vine construction-based method is superior to the state-of-the-art covariance matrix
estimation method, which is based on an arbitrary vine that at least guarantees
robustness of the estimated covariance matrix. The effectiveness of using semantic
vines for robust correlation estimation for Markowitz’s asset allocation model on a
large scale of assets (up to 50 stocks) is also showed and discussed.

Keywords Asset allocation · Dependence modeling · Robust estimation ·
Doc2vec · Semantic vine · Correlation matrix · Machine learning

4.1 Distributed Document Representation

The core idea we propose to measure, the correlation between two financial assets,
is based on the concept of semantic linkage. We assume highly correlated assets
to be discussed in similar contexts and thus have a strong semantic linkage. Even
though various sources of text can be used to together represent financial assets,
we consider a more generalized task of first representing gathered texts with a
vector. With this transformation, we convert the problem of measuring semantic
linkage to a well-studied mathematical problem of similarity measures for real-
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valued vectors. Although there is a huge amount of information relevant to specific
financial assets, we hope to grasp the essence of the information. Li et al. [97]
showed a method to summarize the information by a sentence relevance measure,
and this summarization works better in his method for stock prediction. Bai et
al. [7] developed a business taxonomy that can be strategically used to tag small and
innovative companies which do not fit mainstream industry classification systems.

Most of the early studies have employed BOW or bag-of-phrases representations
of textual financial data to obtain numerical features, which are more suitable to
be processed by computers. These classic techniques already make it possible to
agglomerate and analyze a large number of financial articles. The well-known BOW
model has been applied to NLP and information retrieval (IR) tasks with a long
history. The model represents a piece of text with count statistics, for example, word
occurrence frequencies. Noticing that function words such as “a,” “the,” etc. do not
provide useful semantic information, stopword lists are maintained and used to filter
out such words. Several drawbacks are realized when using the BOW model. One
of them is that natural languages have very large vocabularies that keep growing
with global communication. As a result the vector representations of sentences and
texts are sparse. Without a level of understanding that goes beyond symbols and
strings, many texts do not show any similarity. Another disadvantage is that the
word order information is also not taken into consideration in the BOW model.
This in certain cases causes problem. For example, the financial news “Samsung
now is gaining advantages on Apple” and “Apple now is gaining advantages on
Samsung” would lead to opposite market reactions, though they share the same bag-
of-words representation. This is because of different grammatical roles and POS
taken by the same word. In the above examples, “Samsung” is the subject in the first
sentence while a noun modifier in the second. A way to preserve the word order and
contextual information is to use bag-of-n-grams instead of bag-of-words, but with
bag-of-n-grams the dimension of the vector representation exponentially explodes.
The semantic gap between different expression entries as mentioned before is also
a common phenomenon observed from financial texts. For instance, when similar
gists are phrased by different words, such as in two news titles “Brexit caused a
drop in the pound” and “Leaving the EU accelerates pound’s slump,” this semantic
similarity cannot be captured; another related research gives an example of words
like strong and powerful, which are counted as different dimensions [89]. Whereas
in reality, there should be a link between the semantics they carried.

These problems with classic text representation techniques require a denser,
fixed-length, continuous real-valued representation of words and texts that well
addresses the importance of contexts. With the advance of machine learning,
especially deep learning, this representation can be obtained in multiple ways,
for example, during the training process of a neural language model (skip-gram
word2vec) [12, 114] or autoencoder. The former begins with a sparse matrix where
each row or column is the index of a word, hence has a dimension of the vocabulary
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size. A shallow neural network1 is trained with the learning objective of maximizing
the average word occurrence probability given its context window:

max
U,b

1

T

T −k∑

t=k

log Pr(xt |xt−k, . . . , xt+k) (4.1)

where U and b are neural network parameters to be trained; {x1, x2, . . . , xT }
is the word list from training corpus; k is the (single-side) context window
length. Parameters U and b are iteratively adjusted via back-propagation of word
prediction errors [12, 89], and the gradients are produced by optimizers. Stochastic
gradient descent (SGD) is the most commonly used optimizer, while when faster
convergence is favored, other optimizers such as Adam [85] or AdaBound [104]
are used as well. With the probabilistic settings, we define the prediction error as a
difference of the estimated and the true log probabilities. Then the update rule is the
following:

Δ(U, b) = −ε
∂ log P̂r(xt |xt−k, . . . , xt+k)

∂(U, b)
(4.2)

When the training process is finished, the neuron weights form a space that distri-
butionally represents words’ contexts. Another interpretation is that the parameters
together represent the word with a fixed-length vector which has the same size as the
neural network layer. This interpretation resonates with many structuralism theories
of lexical semantics, such as [40, 91]. Empirical analysis also supports the claim
that this method of word representation well-conserves semantic relations.

Figure 4.1 adapted from Mikolov et al. [114] illustrates the analogous ability
of word embedding. That is, projecting the symbolic representations of words to
a computationally viable space. When visualizing the country name and its corre-
sponding capital name pairs, the vectors representing this relationship are almost
parallel and of the same length. Extending this word representation idea, a sequel
to the word2vec model [89] proposed a distributed representation for a document
(doc2vec). The model outperforms simply averaging the word vectors that appear in
the document. Its idea is simple: to create “new words” termed “tokens” associated
with documents. Then, a similar neural language model is trained by learning
parameters that simultaneously represent a document and its token. Referring to
equation 4.1, this means that for a certain word xt belonging to document Di , its
context will no longer be (xt−k, . . . , xt+k), but (xt−k, . . . , xt+k, di) instead. The
additional context di is the token. With this change of equation 4.1, the learned
representations of tokens well reflect the topic of its associated document. The
entire document vector hence has a fancy name called distributed memory. With this
model, we consider a new document that does not appear in the training set. After

1Shallow refers to the neural networks that only have one hidden layer of neurons.
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Fig. 4.1 Ability of analogously organizing concepts and learn relationships by word embed-
ding [114]

concatenating all the word vectors, we can add one virtual token to represent the
semantic distribution at a document level, so the new document can be represented
by others.

4.1.1 Similarity Measure for Assets

The document-embedding technique (doc2vec) enables representing documents
with different lengths. Therefore, we have the motivation to include as much useful
information and build an overall descriptive document from many relevant docu-
ments pinpointed to each asset ai and compute a vector representation vector(ai)

that preserves the semantics. Subsequently, the semantic linkage between two assets
will align with the vector similarity of their descriptive document representations
and can be used for asset dependence modeling.

We use the cosine similarity to estimate pairwise semantic linkage for asset pair
ai and aj :

s(ai, aj ) = cos < vector(ai), vector(aj ) >

= vector(ai) · vector(aj )

||vector(ai)||2||vector(aj )||2 . (4.3)
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In the rest of this chapter, we denote pairwise semantic linkage s(ai, aj ) with a
short-form sij . Noticing that the vector representations for assets are produced by
softmax functions, each dimension has a value between 0 and 1; therefore sij is also
between 0 and 1.

4.2 Vine Dependence Modeling

Recall Markowitz’s model of Sect. 2.3.1: the framework which maximizes the
portfolio return and minimizes the portfolio risk. In the model asset, expected
returns (μ) and correlations (Σ) of assets are important inputs and need to be
accurately estimated because the average expected returns reflect the profitability
of the portfolio, while the overall portfolio risk depends on the correlations
between pairs of assets. However, both these variables are difficult to estimate
accurately from historical return time series in practice because discrete observed
asset returns are peculiarly distributed. Figure 4.2 showcases the typical skewed
and fat-tailed distribution of realized daily return ratio of Apple Inc’s stock price.
Apparently, it cannot be approximated with a Gaussian distribution as suggested
by the Markowitz’s model, and the same difficulty exists for identification and
approximation of the expected return distribution of most of the stocks. Empirical
study of US stocks [139] favors the stable Paretian hypothesis over Gaussian hypoth-
esis. Student’s t-distribution on low degrees of freedom or Cauchy distribution are
commonly considered as well, where mean and variance are undefined. In fact, the
standard deviation (std) of returns in Fig. 4.2 (red) is around four times that of the
Gaussian distribution fitting depicted by the blue curve. Unfortunately, the situation

Fig. 4.2 Real distribution and Gaussian fitting of returns of Apple’s stock price (2009–2017) [191]
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is becoming increasingly challenging today in an interconnected world. According
to the Schwab Center for Financial Research [43], the average correlation between
four US equity classes increased from around 0.65 to 0.90 in the last 20 years. These
facts motivate us to study robust estimation of asset correlations.

Robust estimation of the correlation matrix is not easy, especially in high-
dimensional cases. This is because in multivariate analysis, one has to not only
consider the estimated variable itself but also its connection to other variables. For
correlation matrix estimation, the majority of the methods are based on combining
pairwise correlation estimations. However, by simply using robust pairwise correla-
tion estimates as matrix elements, positive definiteness of the estimated correlation
matrix cannot be guaranteed. Because the covariance matrix is positive-definite by
definition, violating this property will lead to difficulty and undesired computing
outcomes, e.g., the risk measurement according to the modern portfolio theory may
become negative. Negative risk means that the optimized portfolio weights will be
a corner solution of the feasible domain, that is, the benefits from diversification
would disappear. Even a positive-definite estimation requires robustness; otherwise
using the unstable estimation of asset correlation matrix will cause the optimized
weights to be extremely large, and frequent rebalancing of the portfolio will be
needed for multi-period applications.

Previous studies have migrated many classic techniques in robust statistics for the
estimation of asset expected returns and their covariance matrix. Such techniques
include trimming, quantile statistics, M-estimators, minimum covariance determi-
nant (MCD), minimum volume ellipsoid (MVE), iterated bivariate Winsorization
(IBW), and more [121, 138, 183]. There are two schools that hold opposite opinions
on the importance and difficulty of the two related tasks [191]. One argues that
expected asset returns are more important in the Markowitz’s model and more
difficult to be accurately estimated since numerous exogenous variables can have
effect on the expected returns [112, 138]; however, the other (mainly statisticians)
argues that the covariance matrix is a more challenging object to estimate because it
involves a quadratic number of parameters (O(n2)) from the dependence structure
of the assets [204]. We attempt to tackle both problems and leave the return
estimation problem to the next chapter. Subsequently, we focus on estimating a
robust covariance matrix for asset returns in the rest of this chapter.

The covariance matrix estimation task does differ from the expected return
estimation under the perspective of narrative space for financial information (see
Fig. 3.4). The sentiment-driven price movements feature fast adaptation to the
financial news and volatile changes along the time arrow. In comparison, the
dependence relations between assets are more stable. They tend to be affected
by macroeconomic and intrinsic factors, such as what industry they belong to,
their products, and their position in a supply chain. This type of information stays
unchanged for years. The knowledge that expected asset returns and the covariance
matrix require different information to be estimated is not taken into consideration
by Markowitz’s framework of analysis. The CAPM model [171], which tries to
connect equilibrium return and risk, also fails to use such knowledge. In our
model, we thus leverage the semantic prior knowledge as a solution to covariance
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matrix estimation. To ensure the robustness of this process, we first solve a vine
selection problem. The formed vine structure is later used to induce positive-definite
estimation of the covariance matrix.

4.2.1 Copula and Vine Decomposition

We think of each financial asset’s expected return as a random variable μi and
their joint distribution p(μ1, μ2, . . . , μn). Because of the dependence between
asset returns, the joint distribution cannot be directly factorized to the marginal
distribution of each asset’s return. The function that links the joint distribution and
its marginal distributions is called a copula density, formally,

p(μ1, μ2, . . . , μn) = [
n∏

i=1

p(μi)] c(μ1, μ2, . . . , μn). (4.4)

Describing and learning high-dimensional copulas are difficult. For example,
visualizing such copulas needs a lot of computing power; measuring the difference
between two high-dimensional copulas by Kullback-Leibler distance also involves
calculation of a multiple integral, which is not tractable. Therefore, many techniques
are developed to decompose high-dimensional copulas, such as copula trees, vine
copula, and copula Bayesian networks. We study here the vine decomposition
of copulas, which manages to represent a high-dimensional copula by multiple
bivariate copulas as basic building blocks. Specifically, Archimedean bivariate
copula families, such as the Clayton copula, the Gumbel copula, and the Frank
copula, are most widely applied as they can be parameterized by a single value [51]:

cClayton(μ1, μ2|θ) = (μ−θ
1 + μ−θ

2 − 1)−1/θ

cGumbel(μ1, μ2|θ) = e−[(− log μ1)
θ+(− log μ2)

θ ]1/θ

cFrank(μ1, μ2|θ) = −θ−1 log(1 + (e−θμ1 − 1)(e−θμ2 − 1)

e−θ − 1
). (4.5)

We show how bivariate copulas can form higher-dimensional copula via con-
ditioning [10]. Consider copula density c(μ1, μ2, μ3), if we define c13|2 :=
c(μ1, μ3|μ2) as c(μ1,μ2,μ3)

c(μ1,μ2)c(μ2,μ3)
, we see that c13|2 is also a bivariate copula of

variables μ1|μ2 and μ3|μ2. Therefore, we have c123 = c12c32c13|2. Obviously, by
strategically choosing the conditioning variables, which also implicitly defines a
vine structure, one can decompose a higher-dimensional copula to the product of
multiple bivariate copulas:
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c(μ1, μ2, . . . , μn) =
n−1∏

i=1

∏

j, k

c(j, k|D(e)), (4.6)

where D(e) is the conditioning set.

4.2.2 Vine Structure and Its Properties

The interactive pattern among multiple variables grows exponentially complicated
as the dimension increases. To describe the joint distribution representation, the
mathematics of high-dimensional dependence modeling extends bivariate depen-
dence measures with graphical models. Such models include Bayesian belief
networks [33] and Markov random fields [113] for causal effects and vine structures
for stochastic dependence. Unlike common graphical models, a vine is unique for
its recursive tree-like structure, where the edges of nodes become nodes for the next
tree.

As a result, a vine can describe more types of high-dimensional dependency
patterns by combining basic elements compared to most of the distribution families.
For this property, vine structures are frequently applied in statistical machine
learning and financial modeling [52, 170]. In theory, a good vine structure should be
of a proper level of complexity. That is, it provides not every aspect to determine the
exact distribution (over-fitting). However, it provides all the important slices of the
high-dimensional joint distribution using as few as possible parameters. Figure 4.3
adapted from [204] provides an example of how the delicate dependency pattern
among three financial assets can be depicted.

In Fig. 4.3, the pairwise correlations between a1 and a2 and a2 and a3 are both
0.8, which means that the returns of the paired two assets are positively correlated.
However, the partial correlation between a1 and a3 condition on a2 is −0.8, which
means that returns of a1 and a3 or negatively correlated.2 This case is possible when
a2 represents a company selling costumer products, e.g., Apple, while a1 and a3 are
competitive suppliers to a2, e.g., TSMC and Foxconn [204]. In this case a1 and a3
are called first-order tree structure and a2 describes the second-order dependence.

Fig. 4.3 Example of a vine
structure on three financial
assets

2The correlation between a1 and a3 conditions on a pivot asset a2. Therefore, we use a different
type of dashed link to denote this conditional correlation. The dashed link is abbreviated as 1, 3|2.
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A vine structure degenerates to a (first-order) Markov tree when only the first-order
tree structure is specified. In a Markov tree, long-range dependence does not exist.
In the following when we discuss vine structures, we refer to fully linked vines with
every order of tree structure specified by default. While the fundamental definitions
and theorems can be found in relevant books [87], our contributions are mainly on
the proposal of Theorem 4.3 and Definition 4.5.

First, we recall the following definition of vine by Bedford and Cooke [11]:

Definition 4.1 A vine V = {T1, T2, . . . , Tn} is a set of linked trees on n elements
if:

• T1 is a tree with nodes N1 = {1, 2, . . . , n} and a set of edges denoted by E1.
• For i = 2, . . . , n − 1, Ti is a tree with nodes Ni = Ei−1 and edge set Ei .

Specially, a vine is called a “regular vine” if for any tree Tj , the nodes of an
edge in edge set Ej share one and only one node in common. This rule is called
the “proximity condition of regular vines.” A regular vine has some good properties
similar to what a binary tree has for data structure. Mathematically, the regular vine
can guarantee the interpretation of edge weights as partial correlation coefficients,
conditioning on the shared spanning variables. We go on to investigate two special
types of regular vine (aka C-vine and D-vine) defined by Aas and Berg [1]:

Definition 4.2 A regular vine is called a Canonical or C-vine if each tree Ti has a
unique node of degree n − i for i = 1, . . . , n − 2, where the unique node is called
the root for each tree.

Definition 4.3 A regular vine is called a Drawable or D-vine if each node in Ti

has a degree of at most 2, for i = 1, . . . , n − 1.

Figure 4.4 gives examples of C-vine and D-vine on four nodes. Notably, if a
regular vine only has three nodes in T1, it is simultaneously both a C-vine and a
D-vine. The copula decompositions based on the C-vine and the D-vine of Fig. 4.4
are thus:

cC−vine
1234 = c24|13c23|1c34|1c12c13c14

cD−vine
1234 = c14|23c13|2c24|3c12c23c34. (4.7)

Fig. 4.4 Examples of C-vine and D-vine
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Although the bivariate copulas still need a heavy amount of information to
specify, we simplify the specification using only partial correlations of the two
variables. Therefore, each edge can be specified by a single parameter, namely, the
partial correlations. We introduce the formal definition of a partial correlation vine
as follows [204]:

Definition 4.4 A partial correlation vine is a vine where each edge in the edge set
E (V ) is assigned a partial correlation value ρ between −1 and 1.

Finally, we have the following important Theorem 4.1 that guarantees robust
correlation matrix estimation on a partial correlation vine according to the above-
mentioned definitions.

Theorem 4.1 For any regular vine on n elements and the set of partial correlation
specifications for the vine, there exists a n × n positive-definite correlation matrix
and vice versa.3

For a partial correlation C-vine or D-vine, an analytical solution exists for each
element in the full correlation matrix to be computed from just the set of partial
correlations according to Bedford and Cooke [11]. However, for general regular
vines, the computation has to be step-by-step on subvines as the decomposition is
difficult to be expressed in a closed form. The following Theorem 4.2 adapted from
Lemma 13 in [11] facilitates this step-by-step computation based on subvines. We
restate Theorem 4.2 here without a proof.

Theorem 4.2 Let Σ be the covariance matrix of n joint normal distributed random
variables. Write ΣA for the principal submatrix built from row 1 and row 2 of Σ ,
etc. so that

Σ =
[

ΣA ΣAB

ΣBA ΣB

]
.

Then the conditional distribution of elements 1 and 2 is normal and the covariance
matrix has the form:

Σ12|3...n = ΣA − ΣABΣ−1
B ΣBA. (4.8)

Theorem 4.3 is then derived based on Theorem 4.2.

Theorem 4.3 Consider a subvine of only three nodes 1, 2, and 3, where node 2
is the root. The unconditional correlation of 1 and 3 can be calculated from their
correlation conditional on 2 and their partial correlations with 2:

ρ13 = ρ13|2
√

(1 − ρ2
12)(1 − ρ2

23) + ρ12ρ23. (4.9)

3Proof of this theorem uses trigonometric substitution. For details, see Lemma 12 in Bedford and
Cooke [11].
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Proof We write the partial correlation matrix as

ρ =
⎡

⎣
1 ρ13 ρ12

· 1 ρ23

· · 1

⎤

⎦ .

We apply equation 4.8 with ΣB = [1] and

ΣA =
[

1 ρ13

ρ13 1

]
, ΣAB =

[
ρ12

ρ23

]
,Σ13|2 =

[
σ 2

1|2 ρ13|2σ1|2σ3|2
ρ13|2σ1|2σ3|2 σ 2

3|2

]
,

then we will have:
[

σ 2
1|2 ρ13|2σ1|2σ3|2

ρ13|2σ1|2σ3|2 σ 2
3|2

]
=

[
1 ρ13

ρ13 1

]
−

[
ρ12

ρ23

] [
ρ12 ρ23

]
,

where we derive the following equations:

σ 2
1|2 = 1 − ρ2

12 (4.10)

σ 2
3|2 = 1 − ρ2

32 (4.11)

ρ13 = ρ13|2σ1|2σ3|2 + ρ12ρ23. (4.12)

Substituting σ1|2 and σ3|2 in equation 4.12 with equations 4.10 and 4.11, we can get
equation 4.9. 
�

4.2.3 Growing the Semantic Vine

Previous applicational studies frequently encounter the challenge of determining an
appropriate vine structure because only after that bivariate copula can be estimated.
This task is nontrivial as one “generator” vine structure corresponds to an infinite
number of joint distributions. One popular solution is to resort to domain experts
and the other solution being to simply assume a C-vine or D-vine structure for
the simplicity of computation (because C-vine and D-vine are structures where
analytical decomposition is possible) and then discuss the properties (such as
associated correlations or bivariate copulas) of edges. However, if we attempt to
find the most appropriate vine structure, for n elements there exist 4n!√2n(n−5)

regular vines [39], only a few out of which are tailored to best describe the high-
dimensional probability distribution. To identify such a vine structure, Kurowicka
and Joe [87] proposed a top-down approach for regular (partial correlation) vine
growing. This approach splits nodes into two groups or subgroups for each layer and
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ensures that the absolute values of the partial correlations between the “splitting”
nodes are the smallest.4 However, choosing such “splitting” nodes is only possible
when the entire correlation matrix is fully specified. Since we are unable to robustly
estimate the partial correlation matrix, and our purpose of having this vine structure
is exactly the same; the fact that the resulting vine structure might not be robust as
well causes a circular explanation. As a reply to this problem, our construction of
the vine-growing task is a bottom-up method. We propose to grow a semantic vine
by first building edges between individual assets with a strong semantic linkage,
so that specification of partial correlations with the largest absolute value are
prioritized [191]. Algorithm 4.1 elaborates the iterative execution of this process
for each layer.

Algorithm 4.1 first ranks the node pairs according to their semantic linkage
and checks the adjacency of two nodes every time before growing an edge. If the
candidate edge is illegal to be added, the algorithm considers the next pairs. As a
result, the algorithm ensures that the semantic vine is a regular vine, but it is not
necessarily a C-vine or D-vine. For each layer, the termination condition checks the
degree of every node. This ensures that the semantic vine will be fully connected
with no isolated node.

The formal definition of a semantic vine is given as follows:

Definition 4.5 A semantic vine is a regular partial correlation vine where the partial
correlation values of edges are estimated from pairwise semantic linkages.

Definition 4.5 gives the following properties to our semantic vine. Each edge
in the semantic vine is associated with a value �ij that represents the conditional
semantic partial correlation and is calculated from the semantic linkage sij between
the two assets that the edge is spanning:

�ij = (2 ∗ sij − 1)/(1 + ε). (4.13)

Since the semantic linkage sij is in the range of [0, 1] and ε is a small positive scaling
factor, equation 4.13 maps the semantic linkage to a financial linkage that is strictly
in a range of (−1, 1). In real-life cases, semantic-irrelevant assets are often regarded
as safe-haven choices from different industries. Therefore, their asset returns would
demonstrate reverse co-movements [191].

4.2.4 Estimating the Robust Correlation Matrix

In this section we first study the inverse process of robust correlation matrix
estimation, that is, given a prior correlation matrix, we attempt to find an appropriate

4This is defined as the optimal truncation of vines as a minimum number of edges would have
large absolute partial correlations and rest of the edges are assumed insignificant (independent).
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Algorithm 4.1: Growing semantic vine structure
Data: asset list a, pairwise semantic linkage sij , i, j = 1, 2, . . . , n

Result: semantic vine Vs = {Ti,Ni,E (Vs )}
1 for k = 1, 2, . . . , n − 1 do
2 list (sij ) ← descending sort sij (i < j);
3 if k > 1 then
4 Nk = Ek−1;
5 end
6 repeat
7 re-compute list (sij )|Nk ;
8 if adjacent(i, j) in Nk then
9 Ek ← max(list (sij ));

10 if ∃ loop in Ek then
11 discard max(list (sij )) from Ek ;
12 end
13 delete max(list (sij )) from list (sij );
14 end
15 until � degree(Nk) = 0;
16 end
17 return Vs ;

vine structure to model it. This task is called vine truncation and selection [87, 128].
We directly estimate the robust correlation matrix from the semantic vine (as a prior)
obtained from Algorithm 4.1.

It is worth noticing that without the intervene of a semantic vine, neither the
pairwise semantic linkage matrix S nor the semantic partial correlation matrix ℘

can guarantee positive definiteness. Therefore, to write ρ = ℘−1 is not robust (or
even viable). In fact, we are ignorant of whether the inverse of matrix ℘ exists
or not. However, Theorem 4.3 guarantees the existence and robustness of the full
correlation matrix ρ(Vs) without specifying the estimation procedure. With the
help of Theorem 4.3, we demonstrate this procedure of step-by-step element-wise
estimation running on subvines in Algorithm 4.2. Because the correlation matrix is
symmetric, we only care about the upper triangular part (i < j ).

The asset pairs (i, u) and (j, v) in Algorithm 4.2 exist and are unique. This is
because of the definition of the structure of a regular vine. The nodes in Ek are
inherited from Ek−1. Assuming there are (i, u) and (i, u′) both in Ek−1, u �= u′, then
for edge set Ek , we will have (u, u′)|i, . . . ∈ Ek , instead of (i, j) ∈ Ek . A similar
statement holds for asset j .

Because by definition u and v will satisfy that edge (i, u) and (j, v) are in Ek−1,
we know that ρiu and ρjv have already been computed along with a smaller index
k of edge set. Thus the order of computing ρij in Algorithm 4.2 actually guarantees
that each ρij is computable, and there are n + (n − 1) + (n − 2) + . . . = (n+1)n

2
times of value assignment in total. This covers all the unique values required in the
symmetric correlation matrix.
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Algorithm 4.2: Estimating robust correlation matrix
Data: semantic partial correlation matrix ℘, semantic vine Vs

Result: correlation matrix ρn×n(Vs )

1 for i = 1, 2, . . . , n do
2 ρii ← 1;
3 end
4 for (i, j) ∈ E1 and i < j do
5 ρij ← �ij ;
6 end
7 for k = 2, 3, . . . , n − 1 do
8 for (i, j) ∈ Ek and i < j do
9 u ← (i, u) ∈ Ek−1;

10 v ← (j, v) ∈ Ek−1;

11 ρij ← �ij

√
(1 − ρ2

iu)(1 − ρ2
jv) + ρiuρjv ;

12 end
13 end
14 return ρ(Vs );

4.3 Data Used for Experiments

A list of 55 stocks from the US markets5 is investigated. Because most of the
stocks are of famous and big companies, a large percentage of the list overlaps
with the lists of stocks investigated by Zhang [200] and Zhu [204]. The industry
classification codes of our list of stocks are manually retrieved from the Bloomberg
Terminal and Thomson Reuters Eikon in 2017. Furthermore, we get the historical
closing prices of five randomly selected stocks from the list. The data is crawled
from Quandl API6 based on which we construct a virtual portfolio. The tickers and
corresponding numbering of the five stocks are: Apple Inc (1:AAPL), Microsoft
Corporation (2:MSFT), Goldman Sachs Group Inc. (3:GS), Pfizer Inc. (4:PFE),
and Wells Fargo & Company (5:WFC). The price data is later processed with the
Markowitz’s mean-variance optimization (MVO) method.

The semantic vector embedding space for financial document representation is
trained with language materials from two sources: (1) the public available Reuters-
21578 Corpus,7 which contains 10,788 financial news documents totaling 1.3
million words and (2) the Wikipedia pages of our list of stocks.8

We use the Reuters Company Business Descriptions, which are paragraphs of
brief summarization of the company’s business scope, to generate dense semantic
vector representations (100-dimensional) for each stock. To get a glimpse of the

5Information on the stock list is elaborated in Appendix A.
6http://quandl.com/tools/api
7http://daviddlewis.com/resources/testcollections/reuters21578
8Retrieved from the Internet on 2017-10-09.

http://quandl.com/tools/api
http://daviddlewis.com/resources/testcollections/reuters21578
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Table 4.1 Keywords used to generate vector representations for the selected stocks [191]

Stock ticker Keywords

1:AAPL Apple, design, mobile, device, digital, computer, iPhone, software, service, store,
application, accessory, support

2:MSFT Microsoft, technology, software, business, productivity, develop, system,
manufacture, device, computer, solution, intelligent

3:GS Goldman, Sachs, investment, bank, management, client, institutional, financial,
advisory, security, loan, asset, service

4:PFE Pfizer, research, pharmaceutical, healthcare, medicines, vaccines, inflammation,
business, generics, consumer, immunology

5:WFC Wells Fargo, wholesale, bank, wealth, financial, service, investment, management,
commercial, mortgage, retail

content of such descriptions, we present the automatically extracted keywords for
the selected stocks we used to construct the virtual portfolio in Table 4.1. After we
compute the vector representations of the descriptive stock company profiles, we
can use the cosine similarities to form the pairwise semantic linkage matrix:

S =

⎡

⎢⎢⎢⎢⎢⎣

1 0.7084 0.3826 0.1992 0.4544
· 1 0.4856 0.3874 0.5620
· · 1 0.3072 0.4910
· · · 1 0.3767
· · · · 1

⎤

⎥⎥⎥⎥⎥⎦
,

and thus the partial correlation matrix:

� =

⎡

⎢⎢⎢⎢⎢⎣

1 0.4167 −0.2267 −0.6426 −0.0304
· 1 −0.0347 −0.2253 0.1240
· · 1 0.2909 −0.0179
· · · 1 −0.2747
· · · · 1

⎤

⎥⎥⎥⎥⎥⎦
.

We observe from the semantic linkage matrix S that the strongest semantic
linkage is between Apple and Microsoft (0.7084), which are both software manu-
facturers and belong to the technology sector. While the weakest linkage is between
Apple and Pfizer (0.1992), which are in totally different business sectors (software
and technology vs. pharmaceutical).
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4.4 Experiments

Our semantic vine growing and correlation matrix estimation methods on stock
price data are evaluated based on three experiments. The initial experiment tests
several portfolio settings using either robust or non-robust correlation matrix esti-
mation without any vine structure. The second experiment compares the portfolio
performance of using the semantic vine with using a number of arbitrary vine
structures. Finally, the last experiment addresses the scalability of our method and
its application to financial knowledge discovery.

4.4.1 Obtaining the Semantic Vine and Asset Correlation
Matrix

A step-by-step demonstration is provided on how we obtain the semantic vine
structure for the selected stocks (Fig. 4.5) using Algorithm 4.1. Note that each edge
in a low-level tree is treated as a node in the higher-level tree.

Apparently, the resulting vine structure for our portfolio is neither a C-vine nor a
D-vine. Tree 1 mixes the subvine structure of C-vine and D-vine, that is, nodes {1,
2, 4, 5} resemble a C-vine and nodes {1, 2, 5, 3} or nodes {4, 2, 5, 3} resemble a D-
vine; Tree 2 has a C-vine structure; Tree 3 and Tree 4 follow a D-vine structure. The
logical structure of C-vine and D-vine actually reflects different aspects of the joint
distribution of variables. A C-vine is more appropriate for dependence modeling
when a critical variable “leads” the others, whereas a D-vine is more suitable when
the variables are relatively equal/independent. In our semantic vine here, Microsoft

Fig. 4.5 The semantic vine constructed for the stocks [191]
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and Wells Fargo are to some extent “hubs” that bridge other stocks in Tree 1 and
Tree 2. Another interpretation is that the least related nodes are joined in the highest
order Tree 4. In our case these nodes are numbers 1 and 4, which represent Apple
and Pfizer, which also have the minimum sij in the semantic matrix. In this sense,
our semantic vine-growing algorithm produces a similar structure to the optimal
vine truncation suggested by [87] in this specific case, but with more theoretical
soundness.9

We calculate the unconditional full product-moment correlation matrix as a
robust correlation matrix estimator for the stocks using Algorithm 4.2:

ρ =

⎡

⎢⎢⎢⎢⎢⎣

1 0.4167 −0.2267 −0.6426 −0.0304
· 1 −0.0347 −0.2253 0.1240
· · 1 0.2909 −0.0179
· · · 1 −0.2747
· · · · 1

⎤

⎥⎥⎥⎥⎥⎦

4.4.2 Robust Asset Allocation

Since the positive definiteness of matrix ρ(Vs) is ensured by Theorem 4.1, we use
ρ(Vs) as the static covariance matrix estimator of asset returns in equation 2.7:

Σ̂ = ρ(Vs). (4.14)

This setting can produce meaningful portfolio weights using Markowitz’s model.
Another key ingredient for Markowitz’s model is the expected return. First, daily
returns are calculated as:

Rd = πd − πd−1

πd−1
, (4.15)

then the portfolio expected return is estimated by averaging Rd in a time period of
length k:

μ̂ = 1

k

k∑

d=1

Rd. (4.16)

9See Sect. 4.2.3 for the definition of the optimal vine truncation.
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Below we compare five models with different estimators (EW, rMVO, MVO,
drMVO, dMVO) and with the assumption of no short selling of stocks, taxes, or
transaction cost:

1. The equal-weighted portfolio (EW): EW refers to the case that each asset has
the same portfolio weight. In our portfolio where five assets are considered,
we use a holding weight of [20%, 20%, 20%, 20%, 20%] throughout the test
period. Consequently, the portfolio return will be an average of the individual
asset returns. EW is a simple yet tough-to-beat baseline. Empirical study [55]
shows that the equal-weighted portfolio outperforms many other active asset
management strategies.

2. Robust MVO (rMVO): This refers to the mean-variance optimization method
with both a robust covariance matrix estimation (based on the semantic vine)
and robust return estimations. We use static estimations calculated by averaging
returns in the past 30 days from the starting data of test period and use them
throughout the test period.

3. MVO: This refers to the experimental settings to use the same static expected
return estimations as rMVO, but the covariance matrix estimation is dynamic:
calculated from the return series in the past 90 days and updated on a daily basis.

4. Dynamic robust MVO (drMVO): This refers to the experimental settings to
use the robust covariance matrix estimation as rMVO, but the expected return
estimations are updated daily on a sliding window of 30 days.

5. Dynamic MVO (dMVO): This refers to the experimental settings to use the
covariance matrix estimation based on a sliding window of 90 days and the
expected return estimations on a sliding window of 30 days.

The portfolio performances are examined via trading simulations from 2016-03-
09 to 2017-09-30 (579 days in total).10 Figure 4.6 depicts the growth of capital
beginning from 1 dollar. Table 4.2 reports two important metrics for portfolio
performance, namely, the compound annual growth rate (CAGR) and Sharpe
ratio [78], which is a common risk-adjusted return measure among practitioners.
The formulas for calculating the CAGR and the Sharpe ratio are as follows:

CAGR = [(Cpf l
t+Δt/C

pf l
t )

365.25
Δt − 1] × 100% (4.17)

Sharpe ratio = E(μ
pf l
d /μEW

d ) × σ(μEW
d )

/
σ(μ

pf l
d ) (4.18)

where Cpf l denotes the amount of capital for a portfolio; E(·) denotes the expected
value of a random variable; σ(·) denotes the standard deviation of a variable.

10This time span is roughly chosen because it is reasonable to assume the asset correlations keep
the same. If simulation is carried out for a longer period, we have to access historical corpus of
the Reuters Company Business Descriptions and Wikipedia pages, which is out of scope for our
discussion.
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Fig. 4.6 Performance with different experiment settings [191]. (a) Single period (static) portfo-
lios. (b) Multi-period portfolios, daily rebalancing

Table 4.2 Major statistics of
the portfolio
performance [191]

Portfolio setting CAGR(%) Sharpe ratio

EW 21.21 1.00

MVO −15.90 −0.20

rMVO 23.68 1.01
dMVO 16.27 0.78

drMVO 10.39 0.52
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In the 579-day simulation, the only experimental setting that consistently outper-
forms the EW is rMVO. The rest of the portfolios cannot compete with EW even
before deducting transaction cost and exhibit significantly higher volatilities. This
outcome well addresses the importance of having robust estimators for the mean-
variance method, which in our solution is by introducing a semantic vine structure of
assets. With only robust estimation of returns, namely, MVO, the portfolio exhibits
high volatility and (thus) bad profitability. This could be attributed to two possible
reasons: (1) the unstable estimation for the asset covariance matrix and (2) the static
return estimations, though robust, may not be accurate.

The fact that both drMVO and dMVO are not performing as well as EW may
suggest that dynamic estimation is not very helpful, as long as the process does not
involve a robust approach. The capital amount of the two settings move in similar
patterns, though dMVO is slightly better than drMVO in terms of expected returns.
On the other hand, in terms of volatility, drMVO is slightly more stable than dMVO.
However, the differences seem insignificant.

The above observations (not satisfying portfolio performances) may lead to a
conclusion that a match of time periods of data used to estimate expected returns
and the covariance matrix is important if only numerical data is available.

The experimental results here also resonate with one of our former statement
that “the most serious problem of the mean-variance efficient frontier is probably
the method’s (in-)stability” [183]. The situation of dMVO is that even though it
dynamically estimates both expected returns and covariance and rebalances daily
with the updated information, the portfolio stays on the “elusive efficient frontier”
and performs even worse than rMVO [191].

4.4.3 Benchmarking Arbitrary Vines

The experiments from Sect. 4.4.2 have demonstrated the effectiveness of using our
invention of semantic vine to robustly estimate the covariance matrix in the mean-
variance optimization construction. However, we are not clear if a random vine
structure could induce a robust covariance matrix estimation of the same quality.
As a further step, we examine the confidence that the semantic vine is superior to
many other vine structures. In this experiment, we use the rMVO model setting
because it has the best performance among its peers in the discussion of Sect. 4.4.2.
We substitute the semantic vine in rMVO with some random vine structures and see
how the portfolio performance will be affected. Without knowing the dependence
structures, random vines are the state-of-the-art modeling that (still) preserves the
robustness of covariance matrix estimation, and there is no evidence that using C-
vine or D-vine makes any difference compared to other regular vine structures.
Therefore, our benchmarks are valid. To facilitate easy computation of partial
correlations, we construct the standard C-vine and D-vine structure and assign
random numbers between −1 and 1 to each edge.
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Fig. 4.7 Performance with different vine structures [191]. (a) rMVO portfolio with C-vines. (b)
rMVO portfolio with D-vines

The edge set for standard five-element C-vines is E1={(1, 2), (1, 3), (1, 4), (1, 5)}
E2 = {(2, 3), (2, 4), (2, 5)} E3 = {(3, 4), (3, 5)} E4 = {(4, 5)}. Comparably,
the edge set for the D-vines is E1 = {(1, 2), (2, 3), (3, 4), (4, 5)} E2 =
{(1, 3), (2, 4), (3, 5)} E3 = {(1, 4), (2, 5)} E4 = {(1, 5)}. We obtain 20 alternative
vines in total. We use the abbreviated notation, for instance, Cv-n for the n-th
random C-vine and Dv-n for the n-th random D-vine. Each portfolio performance
is illustrated in Fig. 4.7, and statistic measures and significance test results are
provided in Tables 4.3 and 4.4, respectively. If we assume the performance measures
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Table 4.3 Major statistics of the portfolio performance, those measures better than EW are in
bold [191]

Pfl. setting CAGR(%) Sharpe ratio Pfl. setting CAGR(%) Sharpe ratio

EW 21.21 1.00 S-vine 23.68 1.01
Cv-1 −66.31 −0.45 Dv-1 21.50 0.58

Cv-2 −36.43 −0.46 Dv-2 21.45 0.58

Cv-3 31.13 0.90 Dv-3 33.36 0.25

Cv-4 −6.38 −0.10 Dv-4 19.05 0.62

Cv-5 15.69 0.60 Dv-5 −12.92 −0.17

Cv-6 17.71 0.79 Dv-6 −1.96 −0.03

Cv-7 15.96 0.51 Dv-7 10.27 0.15

Cv-8 −25.97 −0.42 Dv-8 −43.46 −0.19

Cv-9 33.81 0.78 Dv-9 6.50 0.25

Cv-10 19.80 0.88 Dv-10 17.93 0.78

Table 4.4 Significance test
of the hypothesis that the
semantic vine is superior to
an arbitrary C-vine or
D-vine [191]

p-value Chebyshev’s bound Student’s t test

Cv-CAGR 0.9405 0.2349

Cv-Sharpe 0.6064 0.0186

Dv-CAGR 0.8278 0.1022

Dv-Sharpe 0.1580 0.0000

are normally distributed, we see a very low likelihood that the better performance of
the semantic vine is coincidental, suggested by Student’s t. The Sharpe ratio of the
semantic vine is significantly higher than either arbitrary C-vines or D-vines. Even
in an distribution-agnostic setting, Chebyshev’s inequality shows low probability
that the performance measures of the semantic vine is drawn from the population of
other vine structures.

The trading simulation results presented in Table 4.3 indicate the importance
of having a proper vine structure. With arbitrarily grown vines, the portfolio does
not always outperform the EW, which nullifies the effort to strategically rebalance
portfolio weights. Table 4.3 demonstrates that only 2-out-of-10 C-vines and 1-out-
of-10 D-vines experimented with provides better portfolio return than the semantic
vine in terms of CAGR. However, this is at the expense of significantly higher risk.

None of the experimented arbitrary vine structures outperforms the semantic vine
in terms of Sharpe ratio, which means that taking the risk premium is not worthwhile
because it actually reduces the expected return for one unit of risk. In fact, none of
the experimented arbitrary vine structures outperforms the EW in terms of Sharpe
ratio. With a simple calculation based on Table 4.3, the average CAGRs for C-
vines and D-vines are −0.1% and 7.2%, respectively, both with a large variance and
significantly lower than EW. The average Sharpe ratios are 0.30 and 0.28, which are
significantly lower than that of EW (1.00).

Further interpretation of the experimental results reveals that the robust covari-
ance matrix estimation guarantees robust efficient portfolio weights, but does not
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necessarily guarantee robust portfolio returns. Because robust portfolio returns, after
all, depend on how accurate the rebalancing strategy predicts the return distributions
of assets and accordingly mitigates the portfolio risk. We clearly observe that the
portfolio returns of arbitrarily grown C-vines and D-vines are not stable. In some of
our simulations using arbitrary vines, losing 80% of the principal capital is possible.
We also notice that vines of similar CAGR in Table 4.3 may have very different
topological structure as well as Sharpe ratios, which suggest that the portfolio return
and portfolio risk are not rigidly proportional even when a vine structure is used in
robust covariance matrix estimation. Therefore, rebalancing is still beneficial for
robust asset allocation.

4.4.4 Model Scalability

Matrix-related computing usually has a high time complexity. For instance, mul-
tiplication of two matrices and calculation of the correlation matrix have cubic
time complexity. In financial applications, the time complexity of vine-growing and
robust correlation matrix estimation algorithms is critical, because as the number of
individual assets considered increases, a much more complicated vine structure will
be required in limited time.

Our analysis excludes the time for pre-training of semantic space because the
update can be done in low frequency and in parallel, while the document vector can
be embedded in negligible time after the semantic space is ready. However, the scale
of the vine-growing problem also depends on data properties.

For example, the time needed for judging adjacency of edges relates to the
average degree of nodes in each layer. A higher average degree indicates more
complicated graph structure, and hence more times of judging adjacency will be
needed. Consulting some empirical results, we assume that the judging adjacency
process can be done in a quasilinear time O(n log n). Then, the theoretical complex-
ity for vine-growing would be O(n3 log n), because the robust correlation matrix
estimation process has a theoretical complexity of O(n3).

Is this time complexity too high for real-world applications? Considering that
the naïve calculation of partial correlations already has a complexity of O(n3), the
semantic vine can be constructed in an acceptable time. The semantic vine-based
method would not be significantly slower than computing partial correlations, which
is a must for mean-variance optimization.

Table 4.5 reports the CPU times experienced for semantic vine-growing on
different numbers of assets and their deviation from the (theoretically) estimated
time. The experiments were conducted on a MacBook Pro with 2.6 GHz Intel R©
Core i5 processors

Another suspicion is, though we have demonstrated the quality of semantic vine
constructed on a portfolio of five assets, whether a more complicated semantic vine
will retain the same quality and reveal the important correlations between assets as
the problem scale increases. As a reply to this concern, we investigate the “Tree 1”
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Table 4.5 Comparisons of empirical and theoretical time complexity at different problem
scales [191]

Number of assets 5 10 20 50 100 200

CPU time (ms) 1.58 11.8 139 4,320 49,400 758,000

Estimated time (ms) (1.58) 11.4 182 4,740 49,335 486,000

Error(%) – +3.5 −23.6 −8.9 +1.0 +56.0

Fig. 4.8 The first layer dependence structure of stocks selected from the US market [191]

on a larger scale of stocks (Fig. 4.8). The sizes of nodes are according to market
capitalization; each node is marked by the ticker of that stock. A full list of these
stocks and the whole vine structure are provided in Appendix A.

In Fig. 4.8, the stocks are divided into different color groups according to their
business sectors suggested by the Global Industry Classification Standard (GICS)
and the Thomson Reuters Business Classification (TRBC). The two systems are
almost identical in terms of business sectors though differ at more specific levels:
the industry and sub-industry codes. At the business sector level, only 2 out of 55
are differently classified. We can observe from Fig. 4.8 that many companies in the
same industry are linked, such as Wells Fargo and JPMorgan [31]. Additionally,
we observe healthcare clusters, e.g., BMY-JNJ-ABT; banking clusters, e.g., BAC-
WFC-JPM; and energy-mining clusters, e.g., COP-OXY-CVX. However, these
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companies from the same cluster can have very different surrounding neighbors.
For instance, both are classified as consumer discretionary businesses, Comcast is
more affiliated with telecom industry, while Amazon is located closer to healthcare
and the retailing business [191]. Despite the fact that the semantic vine actually has
more layers that are not shown in Fig. 4.8, the first layer dependence structure alone
captures more information than the popular industry classification standards since a
company is defined by its linked neighbors.

4.5 Summary

Many different types of approaches have recently been developed to incorporate
prior knowledge into financial applications. The knowledge types include sentiment
knowledge, semantic knowledge, and common sense knowledge. However, not
many of these approaches have attached importance to the issue of robustness.
One of the important reasons why leveraging such knowledge could bring about
improvement is that knowledge eliminates uncertainty and forms a more consistent
perspective for us and the way we do things. Some unnecessary cost comes from our
fear and we fancy ourselves clever. This chapter excitingly presents a combination
of leveraging prior semantic knowledge and theoretically sound robustness, showing
potential financial applications of NLP and knowledge representation.



Chapter 5
Sentiment Analysis for View Modeling

But this long run is a misleading guide to current affairs. In the
long run we are all dead.

—John M. Keynes

Abstract This chapter investigates a method to incorporate market sentiment to
asset allocation models. In the previous chapter, we experimented with robust mean-
variance optimization, which is a static process that finds the status quo optimal
portfolio weights and surfs market fluctuations. However, an important piece of the
jigsaw is missing, i.e., the irrational components in rise and fall of asset prices.
In fact, if all the market participants hold the same robust Markowitz portfolio,
the market would not clear, nor would transactions happen. The Black-Litterman
model provides us an entry to include subjective views to asset allocation models.
As an extension to it, concept-level sentiment analysis methods described in this
chapter will be used to compute the subjective views, emulating a financial analyst’s
activities.

Keywords Concept-level sentiment analysis · Subjective view modeling ·
Market sentiment · The Black-Litterman model · Sentic computing ·
ECM-LSTM

5.1 Concept-Level Sentiment Analysis

Sentiment analysis is a “suitcase” research problem [25] that requires dealing with
many NLP subtasks, such as aspect extraction, concept extraction, named entity
recognition, subjectivity detection, and sarcasm detection (see Fig. 5.1). But to inte-
grate and make use of sentiment analysis for broader computational social science,
it will be beneficial to include complementary tasks such as personality recognition,
user profiling, and multimodal fusion. In financial markets, participants’ behavior
such as the fear of steep fall, over-confidence on the trend, and risk aversion are
all related to sentiment. Consequently, sentiment analysis or affective computing is

© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-30263-4_5
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Fig. 5.1 The suitcase metaphor for sentiment analysis [25]

yet another important perspective on financial activities. According to the prophetic
five-eras vision of the future web (see Fig. 5.2 of [127]), market sentiment would
become a prominent factor that influences trading and information flow as well as
shaping products and services. The market behavior has been profoundly changed
due to the introduction and evolution of information infrastructure (see discussions
by Gagnon and Goyal [80], Jensen [64]).

The sentiment analysis research becomes popular in synergy with the develop-
ment of Web 2.0. We categorize the research approaches to sentiment analysis and
affective computing into three main groups: knowledge-based techniques, statistical
methods, and hybrid approaches. Knowledge-based techniques are brainchildren
of some ambitious early attempts to build large-scale language resources that can
curate the sentiment and relations of every expression. Such projects include the
Cyc [69] led by Douglas Lenat, Open Mind Common Sense (OMCS) from which
ConceptNet [100] was built, and WordNet [60]. To assign sentiment information
for those knowledge bases, there are several competing computational models for
sentiment representation based on different psychological theories of emotion [109].
Categorical theories of emotion define a finite set of labels and assign core emotion
labels to words, for example, WordNet-Affect [177]. At the top level, sentiment
words are either positive or negative according to the primary core emotion.
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Fig. 5.2 The five-eras vision of the future web [127]

The manual work required here is to categorize a finite set of emotions. Opinion
Lexicon [76] is one example of this scheme. At a lower level, emotion labels can
also be related to each other. Such models include dimensional activations as basic
factors that underlie the labels, e.g., the arousal-valance model, or more information
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such as subjectivity and intensity to the knowledge base. SentiWordNet [5] is a good
representative of this kind. Another popular open domain resource is SenticNet [28],
which contains entries not at the word level, but at the concept level to tackle the
problem of phrases and multi-word expressions [24, 144].

Concept-Level Sentiment Analysis (CLSA) make use of a knowledge base
where concepts and their sentiment aspects are stored, e.g., in SenticNet. The
polarity detection algorithm retrieves concepts as well as the corresponding polarity
scores from the knowledge base. The knowledge base can keep expanding and is
transparent to users. This is a desirable feature that many financial applications
would require. The look-up mechanism of CLSA partially solves the mysterious
compositionality of sentiment inside concepts, e.g., “thirsty”1 is negative, but
“thirsty_for_knowledge” is positive.

5.1.1 Sentiment Analysis in the Financial Domain

Human society has created enormous complex systems, and financial markets are
among the most chaotic and dynamic ones. Through bids and offers on the financial
assets, many factors could lead to market price fluctuations. The psychology and
conduct of market participants have a significant role to play in this price-forming
system. Public mood is a highly effective and universal variable that represents
market participants’ attitudes. Moreover, the growing popularity of social media has
made the spread of information faster than ever before. As a result, the subjective
views on the market will in some periods dominate the market and bring about
irrational market behaviors. A recent study [95] suggests that current stock price
movements in the world’s major financial markets are essentially influenced by new
information and the investors’ belief rather than how the business of companies are
running.

Several hand-crafted public resources are already widely used to analyze public
mood in the financial domain. Some of them are contributed by economics and
finance researchers, e.g., the General Inquirer [84], the word list from analyses
of tone of earnings press releases by Henry [73], and a more recent Loughran &
McDonald word list [103]. Wuthrich and his colleagues have reported in their pio-
neer work [187] circa four hundreds keyword tuples by consulting financial experts.
The tuples contain adjectives such as “high” and “low” and have demonstrated
predictive power for market movements. The attempts to build more comprehensive
lexicons and word lists in the financial domain automatically have lasted to recent
time [70, 165]. These studies have to use label propagation to transfer sentiment
information from seed words to more related words. However, many focus overly
on the methods, and the final lexicons produced are not made available to the public,
such as in [165]. In open domain there are more accessible lexicons with richer

1We use typewriter font to denote concepts throughout the book.
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sentiment information rather than sentiment polarities. Some of them can be used for
financial forecasting as well. For example, SenticNet stores four-dimensional values
of the hourglass model [27], which is derived from Plutchik’s wheel of emotions.
It has been used to analyze the polarity of financial tweets and form sentiment time
series [189, 192]. Another quite popular resource among researchers of finance is
called Profile of Mood States (POMS). The POMS was developed by psychologists
using a rather different sentiment space to scale mood aptitude or subjectivity,
compared to Plutchik’s wheel of emotions. The original form of POMS [151]
proposed in 1983 consists of six factors: tension-anxiety, depression-dejection,
anger-hostility, fatigue-inertia, vigor-activity, and confusion-bewilderment. Several
revised versions of the POMS, like OpinionFinder [184], adopted the similar factor
categories and are used later in some influential works, such as [19, 124]. The six
factors are not necessarily independent of each other, and such redundancies are
usually useful to accurately model emotion states. Combined with machine learning
techniques, application of the lexicons in practice can analyze the sentiment at
word level, concept level, sentence level, and paragraph level. For instance, the
two versions of Sentic API2 work at concept and sentence level. The AZFinText
system [148] works at a document level. The Stock Sonar [58] is used to conduct
sentiment analysis at both the word level and phrase level. In the end, the system
would do polarity classification at a document level.

Debates have been there on the effectiveness of using alternative data for financial
forecasting. We believe the use of public mood is worthwhile for analyzing financial
markets and specific financial assets even for the professionals because it brings in
public yet incremental information. On the contrary, technical analysts entirely rely
on mining of the historical price patterns, where the information-to-noise ratio is
very low. In many trendy AI-based systems, especially those that apply machine
learning and deep neural networks to stock market prediction, the community falls
into the same situation as technical analysts. The use of large computational power
and model complexity cannot exceed the limitation and turn the input data into
gold. In fact, financial time series are extremely difficult to forecast. A study by
Xing et al. [193] suggests that most complex systems are chaotic, namely, there
are no “detectable patterns” even for deterministic systems. As time evolves, small
errors in observations quickly lead to different results. This does not necessarily
mean that the current prices reflect all the past information as the efficient-market
hypothesis (EMH) suggests and there is nothing to learn from lagged values. In one
sense, the difficulty lays on accurate observations of the past sequence. In another
sense, as the prices are driven by new information, the past patterns fade quickly
away. Consequently, the pattern chasers are always one step behind if they simply
build the model with past prices and their models mimic the trend with no predictive
power.

In addition to the price series, macroeconomic variables are sometimes con-
sidered as the driving forces for market fluctuations in the literature as well. The

2http://sentic.net/api/

http://sentic.net/api/
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multi-factor models [56] usually take into account a company’s book value and
investment. Nevertheless, the problem with having macroeconomic variables is that
those factors are updated in rather low frequencies. The public mood, in contrast, is
easier to sample and access in real-time. Unlike many economic factors, the public
mood can be instantaneously monitored and estimated as an aggregation of the
market sentiments of individuals. Public moods can be mined from many sources
that appeared in previous studies, such as newspapers [187], RSS feeds [201], stock
message boards [3], microblogging platforms [157], social media, and more [182].
For example, Zhang and Skiena [201] utilized counts of positive and negative
words to derive polarity and subjectivity for certain companies; Antweiler and
Frank [3] labeled some messages by hand to train a Naïve Bayes classifier to predict
either bullish, bearish, or neutral based on the BOW representation of messages;
Smailović [157] used emoticons to classify a big dataset of tweets and trained an
SVM based on the collection.

More recently, Weichselbraun and his colleagues [182] proposed to analyze the
sentiment of social media streams based on dependency trees that are enriched with
sentiment information mined from a knowledge base to include grammatical struc-
tures. Although the methods used are diverse from knowledge-based approaches to
machine learning, most of them have discovered significant correlations between
the public mood and the movement of asset prices. Statistical test and simulation
results further assisted to confirm the predictive power of public mood [18, 19].

5.2 Market Views and Market Sentiment

Although the market sentiment is important, it is not adequate to predict the asset
prices based solely on a collection of public mood data, let alone to directly make his
investment decision for an individual. This is because the underlying mechanism of
price formation is complicated: public mood does not directly affect the market;
it does indirectly through other market participants’ views and their consequent
behavior. There may be multiple rounds of interaction, which are called “higher-
order beliefs” (the belief that other participants would hold a belief that. . . ) in
game theory [8, 119]. Subsequently, a natural question to ask is “how to bridge
public mood with market views (of the investor himself)” or, in other words, how
to change the perspective from an observer to a decision-making ego. However, we
know very little about the mechanism of how market views are formed from public
mood especially in the context of asset allocation and invest management. In the
rest part of Sect. 5.2, inspired by the Bayes’ theorem, we will introduce a method
to compute market views from both the historical price series and an investor’s
prior based on the sentiment time series from the social media. We conduct ablation
analyses and find out that using this sentiment prior would on average enhance the
annualized portfolio yield by 10% on top of various state-of-the-art asset allocation
strategies.
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5.2.1 Market Views: Formats and Properties

In Sect. 2.3.2, we introduced the underlying distribution of expected returns by
investor’s market views as rviews ∼ N (Q,Ω). This form implies Q as the
subjective expected returns and Ω as the variance of rviews. Based on the physical
meaning of antecedent Q and Ω , the Black-Litterman model defines two types
of market views, that is, relative views and absolute views [72]. A relative view
takes the form of “I have ω1 confidence that asset ax will outperform asset ay by
b% (in terms of expected return)”; an absolute view takes the form of “I have ω2
confidence that asset az will outperform the market by c%”. Therefore, we arrive at
the mathematical definition of market views (matrices) as follows.

Definition 5.1 For a portfolio consisting of n assets, a set of k views can be
represented by three matrices Pk,n, Qk,1, and Ωk,k . P indicates the assets mentioned
in views. The sum of each row of P should either be 0 (for relative views) or 1 (for
absolute views); Q is the expected return for each view; and the confidence matrix
Ω is a measure of covariance between the views.

We write the confidence matrix as Ω = diag(ω1, ω2, . . . , ωn). This is possible
because the market views are assumed to be independent of each other by the Black-
Litterman model. Consequently, the confidence matrix is full rank. In fact, as long
as the k views are compatible (not self-contradictory), which is a prerequisite for
further computation, the diagonal assumption of the confidence matrix will not harm
the expressiveness of the set of market views. Suppose we have a counterexample
when the confidence matrix Ωk,k is not diagonal, then we do spectral decomposition
to Ω: Ω = V ΩΛV −1, where ΩΛ is by definition diagonal. In such case, we can
appoint ΩΛ to be the new confidence matrix and let the new mentioning matrix
and the new expected return matrix be P Λ = V −1P , QΛ = V −1Q. Under
Definition 5.1, we describe two crucial properties (Theorem 5.1 and 5.2) of the
view matrices P , Q, and Ω with proofs [188].

Theorem 5.1 (Compatibility of Independent Views) Any set of independent
views are compatible.

Proof Assume there is one pair of incompatible views formalized as {p, q} and
{p, q ′}, where q �= q ′. Both views are either explicitly stated or can be derived from
a set of k views. Hence, there exist two different linear combinations, such that:

k∑

i=1

aipi = p

k∑

i=1

aiqi = q (5.1a)

k∑

i=1

bipi = p

k∑

i=1

biqi = q ′ (5.1b)

where (ai − bi) are not all zeros.
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Thus, we have
k∑

i=1
(ai − bi)pi = 0, which means that the k views are not

independent. According to the law of contrapositive, the statement “all independent
view sets are compatible” is true. 
�
Theorem 5.2 (Universality of Absolute View Matrix) Any set of independent
relative and absolute views can be expressed with a non-singular absolute view
matrix.

Proof Assume a matrix P mentioning k views in total: r relative views and (k − r)

absolute views, that is, Pk,n =

⎡

⎢⎢⎢⎢⎢⎢⎣

p1,1 p1,2 · · · p1,n

...
...

. . .
...

pr,1 pr,2 · · · pr,n

...
...

. . .
...

pk,1 pk,2 · · · pk,n

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Correspondingly, the return vector is Qk,1 = (q1, q2, . . . , qk), the capital weight
vector for assets is w = (w1, w2, . . . , wk).

An equivalent expression of the same views should have the same expected
returns for each asset regardless how many times and where they are men-
tioned. Hence, we can write (r + 1) equations with regard to r new variables
{q ′

1, q
′
2, . . . , q

′
r }, where j = 1, 2, . . . , r:

1 + q ′
j =

r∑

i �=j

(1 + q ′
i )

wi∑
s �=j

ws

(1 + qj ) (5.2a)

r∑

i=1

q ′
iwi +

k∑

i=r+1

qiwi = Qwᵀ (5.2b)

We consider asset {ar+1, ar+2, . . . , ak} to be one compound asset, then, the return
of this compound asset is decided by Pr,n. Hence, r out of the (r + 1) equations
above are independent.

There must exist a unique solution with the form of Q′ = (q ′
1, q

′
2, . . . , q

′
r ,

qr+1, . . . , qk) to the aforementioned (r + 1) equations, according to Cramer’s rule,
such that view matrices {P ′,Q′} are equivalent to view matrices {P,Q} for all the
assets considered, where

P ′
k,n =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
...

...
. . .

...

0 pr,r = 1 · · · 0
...

...
. . .

...

pk,1 pk,2 · · · pk,n

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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Obviously, P ′
k,n only consists of absolute views. By deleting dependent views

from P ′
k,n, we can have a non-singular matrix that only consists of absolute views

and is compatible. 
�
Providing Theorem 5.1 and 5.2, without loss of generality, we are able to impose

one equivalent yet more strict definition of market views for the purpose of reducing
the computational complexity. In practice, Definition 5.2 is more frequently used,
because the elimination of matrix P makes the definition concise and easy to
understand. In fact, the format of asset mentioning matrix in Definition 5.2 not only
facilitates the restriction of absolute market views but also provides independency.
This guarantees that the Black-Litterman assumption, which says the market views
can be represented with a multivariate normal distribution, is mathematically sound.

Definition 5.2 Market views on n assets can be represented by three matrices
Pn,n, Qn,1, and Ωn,n, where Pn,n is an identity matrix (I); Qn,1 ∈ R

n; Ωn,n is a
nonnegative diagonal matrix.

Furthermore, following the steps described in [146], a specification of equa-
tion 2.12 can be derived from equation 2.13 and Definition 5.1 that:

μBL = [(τΣ)−1 + P ′Ω̂−1P ]−1[(τΣ)−1Π + P ′Ω̂−1Q] (5.3)

ΣBL = Σ + [(τΣ)−1 + P ′Ω̂−1P ]−1 (5.4)

Therefore, the task of computing market views can be redescribed as to estimate the
variables (including P , Q, and Ω , while others are considered given by the CAPM)
in Equations 5.3 and 5.4 with the assistance of a sentiment prior.

5.2.2 Estimating Volatility, Confidence, and Return

For the equilibrium risk premiums Π , we use the calculation suggested by CAPM
(equation 2.11). That is, a premium proportional to the realized volatility calculated
from historical price series. Then to estimate the parameters of the posterior
(Gaussian) distribution of the expected portfolio returns, three variables are to
be determined as in the Black-Litterman model: the equilibrium volatility as a
covariance matrix (Σ), the investor’s confidence of his own views (Ω), and the
investor’s expected returns as in his views (Q).

We first use the traditional truncated method to calculate the covariance matrix
instead of the state-of-the-art method introduced in Chap. 4 for the fairness of
comparison. According to the recommendation of the Black-Litterman model, the
past k-days observed returns are used for asset pairs (ai, aj ). The element σij as in
covariance matrix Σ is estimated as below:
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σ̂ij = k−1
k∑

n=1

(Ri,−n · Rj,−n) − k−2
k∑

n=1

Ri,−n

k∑

n=1

Rj,−n (5.5)

where Ri,−n is the return of asset ai on the n-th past day.
The classical form of the Black-Litterman model [14] relies on investing experts

to manually set the confidence matrix Ω based on their own experience. At the
worst cases, where the investor has no idea how to derive the confidence matrix, a
numerical example provided by [72] pointed out a primary estimation:

Ω̂ = diag(P (τΣ)P ′) (5.6)

We give the explanation for this estimation as follows. Because Σ is by definition a
covariance matrix, P(τΣ)P ′ can also be understood as cov(τPΣ, τPΣ), which is
a covariance matrix of the expected returns in the views. Note that the mentioning
matrix P “filters out” the covariances not relevant to the views. With Definition 5.2,
where P is an identity matrix, this estimation is more understandable. Because
P(τΣ)P ′ is already diagonal, the latent hypothesis here is that the variance of an
absolute view on asset ai is proportional to the volatility of asset ai . This hypothesis
shares the same idea as the CAPM: not only the risk premium comes from volatility,
but also the confidence of any judgment would decrease the same amount if the
return is more volatile. In the example by [72], the estimation of Ω utilizes only the
past information of asset price volatilities.

Compared to volatility, the expected return has a more directly perceivable
relation to the market sentiment. In contrast to the naive assumption that positive
market sentiment leads to positive returns and vice versa, our assumption here is
more developed. We believe there exists a strategy that “responds to the market
sentiment” and can surf the market and statistically makes profits (generates alpha).
However, such a strategy can be complicated. Therefore, we employ machine
learning techniques to “learn” this strategy under the framework of the Black-
Litterman model. That is, imagine an agent who empirically forms and updates
their views using information like the past price series (πt,k) and trading volumes
(vt,k). In our extension, these activities further involve a new prior: sentiment time
series derived from the alternative data stream obtained from the social media. We
denote this new prior by St. Now the problem (formally) becomes learning a proper
function F that maps the expected return estimation to each time period t :

Q̂t = F[Q̂BL(πt,k, vt,k,St); Q∗
t ] (5.7)

where Q∗
t is the supervision.

We compare three implementations of the function F, which are neural-fuzzy
approach (DENFIS), deep learning approach (LSTM), and an innovative deep
recurrent neural network design that is based on evolving clustering method (ECM)
and LSTM architecture, hence termed ECM-LSTM. The three implementations are
chosen for the motivation that we want to have a good coverage of various types
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Fig. 5.3 Model training process for generating market views

of neutral network-based approaches. Figure 5.3 illustrates the dataflow when F is
implemented by LSTM [188].

5.2.3 DENFIS, LSTM, and ECM-LSTM

In this section, we introduce the details of ECM-LSTM and show the combination
of architecture for both DENFIS and LSTM.

DENFIS is a type of fuzzy inference system (FIS) with neuro-fuzzy rule nodes
proposed by Kasabov and colleagues in [83]. The model has a fast adaptive ability
because it actively monitors the ever-changing distribution of incoming data and
partitions the rule nodes dynamically, so that every-time the activated neurons are
different. This feature is especially useful for financial time series. Empirical results
show that DENFIS, compared to several other types of fuzzy neural networks, such
as Artificial Neuro-Fuzzy Inference System (ANFIS) and Neural Fuzzy Controller
(NEFCON), has a better performance in nonlinear chaotic system modeling [193].
We consider the financial market as a complex system in real-world; thus, DENFIS
is the most promising model in modeling its dynamics. Each DENFIS neuron has
an “IF-THEN” format rule:

IF L0∼k[π, v,S]t,i = patterni, i = 1, 2, . . . , N

THEN Q̂t = f1,2,...,N ([π, v,S]t ),

where π, v,S are three attributes and some of the (2N −1) functions are activated. L
is the lag operator and the pattern parameters are learned online. The rule format is
called Takagi-Sugeno-Kang type (TSK) rule for that the output is a linear function
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of degrees of applicability for each pattern. We implement the DENFIS model with
all the membership functions set up to symmetrical and triangular, that is, two
parameters define the activation range of d: at x = z the membership degree equals
to 1 and x = z ± d/2 the membership degree equals to 0. Note that for each time
period t , z is updated with a linear least-square estimator of existing consequent
function coefficients, so as to align the activation of each fuzzy rule.

LSTM is yet another popular model for sequential modeling in recent time. The
model equips the simple recurrent neural network with three types of gated units.
The gates control information from previous time steps, so LSTM architecture is
claimed to perform well in predicting time series with an unknown size of lags
and long-term dependencies [75]. Previous studies like [65] also applied LSTM to
time series prediction. Other attempts to develop more powerful recurrent neural
networks include GRU [48] and some automatically designed variants, though their
performance across different tasks are similar [67]. For this reason, we employ the
vanilla LSTM unit structure and implement the “πvS-LSTM”, where inside the
neuron cells the update rules are as below for the input gate, forget gate, and output
gate, respectively.

it = σ(Wi · [ht−1, [π, v,S]t ] + bi)

ft = σ(Wf · [ht−1, [π, v,S]t ] + bf )

ot = σ(Wo · [ht−1, [π, v,S]t ] + bo)

(5.8)

where the sigmoid function is denoted by σ , ht−1 is the hidden state of the previous
time step, W() denotes the state transfer matrices, and b() is the bias. The rules that
update the cell state of each LSTM unit are therefore:

ct = ft � ct−1 + it � (Wc · [ht−1, [π, v,S]t ] + bc)

ht−1 = ot � tanh(ct−1)
(5.9)

Figure 5.4 shows the mathematical operations inside one LSTM cell as in
Fig. 5.3. The model is not trained on a batch of data points and locked static;
instead, it is trained in an “online fashion.” This means that whenever a new input
is received, it goes to the training set. The previous states and parameters of LSTM
are used as a pre-trained model, and the LSTM model online has one training data
for each period t .

ECM-LSTM is a combination of the ECM mechanism and the LSTM neural
architecture proposed in [189]. Inspired by the predictive behavior of a simple
LSTM, we find that incoming data often “drives” the forecasts to the opposite
directions even if in a longer span the ground truth level remains stable. We interpret
this type of movement as noise, that is, noise in the inputs is amplified. It is already
confirmed that noise is ubiquitous in real-world financial time series. Considering
this fact, over-fitting to meaningless signals is inevitable and will increase errors. To
this end, we must find out an approach to learn “not to learn” from the noise.
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Fig. 5.4 Operations inside a LSTM cell

Our solution is to use the ECM mechanism to filter out less important data. The
method was used originally for input space partitioning for rule induction in fuzzy
inference systems, by means of dynamically recording and updating the centroids
and clustering radii. The method has several good properties, e.g., it is fast because
only one round of maximum distance-based clustering without any optimization is
required. To take advantage of it, we stabilize the LSTM behavior by learning only
from the critical new incoming data and omitting the rest. The criterion is the new
incoming data is less important when the old clustering pattern keeps unchanged.

The training and predicting processes of ECM-LSTM are detailed in Algo-
rithm 5.1, where Q̂t−1 is the last forecast made by the model, while Q∗

t−1 is the last
observable ground truth. Q∗

t−1 is computable by inverse engineering the optimal
values to maximize the portfolio’s return in the last period. We use i, f , and o

to represent the activation functions of input gate, forget gate, and output gate,
respectively. As in common recurrent neural networks, for time period t , the state
for LSTM cells, namely, ct , is updated by two resources: the current information
[π, v,S]t and the previous state ct−1. At the same time, the ECM mechanism also
keeps record of clustering centroids and corresponding radii pairs (Ci , Ri ) for the
input data.

5.2.4 The Optimal Market Sentiment Views

Our task according to Definition 5.2, is to compute the optimal market views
[P,Q∗, Ω̂] or mainly Q∗ based on the inverse optimization problem of the Black-
Litterman model and sentiment-conditioned return distributions as inputs. In a
multi-period model of an asset portfolio where the amount of capital has no memory,
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Algorithm 5.1: ECM-LSTM training and forecasting procedure
Data: Incoming data stream π , v, S
Result: Expected return estimation Q̂t

1 Initialize LSTM parameters W , b;
2 if C = ∅ then
3 C0 = (πt,k, vt,k,St );
4 R0 = 0;
5 Go to line 15;
6 else
7 Dmin = min(||(πt,k, vt,k,St ) − Ci ||);
8 if � (Ri ≥ Dmin) then
9 Add (πt,k, vt,k,St ) to Ci where Dmin holds;

10 Go to line 24;
11 else
12 (Smin, i) = min(||(πt,k, vt,k,St ) − Ci || + Ri );
13 if Smin > 2Ri then
14 Add (πt,k, vt,k,St ) to C ;

15 it = σ(Wi · [ Q̂t−1, πt,k, vt,k,St ] + bi);

16 ft = σ(Wf · [ Q̂t−1, πt,k, vt,k,St ] + bf );

17 ot = σ(Wo · [ Q̂t−1, πt,k, vt,k,St ] + bo);

18 ct = ft � ct−1 + it � (Wc · [ Q̂t−1, πt,k, vt,k,St ] + bc);

19 Q̂t = ot � tanh(ct );

20 Update W , b with
∂(Q∗

t−1−Q̂t−1)

∂{i,f,o}t−1
;

21 else
22 Add (πt,k, vt,k,St ) to Ci where Smin holds;
23 Update (Ci ,Ri );

24 Q̂t = ot � tanh(ct−1);
25 end
26 end
27 end
28 return Q̂t ;

the aim is to maximize the amount of capital in the near future, at period (t + 1).
We write this optimization problem as:

max
wt

Ct+1 = Ct × wt � π t+1

π t

. (5.10)

Since Ct is actually pre-given, the value of variable wt is independent from Ct .
Therefore, the optimal portfolio weights for each period t are:

w∗
t = argmax wt � π t � π t+1 (5.11)

where � and � are element-wise division and element-wise multiplication opera-
tors.
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Apparently, with the constraint that wt ∈ [0, 1]n, the solution of portfolio
weights (equation 5.11) would be a one-hot vector representation. In this vector the
forecasted one-period returns determine the position index of value 1: the weight of
the asset with the maximum price leap (

πi,t+1
πi,t

) equals to 1.
The real-world interpretation is that one should reinvest his/her whole capital

daily to the fastest-growing asset in the next period, providing that there are no
short selling and transaction fees. If we set the optimized weight w∗

t to be w∗
BL in

equation 2.14, we derive a multi-period equation 5.12:

w∗
t = (δΣBL,t )

−1μBL,t (5.12)

Substituting ΣBL,t and μBL,t with equations 5.3 and 5.4 for each period t , we
can have:

w∗
t = [δ(Σt + H)]−1H[(τΣt )

−1Πt + P ′Ω̂−1
t Q∗

t ] (5.13)

where H = [(τΣt )
−1 + P ′Ω̂−1

t P ]−1.
In equation 5.13, w∗

t is known from the daily price movement of assets.
Therefore, our goal is to inversely solve the optimal expected returns in market
views Q∗

t for each period t . This result (equation 5.14) has been reported in [189].

Q∗
t = Ω̂t [δ[(τΣt )

−1+P ′Ω̂−1
t P ][Σt+[(τΣt )

−1+P ′Ω̂−1
t P ]−1]w∗

t − (τΣt )
−1Πt ]

= δ[ Ω̂t (τΣt )
−1 + I ] [Σt + [(τΣt )

−1 + Ω̂−1
t ]−1 ]w∗

t − Ω̂t (τΣt )
−1Πt

(5.14)

5.3 Market Sentiment Computing

The market views rely on computing sentiment time series St in equation 5.7,
which itself is an abstract variable that requires NLP and sentiment analysis on a
great amount of textual data. The quality of St is no doubt critical, because the
data is later employed as Πt in equation 5.14, where Q̂t is estimated and trained
to minimize the difference. To ensure the quality of St and classify sentiment
expressions accurately, we employ the interesting idea of sentic computing [26].
It enables sentiment analysis of text not only at a document or paragraph level but
also at the sentence, clause, and concept level. Compared to other machine learning-
based sentiment analysis methods, sentic computing combines syntactic feature and
knowledge base to do polarity inference and back it up with a learned classifier. A
naive statistical sentiment analysis method counts the positive and negative words in
a sentence and calculates the net polarity; however, in such a situation, the grammar
is not taken into account. By averaging the word polarities, positive and negative
words will nullify each other, which brings about difficulties for analyzing sentiment
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in complicated contexts [189]. In the remainder of Sect. 5.3, we will describe the
Hourglass of Emotions, SenticNet, and how they are used for sentic computing.

5.3.1 The Hourglass of Emotions and SenticNet

Human emotions are more complicated than a sentiment orientation. The nuances
between happy, joy, trust, ecstasy, etc. comprise a continuous space of emotions. The
Hourglass of Emotions is such a model for affective states classification derived
from Plutchik’s studies of emotions [133] that depicts this emotion space (see
Fig. 5.5). The model assumes that the full spectrum of human emotions can be
organized according to four independent but concomitant dimensions: Pleasantness,
Attention, Sensitivity, and Aptitude. For example, Joy is a mid-level activation
of Pleasantness, while Sadness is a mid-level inhibition of Pleasantness. More
advanced emotions can mingle different activation levels on these four dimensions.
For instance, Joy + Trust + Anger = Jealousy, which means Jealousy can be rep-
resented by a quadruple of activation levels [G(0.5),G(0),G(0.5),G(0.5)] termed
“sentic vector”. Bell curve function G(x) = − 1

σ
√

2π
e−x2/2σ 2

maps components of
sentic vectors closer to 1.

One advantage of the Hourglass model is that it provides richer information
on emotion states associated with words or concepts of natural language, thus
enabling computation on multiple dimensions. Meanwhile, a sentiment polarity
score between −1 and 1 can be calculated from aggregation of these four factors:

Fig. 5.5 The 3D model of the Hourglass of Emotions [27]
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γ (x) = P leasantness(x) + |Attention(x)| − |Sensitivity(x)| + Aptitude(x)

3
(5.15)

SenticNet is a public available knowledge base that stores both semantics and
sentics of natural language concepts. The semantics are represented by associ-
ated concepts, such as hypernym, hyponym, and related concepts; the sentics,
on the other hand, are stored as sentic vectors of the hourglass model. Early
versions of SenticNet leverage multiple sources of commonsense knowledge such as
OMCS [100, 160] (where ConceptNet is built from), WNA [162], and GECKA [29].
In particular, the concepts are embedded into a space where similar concepts have
closer distance. After that, the 24 seed affective concepts in the hourglass model are
selected as “centroid concepts.” Depending on the relative distances, the activation
levels of the seed concepts are decayed and propagated to the concepts belonging
to the same cluster. Finally, based on the four activation levels of each concept,
equation 5.15 is used to derive the polarity score.

The latest release SenticNet 5 [28] contains over 100,000 concepts. Unlike
the previous versions, the concepts are not identically treated, but organized into
a multi-layered semantic network that links name entities as well. Based on
the contextual features of concepts extracted by a bi-directional LSTM, similar
concepts are clustered. Later, sub-component words with the highest occurrence
frequencies are selected to form conceptual primitives. For example, the primitive
“eat_food” leads many more specific concepts such as “munch_toast”,
“slurp_noodles,” etc. This finite number of primitives solves the thorny
coverage issue of commonsense knowledge base. Therefore, we no longer need
polarity scores for every concept, and sentic computing can be conducted at the
primitive level.

5.3.2 Augmented Sentic Computing

Sentic computing mainly leverages SenticNet [28] as the commonsense knowledge
base and sentic patterns [136] as a method to do polarity inference. The patterns are
a set of linguistic rules that enables long-term dependency discovery, for example,
two words are distant in the sentence but linked by grammatical relations. To infer
the overall sentiment polarity, sentic computing first extracts multiple relation tuples
from the sentence with the Stanford-typed dependency parser [46]. Meanwhile,
a semantic parser traverses each unigram and bigram3 and attempts to look up
the polarity score from a concept-level sentiment knowledge base. Finally, these
concepts trigger sentic patterns to process the relations and associated intrinsic
polarities. If the concepts are not in the knowledge base, e.g., SenticNet, the method
resorts to a classifier built by machine learning. Extending the basic version [134],
augmented sentic computing implements modificatory functions instead of polarity

3Only meaningful parts of speech tag pairs, such as ADJ+NOUN, VERB+NOUN, and VERB+ADV,
are considered and lemmatized.
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Fig. 5.6 The sentic computing algorithm working at sentence level [189]

algebra for different pivot types. For example, parabolic and power functions are
used for decaying and amplifying sentiment intensity.

Figure 5.6 as from [189] depicts this sentence-level polarity detection process.
Augmented sentic computing is powerful in many tricky cases. In the remainder

of this chapter, we use augmented sentic computing. Next, we will provide
examples of real-world texts from social media where augmented sentic computing
outperforms sentic computing and other machine learning-based techniques, for
instance, the Google Cloud API for natural language processing.

5.3.3 Examples of Applying Augmented Sentic Patterns

Example 1 I had a feeling $AAPL would go down, but this is stupid

The first phase of analyzing Example 1 is preprocessing: link the cashtag
“$AAPL” to “Apple company,” and add a period at the end of the complete sentence.
The interesting point of Example 1 is that it falls into the category of complicated
sentence structure. Not all of the adjectives are describing the target in discussion.
Although “stupid” is a negative word, it describes one part of the sentence instead
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of “$AAPL.” By denying his own previous opinion, the speaker actually means that
“$AAPL” would go up and thus expresses a positive mood for the Apple company.
For this reason, the user labeled this example as bullish. Imagine a bag-of-words
model, which finds two negative words “down” and “stupid”: the whole sentence
will thus be considered as strong negative. Machine learning-based sentiment
analysis models, for instance, Google Cloud Natural Language API (Google SA),4

may also fail for this example.5 This result suggests that the syntactic feature of the
sentence is not effectively captured by such models.

Augmented sentic computing, in contrast, will first look up the concept
“go_down” and “stupid” from SenticNet. By extracting “go_down” as a whole,
the model better understands the sentiment of the entire sentence. Although both
the two concepts have negative sentiment scores of −0.07 and −0.93, their roles
in the sentence is different. Multi-word expression “this_is_stupid” contains
concept “stupid” while the remaining part “this_is” carries no sentiment.
Consequently, the negative score of −0.93 is inherited through a nominal subject
(nsubj) relation. In parallel, another relative clause
feeling_(that)_$AAPL_would_go_down not only inherits the polarity
from concept “go_down” but also amplifies the sentiment intensity because of the
“acl:relcl” relation. Therefore, the sentiment score would be −√| − 0.07| = −0.27.
At a high level, the two structures are associated by an adversative but-conjunction
(but-conj). Thus the sentic patterns are triggered and final polarity score is√|[(−0.27) + (−0.93)]/2| = +0.78. This score is passed to the root of the sentence
since other components are neutral. The described process is backed up with an
alternative multi-layered perceptron classifier to mitigate the coverage problem.
When the whole sentence does not contain any concept from the knowledge base, we
would not conclude the sentiment to be neutral. Instead, the sentiment score comes
from supervised learning. Finally, if the message contains more than one sentence,
we will conduct augmented sentic computing for each sentence and average the
sentiment scores as an overall result. Figure 5.7 provides a good illustration of the
above discussed process.

Example 2 $AAPL will be down today again but the down draft is slowing. By end
of next week I think it’s getting bought back.

I had a feeling $AAPL would go down but this is stupid .

nsubj

dobj

det

acl:relcl

nsubj

aux cc

but-conj

nsubj

cop

root

Fig. 5.7 Sentiment score propagates via the dependency tree (Example 1)

4http://cloud.google.com/natural-language
5Accessed on 2017-12-16.

http://cloud.google.com/natural-language
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Similar to Example 1, a period is missing at the end of this message, which is
common among informal communication on the web. In addition, the preprocessing
step converts the ASCII-based encoding for an apostrophe to its correct form and
segments the message because there are actually two sentences. The first sentence
is “Apple will be down today again but the down draft is slowing.” and the second is
“By end of next week I think it’s getting bought back.”. In our experiments, Google
SA predicts the sentiment score of the first sentence to be a negative −0.20 and the
second sentence as neutral. As a result, the overall sentiment would be negative.
However, this is wrong because the first sentence is just an objective description of
a phenomenon and the second sentence apparently advocates for a bullish mood.
Many people would even agree that both the sentences are conveying positive
sentiment.

Indeed, user self-labeling of this message is positive. Augmented sentic com-
puting arguably predicts a wrong sentiment score for the first sentence; however,
correctly labeling the second as negative produces a correct overall sentiment
polarity. In the first sentence, the but-conjunction governs two parts: “will be
down today again” and “the down draft is slowing.” In this sentic pattern, the
polarity will be consistent with the latter part “the down draft is slowing.” Because
concept “down_draft” is not included in our knowledge base, the expression
has to carry the polarity score of concept “down”: −0.31. Another fault is that
the knowledge base is not sensitive to the domain context: though in the financial
domain “slowing of down draft” is positive (for asset prices), in a general sense,
the concept “is_slowing” is neutral. Consequently, the sentiment score −0.31
passes throughout the entire sentence and marks the first sentence as negative.
This example illustrates the importance to attach domain-specific concepts to the
knowledge base to enhance model performance, which is the topic of chap. 6.

On the other hand, thanks to the analysis of the second sentence, we successfully
revise the overall sentiment. Because “bought_back” is in every sense a strongly
positive concept, it has a sentiment score of 0.82. Meanwhile, the adjective modifier
relation (amod) carries the sentiment score −0.56 of “next” to “next_week.”
Additionally, the noun modifier relation between “end” and “week” gives the
expression “by end of next week” an inverted (slightly) positive score of 0.02 (see
Fig. 5.8). Finally, the sentiment score of the entire second sentence is computed as
1 − (1 − 0.82)(1 − 0.02) = 0.82. The message averages the two sentence out:
(0.82 + (−0.31))/2 = 0.26.

By end of next week I think it’s getting bought back.

nmod

case

case

nmod

amod nsubj

ccomp

nsubj dep

root

Fig. 5.8 Sentiment score propagates via the dependency tree (Example 2)
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Example 3 $AAPL moment of silence for the 180 call gamblers. lol.6

This message raises the problem of Internet microtext: according to some
statistics from large English corpora, we have to guess that “lol” may probably be
an acronym for “laughing out loud.” The speaker in a context tries to point out
that recent price movements show that Apple’s stock price would not reach 180, so
the optimists stop advocating for their opinions (moment of silence). Moreover,
the speaker sarcastically derogates the optimists as “gamblers.” To capture this
subtleness is often regarded as a difficult NLP task; Google SA predicts a positive
sentiment score of 0.30 for this message. However, the user labeling is negative, and
like for most of machine learning-based methods, to debug why and where this error
is made is nearly impossible.

Augmented sentic computing not only gives the correct polarity direction but also
clearly shows how this polarity score is concluded. Firstly, our dependency parser
shows that the phrase “moment_of_silence” has a noun modification relation.
Since “moment” is neutral, it inherits the sentiment of “silence” as 0.11. This
sentiment is inverted for the whole sentence because of the case mark “for,” which
makes the overall sentiment direction depending on its latter part “the 180 call
gamblers.” Secondly, the concept “gambler” has a negative score of −0.74 in
SenticNet, so the sentic pattern triggers a more intense negativity for the high-level
multi-word expression
“moment_of_silence_for_gamblers” as −√| − 0.74| = −0.86.

Let us consider the textual data stream from social media, which consists of
messages anchored to different timestamp. We can count the daily positive and
negative messages and compute the average sentiment score for any specific asset if
we have a filtered data stream for this asset and apply augmented sentic computing
to each message. Therefore, we define a sentiment variable st to represent the
multidimensional sentiment time series for an asset A, which is at least a quadruple
after quantization on a discrete-time axis, that is:

st (A) = (sI
t (+), sI

t (−), sV
t (+), sV

t (−)). (5.16)

where sI
t (+) is the average intensity metric for all the positive messages in time

period t ; sI
t (−) is the average intensity metric for all the negative messages

in time period t . Similarly, sV
t (+) is the aggregated count volume of positive

messages regarding asset A and sV
t (−) count of negative messages [192]. While

messages arrive continuously with a timestamp Ti , we do sentiment quantization
on a daily basis to facilitate overnight trading strategy development. Specifically,
to allow time for positions adjustment, we aggregate market sentiment from the
previous trading day to 1 hour before market closure. Take the NYSE market as
an example; messages posted from previous day 3:00 p.m. to current day 3:00
p.m. are aggregated for portfolio rebalancing during 3:00 p.m. to 4:00 p.m. local

6We have to guess that “lol” may probably be an acronym for “laughing out loud.” [Or “lots of
love”, see https://www.computerhope.com/jargon///////l/lol.htm].

https://www.computerhope.com/jargon///////l/lol.htm]
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Algorithm 5.2: Sentiment time series construction
Data: message stream of a specific asset {mi, Ti}
Result: sentiment time series st (A)

1 for i = 1, 2, . . . do
2 if Ti < t then
3 C(mi) ← parse concepts from mi ;
4 if C(mi)

⋃
KB �= ∅ then

5 s(mi) ←augmented sentic computing mi ;
6 else
7 s(mi) ←MLP(mi,Θ);
8 end
9 if s(mi) > 0 then

10 sI
t (+) ← n−1

n
sI
t (+) + 1

n
s(mi);

11 sV
t (+) ← sV

t (+) + 1;
12 else if s(mi) < 0 then
13 sI

t (−) ← n−1
n

sI
t (−) + 1

n
s(mi);

14 sV
t (−) ← sV

t (−) + 1;
15 n ← n + 1;
16 else
17 t ← t + 1;
18 [st (A), n] ← 0;
19 end
20 end
21 return st (A) ← (sI

t (+), sI
t (−), sV

t (+), sV
t (−));

time. Algorithm 5.2 [192] provides a more detailed description of the construction
process for sentiment time series. In the following section of data description, we
demonstrate that this constructed time series can serve as a useful prior for stock
market prediction and portfolio management even if the information is obtained
from a public domain. We also cross validated the constructed sentiment time series
and discovered that the time series calculated with augmented sentic computing
exhibits similar patterns to users’ self-labeling and some commercial tools, e.g.,
market sentiment product by PsychSignal.7

5.4 Data Description

The datasets we collected include messages from StockTwits,8 which is “a popular
social network for investors and traders to share financial information as well as
their opinions” [189]. The investigation spans a time period of 3 months from
2017-08-14 to 2017-11-16 due to data availability. To construct a virtual portfolio
of five stocks similar to that in Chap. 4, the dataset contains messages for five
major stocks. In descending order of popularity, there are 38,414 messages for

7http://psychsignal.com
8http://stocktwits.com

http://psychsignal.com
http://stocktwits.com
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Table 5.1 Confusion matrix
between user labeling and
sentic computing results

Sentic computing

Positive Negative Total

User labeling Positive 7234 3748 10,982

Negative 2097 1445 3542

Total 9331 5193 14,524

Apple Inc., 4298 messages for Goldman Sachs, 2847 messages for Starbucks, 2157
messages for Pfizer, and 1094 messages for Newmont Mining. Meanwhile, the
sentiment time series from PsychSignal of the same period investigated contains
27,268 messages for Apple, 2298 messages for Goldman Sachs, 1844 messages
for Starbucks, 826 messages for Pfizer, and 276 messages for Newmont Mining.
We subsequently confirm that our raw dataset actually has a larger coverage than
a common commercial product, though not all the messages would carry sentiment
and be accurately labeled. After applying augmented sentic computing, we compare
the obtained sentiment analysis results and user labels in the confusion matrices.
Table 5.1 is an example for Apple: from the 38,414 messages that mentioned
Apple only 14,524 messages are user labeled and thus eligible for comparison. The
accuracy of polarity detection by sentic computing can be easily calculated as 59.8%
from Table 5.1. This accuracy can be considered prestigious because the raw data
is noisy and only a general domain sentiment knowledge base (SenticNet) is used.
Another issue worth mentioning is that user labeling cannot be fully understood
as a ground truth, but only as a reference. Some message will lose and change the
sentiment as contexts get lost. Therefore, “agreement ratio” may be a more precise
term to describe this metric. It is common (not only for Apple) that only a small
portion (usually less than 20%) of users will label their messages, but we cannot
assume they are an unbiased sample for the population of sentiment expressed.

The second dataset we collected is not in the format of natural language but
a processed “trader mood index” from a third-party commercial product, i.e.,
PsychSignal. The data investigates a period of around 8 years (2800 days from 2009-
10-05 to 2017-06-04). The way they calculate sentiment time series is described
as first filtering multiple sources, including Stocktwits, Twitter data, and others
by cashtags9 of the query ticker, and applying NLP techniques to compute the
sentiment intensity scores.10 Figure 5.9 segments a time period of 90 days (2017-
03-04 to 2017-06-04) and visualizes the public mood data stream from PsychSignal
on Apple Inc. The illustration mainly includes four dimensions: volume of daily
tweets (blue, left); average sentiment intensity (red, left); net sentiment polarity (red,
right); and daily returns (black, right). We can observe a periodic weekly cycle of
message volume in Fig. 5.9: because on weekends and market closure days many
fewer messages will be posted.

9Cashtags are stock tickers prefixed with a dollar sign that are widely used for sharing financial
information in social media [74].
10The detailed techniques of how their sentiment analysis engine works is not disclosed.
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Fig. 5.9 PsychSignal sentiment stream (cashtag “AAPL”, normalized)

Although the information source is not from the same one, the visualization
of positive and negative message counts time series clearly exhibit a consistency
between PsychSignal and StockTwits processed with augmented sentic computing
(Fig. 5.10). Our method can also produce sentiment intensity data; however, com-
parison is not made because the corresponding part is missing from the PsychSignal
data.

The correlations of any two sentiment time series are further calculated as:

Correlation(S1,S2) = E((S1 − S̄1)(S2 − S̄2))

σS1σS2

. (5.17)

Table 5.2 provides the correlations among the message sentiment time series
from three different sources: user labeling, sentic computing, and PsychSignal.
We find out that all the correlations are positive and significant. Moreover, we
obtain additional data to prepare for the intelligent portfolio management strategies.
Specifically, the daily closing stock prices and trading volumes are from the Quandl
API11; the market capitalization size data are from Yahoo! Finance. For missing
values, such as the closing prices on weekends and public holidays, we fill the gap
with the closest historical data, so that allocation strategies can be learned on a daily
basis.

5.5 Experiments

Our asset allocation strategies can be assessed in two stages: the first one on
the helpfulness and quality of “market sentiment views” and the second one on
the capability of different implementations of the approximator F. For the two
stages, we construct a representative portfolio and implement two experiments,
respectively. Similar to that in Chap. 4, our portfolio comprises five stocks: Apple
Inc (AAPL), Goldman Sachs Group Inc (GS), Pfizer Inc (PFE), Newmont Mining
Corp (NEM), and Starbucks Corp (SBUX). The motivation for such a portfolio is that

11See Sect. 4.3.
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Fig. 5.10 The time series of positive and negative message counts from two sources

Table 5.2 Correlation of
message sentiment time
series [189]

Positive messages Negative messages

User-Sentic +0.964 +0.795

User-Psych +0.185 +0.449

Sentic-Psych +0.276 +0.282
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in the practices of asset management, a rule of thumb is to diversify the investments,
while these five stocks cover the two major US markets (NYSE and NASDAQ)
and also diversified industries, such as technology, financial services, healthcare,
consumer discretionary, etc. Moreover, we include both high-tech companies, i.e.,
Apple, and an industrial company, i.e., Newmont, because their message volume and
post frequencies differ a lot. On social media the traditional industries receive less
discussion while high-tech industries get more attention. The stock prices per share
are normalized to the current numbers if there is any split history. We do not consider
dividends because one cannot expect such activities and once done, the adjustment
in prices will not affect allocation decisions in future. In consistency with previous
settings, we allow no short selling, taxes, or transaction fees in the simulations. We
also assume continuous and infinitely divisible amounts of investments starting from
10,000 dollars in sum are available.

We use various metrics, including RMSE, CAGR,12 Sharpe ratio, Sortino ratio,
and MDD to evaluate the performance of virtual portfolios. RMSE is probably
the most common metric for approximation/regression problems. It calculates the
standard deviation of the model predictive errors and is frequently used in study
fields of engineering. RMSE is considered a good metric when the data are normally
distributed and contains few outliers. We take our realized portfolio weights as
model outputs and the optimal weights as true values to calculate RMSE, so that
it measures the difference between the realized portfolio-weighting strategy and the
a posteriori optimum:

RMSE =
√√√√1

n

n∑

i=1

‖wi − ŵi‖2 (5.18)

The Sharpe ratio is a risk-adjusted return measure that helps investors understand
the expected return with per unit of risk. We choose EW or VW as the base portfolio,
so that its Sharpe ratio will be 1.00:

Sharpe ratio = E(Rpf l/Rbase)

σ (Rpf l)/σ (Rbase)
. (5.19)

It is worth mentioning that the absolute numbers of risk are not comparable if
calculated from different frequencies or timespans. We use the standard deviation
of daily returns as a measure of risk. Some argues that the good part should
be distinguished and considered separately from bad risk. The solution is to use
the standard deviation of downside returns only to estimate risk. This single-side
measure is called the Sortino ratio [158].

MDD (maximum drawdown) measures the maximum possible percentage loss
of an investor:

12See equation 4.17.
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MDD = max
0<t<τ

{Ct − Cτ

Ct

}
. (5.20)

MDD is usually considered as an indicator of tolerance to psychological pressures.
Portfolio management strategies with large MDDs tend to give rise to panic and
impatience among investors and increase the risk of capital withdrawal.

5.5.1 Simulation: Effectiveness of Market Views

The results of intelligent asset allocation with sentiment are benchmarked with two
portfolio construction strategies:

1. The value-weighted portfolio (VW): we reinvest the capital daily according to the
percentage share of each stock’s market capitalization. This is a slightly improved
version of the equal-weighted portfolio (EW, see Sect. 4.4.2) with the rationale
that bad-performing stocks shrink as other investors quit their positions. In VW
the portfolio performance will be the weighted average of each individual stock’s
performance. This strategy is also a fundamental yet tough-to-beat baseline.

2. The neural trading portfolio (NT): we skip the formation of market sentiment
views and directly train a neural network with the same full input including
sentiment information. The target outputs are daily optimal portfolio weights.
This benchmark serves as an ablation analysis not for the sentiment information,
but for the market view construction. In this circumstance, we are not able to
get insights on why the portfolio weights should have such values. Thus the NT
strategy is a black-box strategy.

We implement several portfolio settings as follows:

1. No views portfolio (Ω∅): since the expected return distribution and correlations
will in this case be the same as the estimators in a classic Markowitz’s mean-
variance portfolio, this model degenerates to the normal Markowitz’s settings.

2. Random views portfolio (Ωr ): the parameters for market views are randomly
imposed.

3. Standard views portfolio (Ω0): the confidence of views are formed using the
construction of Black-Litterman model, while the expected return vector is
estimated either with or without the sentiment time series (S).

The trading simulation performances with different experimental settings are
demonstrated in Fig. 5.11, where the x-axis denotes the index of trading days and
the y-axis denotes the amount of cumulative capital. Because we have long enough
historical price records, we try two window sizes (90 and 180 days) to batch the data
for our training processes. Another factor beside window size that would affect the
model performance is the selection of an approximator neural network. Therefore,
we experimented with both DENFIS and LSTM, and the results are compared in
Fig. 5.11c, d, respectively, for better presentation.
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Fig. 5.11 Trading simulation performance with/without market sentiment views. (a) No views.
(b) Random views. (c) DENFIS + sentiment. (d) LSTM + sentiment. (e) BL + sentiment, t = 90. (f)
BL + sentiment, t = 180

To keep aligned with the previous study, we use a risk aversion coefficient as δ =
0.25 and confidence level of CAPM as τ = 0.05. These are common values reported
from literature. By minimizing the global portfolio weight error during training, we
empirically choose the activation range of the fuzzy membership function to be
d = 0.21. The final network has 21 fuzzy rule nodes from the entire online training
process of DENFIS. For the recurrent neural network-based approximator, we stack
two LSTM layers and connect a densely connected layer at the end. Each LSTM
layer has only 3 cells, but the densely connected layer has 50 neurons according



5.5 Experiments 91

Table 5.3 Performance metrics for various view settings [189]

RMSE Sharpe ratio MDD(%) CAGR(%)

VW 0.8908 1.00 25.81 17.49

Markowitz90(Ω∅) 0.9062 1.00 25.81 17.51

Markowitz180(Ω∅) 0.8957 1.00 25.82 17.45

BL90(Ωr ) 0.9932 0.90 23.47 17.17

BL180(Ωr ) 0.9717 1.06 20.59 22.31

DENFIS(NT) 0.9140 2.94 29.84 23.09

DENFIS(NT + S) 0.9237 4.35 23.07 25.16

DENFIS(BL90 +S) 0.9424 1.52 24.44 28.69

DENFIS(BL180 + S) 0.9490 1.58 24.19 29.49
LSTM(NT) 0.8726 1.38 25.68 22.10

LSTM(NT +S) 0.8818 1.42 25.96 23.21

LSTM(BL90 +S) 0.8710 1.34 25.90 22.33

LSTM(BL180 + S) 0.8719 1.07 24.88 17.68

to the idea that it should be at least two or three times larger than the LSTM layer
size. The objective of training is to minimize the mean squared error of vector Q

as loss function. We discovered that the rmsprop [169] optimizer achieves the best
performance. Fortunately, the training error in our experiments always converges
quickly.

We provide quantitative metrics in Table 5.3 as a supplement to Fig. 5.11 for the
purpose of assessing different methods. Acronyms in the table such as “BL90”, e.g.,
denote market views of the Black-Litterman model with timespan = 90 days.

Some interesting observations can be spotted from Fig. 5.11 and Table 5.3. First,
though the intuition is that the portfolio performance should be better if the actual
portfolio weights are close to the optimal weights, closeness in what sense makes
a difference. RMSE is a commonly used metric of closeness, but its relation to
other three performance metrics is weak. This is because the relationship between
weights and daily returns is nonlinear. Consequently, errors are not of the same
importance in terms of maximizing the final portfolio return. A more severe problem
caused by it is that the LSTM models seem to overfit as they are trained on the
mean squared error of weights or expected return of views [130]. Therefore, it is
not recommended to use any metrics outside the field of asset allocation to evaluate
expected portfolio performances [189]. Arguments that used those metrics, such as
directional accuracy of price change prediction, e.g., [19, 198], are not sound in the
context of portfolio management.

Figure 5.11a shows that the behavior of a Markowitz portfolio has almost no
difference to the market following strategy (VW). This also explains why the mean-
variance approach is inefficacious in practice, as discovered by many previous
studies. In real world, if the CAPM holds, the market portfolio (VW) would have
already reflected the adjustments to risk premiums. The dynamics are described



92 5 Sentiment Analysis for View Modeling

from the opposite direction: because fewer market participants will invest on highly
risky assets, their market capitalization share will be smaller as well.

Since the Markowitz model has no advantage over the value-weighted portfolio,
a natural question to ask next is “will the Black-Litterman model do a better job?”
Our experiments show that a better performance over the Markowitz portfolio
is possible, whereas not guaranteed. The key issue is the quality of input views
of the Black-Litterman model: “garbage in, garbage out” still holds under this
circumstance. A baseline is given by the portfolio with random views (Ωr ).
Obviously, the performance can be worse than market following (VW) in terms
of both Sharpe ratio and CAGR. The lesson learned here is a clear understanding of
the capability of using the Black-Litterman model. When the investor knows nothing
he/she inevitably inputs pseudo-random views. By doing so he/she pretends to know
something, but the outcome will be worse than to assume no views and follow the
market.

In these comparisons, the DENFIS-based approximator usually performs better
than LSTM-based models, achieving higher Sharpe ratio and CAGRs. Through
analyses of predicted weights, we suspect that LSTM models adapt too fast to the
incoming data. While financial time series are considered very noisy, the adaptation
may not always be beneficial because it catches spurious signals. For DENFIS,
the ECM mechanism controls model learning rates, thus providing stability to the
memorized fuzzy rules. It is worth mentioning that regardless of the neural network
implementations, blending of sentiments improves CAGRs for both DENFIS and
LSTM. The timespan used to estimate correlation and volatility of assets seems
not that critical—the difference between using 90 days and 180 days is trivial. It
seems that a longer timespan fits the DENFIS-based models, while using a shorter
timespan the LSTM-based models perform better. The Markowitz portfolio is less
affected by timespan since sentiment information cannot be used.

5.5.2 Simulation: Effectiveness of ECM-LSTM

The results of implementing ECM-LSTM with different sentiment sources are
benchmarked with not only the LSTM model but also three other portfolio construc-
tion strategies as follows. As previously justified, the ECM-LSTM implementation
is a machine learning model. To allow comparison with statistical models, we
introduce the ARIMA portfolio and the HW portfolio of autoregressive nature.

1. The equal-weighted portfolio (EW): we hold equal weights (20%) for the five
stocks in our portfolio throughout the examined period. This setting is the same
as elaborated in Sect. 4.4.2.

2. The ARIMA portfolio (ARIMA): we re-invest the capital daily according to
the one-step-forward price forecasts. Obviously, the holding weights will be
a one-hot vector. The price forecasts are produced by an ARIMA(p, d, q)
process, where the parameters p, d, q are estimated from the past time series
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data following the Box-Jenkins method. First, we increase d from zero until the
differenced time series is stationary according to the augmented DickeyFuller
(ADF) statistic. Next, we set the upper bound of p and q as the orders of
the last significant partial autocorrelation and autocorrelation. Finally, we select
pair (p, q) that has the minimum Akaike information criterion (AIC). After
these steps we identified an ARIMA(0, 1, 2) model for PFE and ARIMA(0, 1, 0)
models for other stocks, which means that the price series are not much different
from random walk.

3. The Holt-Winters portfolio (HW): we re-invests daily according to the one-
step-forward price forecasts as well. However, the forecasts are produced by
a Holt-Winters additive smoothing method with time-varying parameters. The
model HW(α̂t , β̂t , γ̂t ) is specified at each time point t by minimizing RMSE of
simulated time series in a sliding window (t − k, t).

Although the ARIMA and HW portfolios do not leverage any external informa-
tion, that is, all the model parameters are estimated from past observations, they are
considered to be among the most effective forecasting techniques across different
tasks such as for crude oil prices and macroeconomic indices when no useful prior
is available [106]. In contrast to the ARIMA and HW portfolios, we also construct
portfolios that take into account sentiment time series from different sources using
the Black-Litterman model. The customized LSTM architecture contains one layer
of 64 LSTM cells followed by another densely connected layer of the size of the
number of assets. The LSTM layer has 20% dropout ratio to avoid over-fitting.
The simulated trading results are shown in Fig. 5.12 and Table 5.4 presents the
corresponding metrics.

Figure 5.12 demonstrates that despite the facts that sentiment information is from
different sources and implementation details of approximator F for market views
also differ, the curve patterns of accumulated return are similar. These patterns can
be regarded as systematic movements to the time period and portfolio. Adding the
ECM mechanism on top of LSTM effectively mitigates crashes, as in two of three
ECM-LSTM-based portfolios, the 2017-09-15 to 2017-09-25 period witnesses a
correction to the capital loss (see Fig. 5.12).

The top 3 of each metric in Table 5.4 are marked in bold. In terms of Sharpe ratio
and Sortino ratio, surprisingly, EW is the best strategy in our experiments. EW is
also a very stable strategy in a sense that it has the minimum MDD. ARIMA and HW
are more volatile than EW. This is probably because, after forecasting of next-day
prices, the whole capital is invested to the only winning asset; thus, the risk of this
prediction error is not well diversified. CAGRs of the ARIMA and HW portfolios
cannot compete with the EW in the experiments as well, resulting in very small
Sharpe ratio and Sortino ratio for the ARIMA and HW portfolios. Therefore, we
showcase that though these two models perform well in general tasks, they are not
preferred for constructing portfolios, at least in a manner of full position rebalancing
based on price forecasts.

All the portfolios that have considered market sentiment, no matter using what
information source and implementation details, achieve higher CAGRs than the
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Fig. 5.12 Trading simulation performance with different sentiment sources.

Table 5.4 Performance metrics for different sentiment sources [189]

Sharpe ratio Sortino ratio MDD(%) CAGR(%)

EW 1.00 1.00 1.76 23.07

ARIMA 0.56 0.61 3.79 10.72

HW 0.34 0.36 6.16 13.03

LSTM(Psych) 0.71 0.79 3.84 33.52

LSTM(Sentic) 0.61 0.68 5.05 27.21

LSTM(User) 0.64 0.68 4.61 24.82

ECM-LSTM(Psych) 0.74 0.82 3.45 45.51
ECM-LSTM(Sentic) 0.66 0.73 2.89 35.45
ECM-LSTM(User) 0.71 0.87 3.40 37.53
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three benchmark strategies (EW, ARIMA, and HW) discussed before. This confirms
the importance of leveraging market sentiment. Moreover, the improvement of
introducing an ECM mechanism is confirmed by the fact that in terms of all
these metrics, the ECM-LSTM portfolios systematically outperform their LSTM
counterparts using the same source of sentiment information.

In our experiments, Sortino ratios are slightly greater than Sharpe ratios accord-
ing to Table 5.4. This is because the market trend in the time period we examined is
going bullish. Therefore, the optimistic measure of only downside risk with Sortino
ratios is smaller. Nevertheless, in terms of the absolute value all the strategies have
Sharpe ratios and Sortino ratios less than 1.00. This phenomenon may be due to
the fact that in those “efficient markets,” obtaining cheap premium return is really
difficult. In pursuit of higher CAGRs, investors inevitably take a greater unit risk
because the low-hanging fruit (risk-free interest) is already picked.

Finally, we discuss the differences in portfolio performances among using
different sentiment information sources. The quality of sentiment information is
intuitively important; however, in our experiments no evidence suggests a clear
difference. PsychSignal seems to be the source that provides the most accurate
sentiment time series data because (1) it has the largest message volume and (2)
the portfolio leveraging this source performs the best. However, using just the
user labeled message counts sometimes also achieved a balanced and advantageous
result. A more detailed comparison of different sentiment information sources will
not be a topic covered in this book.

5.6 Summary

Market sentiment appears to be increasingly attractive in the computational intelli-
gence and econometrics communities. However, when leveraging such information,
the problem is often formulated as to assist price forecasting rather than to allocate
and manage among a pool of assets. The latter task formulation is apparently more
practical and produces new challenges. This chapter pioneers computing sentiment-
induced market views from social media data stream and integrating it into the
state-of-the-art asset allocation method, namely, the Black-Litterman model. Cross-
validation and intensive experiments suggest that the sentiment time series can be
obtained using augmented sentic computing—a concept-level sentiment analysis
approach. When applied to asset management, the efficacy of this sentiment time
series is comparable to some established commercial tools.

The unique advantage augmented sentic computing has over other candidate
sentiment analysis methods is its transparency and good interpretability. As a
result, it has a great potential for broader NLP-based financial applications because
financial service features strong regulations and explanability to build trust. With
the assistance of the formalization and market views computation, some insights
are brought to the daily asset reallocation decisions. We tell a story of the rationale
behind portfolio rebalancing decisions using 2017-06-01 as an example.
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“On June 1st 2017, we observe 164 positive opinions of polarity +1.90, 58
negative opinions of polarity −1.77 on AAPL stock; 54 positive opinions of
polarity +1.77, 37 negative opinions of polarity −1.53 on GS stock; 5 positive
opinions of polarity +2.46, 1 negative opinion of polarity −1.33 on PFE stock;
no opinion on NEM stock; and 9 positive opinions of polarity +1.76, 5 negative
opinions of polarity −2.00 on SBUX stock. Given the historical prices and trading
volumes of the stocks, we have 6.29% confidence that AAPL will outperform the
market by −70.11%; 23.50% confidence that GS will outperform the market by
263.28%; 0.11% confidence that PFE will outperform the market by −0.50%;
1.21% confidence that SBUX will outperform the market by 4.57%. Since our
current portfolio invests 21.56% on AAPL, 25.97% on GS, 29.43% on PFE, and
23.04% on SBUX, by June 2nd 2017, we should withdraw all the investment on
AAPL, 2.76% of the investment on GS, 81.58% of the investment on PFE, and
30.77% of the investment on SBUX, and re-invest them onto NEM.”

For each day, this template-based story can be disclosed to the investors to
provide them confidence and build trust. More discussions can be found with regard
to robo-advisory in Chap. 7.



Chapter 6
Storage and Update of Knowledge

Learning without thought is labor lost; thought without learning
is perilous.

—Confucius

Abstract Experience in developing large knowledge-based AI projects suggests a
progressive approach: the system needs maintenance to keep pace with demands
and accumulation of commonsense knowledge to prevent having to start all over
again. Financial asset management is no exception. The balance between leveraging
the current knowledge base and adding to it is analogous to the learning and
thought relation described by Confucius. In the previous chapter, sentic computing
is actively “thinking” with the knowledge base, however, not learning anything. An
example also shows the problem of unable to retrieve domain-specific concepts from
the knowledge base. In this chapter, discussions on the forms of storing semantic and
sentiment knowledge are presented. A special effort on adding and updating polarity
scores of words with high-level supervision is made. The same idea can be extended
to other application domains as well as the curation of concepts or events.

Keywords Knowledge representation · Ontology engineering · Financial
sentiment lexicon · Polarity score · Domain adaptation · Heuristic search

6.1 Storing Semantic and Sentiment Knowledge

In Sect. 5.3.1 we introduced how semantics and sentics are stored in SenticNet.
As an open-domain resource, SenticNet only associates related concepts without
specifying the relation type. In the finance domain, at least two kinds of relations
are important, namely, is-a relation and causal relation. We conceive an ontology of
semantic knowledge, which is enriched by three tools: a concept parser, a taxonomy
parser, and a causal parser. The concept parser identifies concepts in a sentence by
two shreds of evidence: the n-gram probability and POS compatibility. Take the
example “Because of the yen’s appreciation, the Japanese economy deteriorated”
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yen's_appreciation

yen

Japanese_economy_deteriorated

Japanese_economy

world_economy
currency US_dollar

Fig. 6.1 Visualization of the ontology of semantic knowledge

from [145]. A concept “yen’s_appreciation” is extracted because this bi-
gram has a high frequency from the financial text corpus and is a noun phrase
(noun+noun).1 In contrast, though “of the” is an even more frequent bi-gram,
preposition-determiner is not a valid concept type.

Taxonomy parser and causal parser extract “is-a” and “causes” relations. In the
abovementioned case, a causal relation:

yen’s_appreciation �⇒ economy_deteriorated

is extracted. As described by [145], this process is enabled by syntactic features and
keyword lists.

Once the relation is extracted from texts, we will check whether there exists
a conflict in the knowledge base. If the confidence score is higher than that in the
knowledge base, we will insert this relation and resolve the conflict. A final ontology
may look like Fig. 6.1.

6.1.1 From Sentiment Lexicon to Sentiment Knowledge Base

Similarly, sentiment knowledge can be stored in a graph-based structure. The rela-
tions, however, are simpler, because theories of emotions conclude a small number
of categories for sentiment words and concepts. Therefore, the data structures used
for storing and manipulating sparse matrices can apply. A simple sentiment lexicon
may only contain a list of positive words and a list of negative words, e.g., as in

1Other concept types includes adjective + noun, verb + noun, etc.
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Table 6.1 Positive and
negative word lists of
Opinion Lexicon

Positive words Negative words

a+ Two-faced

Abound Two-faces

Abounds Abnormal

Abundance Abolish

Abundant Abominable

Accessable Abominably

Accessible Abominate

Acclaim Abomination

· · · · · ·

Fig. 6.2 Entry for concept “meet_friend” in SenticNet

Table 6.1 [76]. More detailed lexicon may have a polarity score for each word entry
to denote the intensity of the sentiment, e.g., SentiWordNet [5].

One problem of having only one polarity score for each word is polysemy, i.e.,
different sense of a word may have different sometimes even opposite polarity.
Many concept polarities cannot resort to the component words as well. For example,
“pain_killer” is a positive concept, but “pain” and “killer” are negative words.
This problem can be solved in either a symbolic or sub-symbolic way. Ren et
al. [141] suggested that polysemy can be modeled with multiple prototype word
embeddings. We can also, to some extent fix the semantic role of words by allowing
concepts into the knowledge base. SenticNet [28], for instance, is such a sentiment
knowledge base that further gives associated concepts, multiple dimensions of the
sentiment, and mood tags. Figure 6.2 provides an example of concept entry in
SenticNet using RDF Schema.
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6.2 Cognitive-Inspired Domain Sentiment Adaptation

Consider a simplified case, where sentiment lexicon contains only words and their
polarity scores. We study possible approaches to updating words and adapting exist-
ing polarity scores to the finance domain. This serves as an important infrastructure
for accurate financial sentiment analysis and sentiment time series construction,
which further supports the asset allocation models. The following content is adapted
and extended from [194].

The identification of specified domain and the adaptation to it are two of the main
issues in sentiment analysis [16]. While using the lexicons of the common domain,
the performance of domain-specific sentiment is dropped along with other domains.
The finance domain has its specific terminologies and languages and is characterized
by its sub-languages and jargons. Due to these reasons, it is suboptimal in directly
using the lexical resources l [36].

Many studies have discussed domain adaptation for the sentiment lexicon to deal
with challenges [164]. It’s a matter of fact that word-level supervision is difficult
to access in this situation because latent information is expressed in the form of
word polarities. Rating websites and social media are used for language resources
of sentiment analysis, and user provided the supervisions. Hence supervision is
essential for high-level accuracy, e.g., expression-level, sentence-level, and docu-
ment level. Choi and Cardie [36] used integer linear programming for formulating
the lexicon programming tasks to evaluate the word-to-word relation and also
a word-to-expression relation. Many other relations include n-grams, POS, term
frequency [50, 118], TF-IDF and its variants, (positive) PMI [70, 110, 174], etc.
Apart from the real words, many other words that do not belong to any vocabulary
can be added in sentiment lexicons [180], and a constructed graph can be drawn
to check their polarity scores for propagation. A hand-crafted thesaurus can be
formulated for non-vocabulary words [178]. These graphs can be designed based
on corpus statistics, which contains a similarity matrix in the context [165] or
word embedding [167]. Ofek et al. formulated the acyclic graph from the statistical
co-occurrence information for the purpose to enrich a concept-level sentiment
lexicon [126]. However, in their methods, during the learning phase, the polarity
scores are not exposed to the original sentiment lexicon. Therefore, we propose a
novel cognitive-inspired approach during the learning phase that expects to change
the polarity score value. Different metacognition processes are part of this approach
when the domain of any new language is exposed: based on the information of word
polarities, the agent made presumptions [131]; his lexical information cannot be
changed before the identification of conflict; therefore he would try to implement
different information and try to locate a word; the information is then subjected
to future occasions for approval. Figure 6.3 depicts the fundamental idea of this
approach.

The negative record has been predicted for the first score due to words dump
and loss, while the record is positive for the user. It has been observed that neutral
word small showed a positive polarity. While the second record against revised the
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I just dumped the puts for 
a very small loss

Records Predicted 
Sentiment

Labeled 
Sentiment

negative positive

positive negative

negative negative

My only advice is tread 
small

ip8 crackling sound for 
small number of people

x

x

x

Fig. 6.3 Illustration of the polarity score adaptation process of word small [194]

information. On the contrary, the third record again showed the negative polarity
small. A word cracking carries negative sentiment, and polarity values remain
the same in this situation. Different experiments have been performed for the
demonstration of this approach.

6.3 Methodology

Firstly, polarity value has been denoted for the word x by γ (x). The representation
of the sentiment lexicon L D(x : γ (x)) as a starting point, the size for the vocabulary
L is D. We have set the different training sets including N records Ti , where 1 ≤
i ≤ N . While the corresponding sentiment label for Ti is yi . Hence, we can use
the different algorithm for classification of sentiment and algorithm like FT(T ,L )

that outputs a prediction label y for input record T . The specific choice of F(·) is
independent of the following steps.

6.3.1 Vectorization of Sentiment Features

Apart from sentiment lexicons and polarity value, different other features have
been proposed for the classification of sentiment. These features are based on term
frequencies, POS tags, negators, syntactic features, and more [107]. All of these
features can be used to train the classifier, and, in fact, having sentiment lexicons
does not take much advantage in training. However, this study aims to demonstrate
a way to adapt the sentiment lexicon rather than to train the best classifier. To this
end, we only make use of the relevant sentiment information for training.

Each record T is represented with a D-dimensional vector, vector(T ), where
the dimension indices of the vector indicate the unique location of the word in L .
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That is, for x = vector(T )i , if x is in L , the polarity score of x ∈ [−1, 1] will be
assigned to vector(T )i :

vector(T )i =
{

0 if x /∈ L

γ (x) if x ∈ L
(6.1)

In this study, a binary label y ∈ {+,−} is used to denote the positive or negative
result for the sentiment classification information.

6.3.2 Exploration-Exploitation

The algorithm is used after the training process, for each record Ti , and for the
predicted sentiment, the label is used as ŷi = FT(Ti,L ) for checking it against the
ground realities. If in case of the start algorithm, the symbolic representation used as
ŷi �= yi , then the error can be corrected by using better symbolic representation to
correct the error. However, such errors can be linked with any word vector(Ti)j in
vector(Ti). Unrealistic computer power is required for word polarity combinations.
Hence, we are unable to achieve the balance between correct polarity score
and predicted label words for polarity score. There are different psycholinguistic
theories that discussed the fact that human behavior is associated with varying levels
of sentiments and activated words of sentiments [27, 92]. Naturally, activated words,
i.e., where vector(Ti)j �= 0, are explored in descending order of the absolute value
of their polarity scores.

For every single word x ∈ {vector(Ti) ∩ L }, the polarity score assignment is
performed by an algorithm according to the following rule:

γ (x)′ = γ (x) + ζ (6.2)

where ζ is a number that is evolved from uniform sharing, and it is a random float
number. The decision would be taken by algorithm that adaption of the new polarity
score γ (x)′ must be done before searching for some other word. Therefore in this
step, only a subset of the training dataset is considered:

Tx = {T ∈ T | x = vector(T )j ,∀j} (6.3)

Then, classification performances for the labeled and recorded polarity scores
can be calculated and estimated. The actual performance on this subset will be:

α(x) =
∑

k∈Tx
# of {ŷk = yk}
# of Tx

(6.4)
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The substitution of γ (x) with γ (x)′ in L , then the predicted labels can be re-
computed with this new lexicon as ŷk

′ = FT(Tk,L ′). Using this ŷk
′ instead of

ŷk in equation 6.4, the new performance α′(x) can be obtained. Next, we need to
register the new polarity score before enquiring of the next word if the performance
improvement surpasses a certain threshold:

Δα(x) = α′(x) − α(x) ≥ θ. (6.5)

If this happens, then the algorithm will try with a new ε. Then we implement the
higher number of iterations on equation 6.2 in order to avoid the finest exploitation.
In any exploitation phase, the next record Ti+1 of the algorithm will end if the
predicted label is corrected from any wrong word. Every time the sentiment lexicon
is confirmed and updated, the classification algorithm F

′(T,L ′) is retrained. Finally
the next polarity records will be predicted by this new classifier F′.

6.3.3 Convergence Constraints

The exploration-exploitation strategy is not up to the mark for providing the
concurrence of diverse polarity scores. During the initial simulations, we observed
the situations that no trends and alterations have been observed for some word
polarities from positive to negative. In theory, two sources represented the errors
in updates: (1) for polarity exploitation, different wrong words were identified, and
(2) the equation is described by the situation like (6.6) that shows the continuous
details for the conjugate or jointed words, i.e., a small change in one word resulting
the huge effects on major performance drop for the new word.

Regardless of how, the learning process of humans for sentimental words is
stable and consistent, because of the past experiences with the words stored in the
memory of humanity. As time passes, the insecurities regarding the sentimental
words dismiss. Due to this, we humans can clarify the polarity of words in short
duration. The following convergence constraint can calculate this:

ζ ∈ [−1/count(x), 1/count(x)] (6.6)

In this equation, the count(x) ∈ Z calculates the number of polarity scores of x and
has been updated till now. This calculation includes both times of exploitation and
inter-instance exploration, while the convergence constraint focuses on the deepest
calculation for polarity score of word x.
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6.3.4 Consistency Constraints

In different domains where words alternate their sentiment, orientations are not
much important for us. Past research [70] evaluated the diachronic perspective,
which is related to the fact that only a few sections of words are linked with the
changing in polarity for comparable long history. The alteration of the polarity of
words is usually not associated with shifting of another small sentiment, especially
across relevant domains, because the use of language is similar. Therefore, it is an
essential requirement for checking the knowledge integration after the exploration-
exploitation phase. Hence, the set required to be checked is linked with polarity
switching that does not have any relation with the classification performance, that is

xs = {x ∈ L ′ | γ (x)′γ (x) < 0 ∪ α′(x) < η} (6.7)

where η calculates the expected performance level. Afterward, for every word x ∈
xs , the algorithm deals with another exploration-exploitation stage that depends on
L ′.

6.3.5 Dealing with Negators

It is a phenomenon that keeps on appearing at different levels of natural language
[36, 203]. However, it is not easy to automatically identify the scope of nega-
tion [57]. Generally, the responsibility of negators is to categorize between func-
tional words, e.g., no, not, never, and seldom, and content words, e.g., destroy,
prevent, etc. Hence, it can be said that all content words are linked with some
polarity with themselves; therefore based on this fact, for vectorization records, we
only deal with function-word negators. We apply the simple rule of reversing the
output of F(·) when we have detected the single function-word negator.

6.3.6 Lexicon Expansion

It has been evaluated that those target domains were characterized by words with
dissimilar polarity scores and were also identified as neologisms. This happens when
the environment is web-based, e.g., micro text of any new condition.2 The allowed
supervisions of expression-level or sentence-level, like in tweets, the sentiment
lexicon, are mostly not present in a record like

2Microtexts are terminologies or short forms that are mostly not present in standard form of English
but can be used for communication purposes via online sources, such as “c u 2mrw” (see you
tomorrow), “abt” (about), “btw” (by the way), etc.
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Te = {Ti | x �∈ L , ∀x ∈ Ti} (6.8)

As shown above, it is clear that some polarity words are absent from the records
of the lexicon. The lexicon expansion algorithm initially identified and checked the
POS for the label of the single word present in the records and helped in the addition
of only nouns, verbs, or adjectives to the lexicon sentiment.

For the estimation of the polarity score of newly added letter x, a trial and error
learning is used by taking in view of Tx . Assume I(pos) is the positive records for
the total number in the Tx and I(x, pos) denotes the frequency of word x appears
in the positive records of Tx . The calculation of polarity score of word x can be
performed as a regularized difference of point-wise mutual information (PMI). This
trial and error method is very popular for the automatic induction of lexicon polarity
scores [117, 179].

γ (x) = tanh(PMI(x, pos) − PMI(x, neg)) (6.9)

= tanh
(

log2
I(x, pos) · I(neg)

I(x, neg) · I(pos)

)

In addition to equation 6.9, we have also used different techniques of regularization
and smoothing in order to divide by zero. Afterward, similar mechanisms would be
used for the polarity scores of newly added words as discussed above if it needs
to be activated again and again. In experiments, during the adaptation stage, this
lexicon expansion is observed for all the real words of lexicons.

6.3.7 Boosting and Algorithm

As discussed at various stages that randomness is present in assignments of polarity
scores, the errors recorded in the latter form of the lexicon are different in all hit
and trials. As a result, the average polarity values can be determined by stochastic
shifts of polarity scores of the final lexicon from diverse experimentation. At
the same time, deterministic polarity shifts have been saved for a short duration
for augmentation. Lastly, we represented Algorithm 6.1 termed cognitive-inspired
domain adaptation with higher-level supervision (CDAHS) as follows.

The complexity of the implementation of Algorithm 6.1 is not based on hit and
trial learning and is based on different parameters. It is clear now that the complexity
is directly related to the iteration times n of boosting. On the other hand, the online
calculating cost of training and implementing FT(T ,L ) can be diverse, that is, a
great deal during computational analysis. For example, the SVM implementation
has been taken as an example, and the solution of the inverse kernel matrix is one
of the worst training cases, which is O(N3). The estimation of empirical training
complexity as O(N2D) and discriminate complexity as O(D) [21, 152], where
N is the related to an initial number of records for training, and D is the lexicon
size. Then, let t be the average assigning time under the consistency constraint.
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Algorithm 6.1: CDAHS algorithm
Data: sentiment lexicon L , training dataset T
Result: adapted sentiment lexicon L̄ ′

1 loop for n times � Boosting
2 train FT(T ,L );
3 for Ti ∈ T do
4 if Ti ∈ Te && x ∈ Ti then
5 if POS(x) = NN || VB || JJ then
6 L ← [x; γ (x)] ; � Lexicon expansion
7 end
8 end
9 if FT(Ti ,L ) �= yi then

10 for xij ∈ Ti do
11 while Δα(x) < θ && j < |vector(T )i | do
12 if count (xij ) < M then
13 γ (xij ) ← γ (xij ) + ζ ; � Exploitation
14 else
15 j ← j + 1;
16 end
17 end
18 L ′ ← γ (xij ) ; � Lexicon update
19 end
20 end
21 end
22 xs ← comparing L and L ′;
23 do line 9 to line 20 for x ∈ xs ∩ Ti ;
24 end
25 return L̄ ′ ← ∑

(L ′/n);

Apparently t is a function of parameter θ . The time complexity for one loop is
O(N2D + D(D

2 + 2D · t) + D). Therefore, the overall implementation complexity
is approximately O(nN2D + nD2t).

6.4 Data Description

For the targeted domain and adaptation domains, there are four original sentiment
lexicons experimented with: apparel, kitchen, electronics, healthcare, theatre, and
finance are mentioned as follows:

• Opinion Lexicon [76], it contains around 6,000 positive and negative terms for
the famous list of words. It also contains words which are wrongly spelled on
social media.

• SentiWordNet [5] is a form that assigns almost 117,000 values for the continuous
sentiments; in English standards, it is a subset of the WordNet lexical database.
For example, diverse synset may contain multiple scores. For the solution of this
problem, we amalgamate the sentiment scores for all the POS label entries under
the similar word when using this lexicon resource.
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Table 6.2 Statistics for domain-specific datasets [194]

Domain Apparel Electronics Kitchen Healthcare Movie Finance

Positive 1,000 1,000 1,000 1,000 5,331 16,881

Negative 1,000 1,000 1,000 1,000 5,331 4,866

Unlabeled 7,252 21,009 17,856 5,225 0 33,579

Table 6.3 Examples of record in finance domain [194]

Record 1 $AAPL \xe2\x80 \x99s High Price Makes It a Risky Bet http://

ewminteractive.com/. . .

Clean-up Apple high price makes it a risky bet

Record 2 $AAPL needs to chew thru trendline rez & amp; build value in this

area b4 resuming higher imho

Clean-up Apple needs to chew through trendline reservation and build value

in this area before resuming higher in my humble opinion

Record 3 Couldn&#39;t take any more of Bobbie&#39;s useless drivel

Clean-up Couldn’t take any more of Bobbie’s useless drivel

• L&M [103] is the most famous sentiment word list in the financial domain.
According to the analysis of financial statement corpus, a polarity dictionary is
composed. For this purpose, we have used all the 354 positive words and 2,349
negative words that are mostly used in financial documents.

• SenticNet [28] consists of not only word entries but also multi-word-concepts.
The most recent version—SenticNet 5 has over 100,000 new data entries, each
contains sentiment activation information according to the hourglass model [27]
and an overall polarity score.

The supervision for the first four domains is obtained from the Multi-Domain
Sentiment Dataset v2.03 [16]; for the Movie domain from sentence polarity dataset
v1.04 [129] and for the finance domain from the Stocktwits dataset5 we collected.
See Table 6.2 for details.

The dataset for the finance domain is very demanding for its noisier nature,
and number of sentiments are presented by high values and digits that require a
piece of practical information for its complete understanding. Hence, apart from
the removal of stop word and lemmatization, which is not necessary to perform for
all the datasets,6 we moreover remove URLs, non-ASCII characters, and hashtags
and substitute some microtexts and acronyms. Table 6.3 provides examples of this
cleanup prepossessing.

3http://cs.jhu.edu/~mdredze/datasets/sentiment
4http://cs.cornell.edu/people/pabo/movie-review-data/
5See Appendix B.
6Implemented with NLTK.

http://cs.jhu.edu/~mdredze/datasets/sentiment
http://cs.cornell.edu/people/pabo/movie-review-data/
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6.5 Experiments

The labeled data in Table 6.2 are used for experiments. The similar values for the
negative and positive scores are used because of the fact that it is not possible to
deal with the unbalanced data for calculating the accurate result. Specifically, a
linear SVM is performed with squared-hinge loss function as an algorithm for the
sentiment characterization. That is to optimize

min
w, b

1

2
wᵀw +

n∑

i=1

�[ yi(wᵀvector(T )i + b) − 1 ] (6.10)

where w, b are hyperplane parameters and

�(t) =
{

(1 − t)2, t < 1

0, t ≥ 1

Other characters are set as M = 10, η = 60%, θ = 0.01, andn = 5. 3-fold;
cross-validation is performed to report the average training in terms of classification
and stability of the accurate result. In particular, Algorithm 6.1 is benchmarked with
two existing approaches: (1) TF-IDF [110], In the theory, sentiment lexicon does not
present in the upper bound for all the bag-of-words because of the lack of any past
information about word sentiment; (2) the automatic induction of lexicon polarity
scores (AIPS), which was the “state-of-the-art” is one of the best methods dealing
with Internet short texts [117]. The consequences for different domain and lexicon
comparisons are present in Table 6.4.

6.5.1 Interpreting Results

In Table 6.4, the first row contains the classification accuracies of using the real
sentiment lexicons, and the second row contains domain adaptation. It is a point
to take in consideration that the “state-of-the-art” method is not fast and quick for
various other domains. In the finance domain, it works more appropriately, because
of the fact that the dataset consists of short texts and is under huge supervision.
Regardless of this, its performance is not robust for other domains. For example, in
the health domain, the random guess is more accurate than using the calculated
polarity scores. In opposite, TF-IDF can draw reliable results, even though this
method does not produce any sentiment lexicon.

It is worth mentioning that whatever sentiment lexicon is taken as a starting
point for Algorithm 6.1, it can always outperform the TF-IDF baseline. No negative
score is estimated, i.e., after the domain adaptation, the results always move toward
accuracy. This is the main difference between Algorithm 6.1 and other transfer
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Table 6.4 Sentiment classification accuracies for six domains, showing competition before/after
domain adaptation. (Adapted from [194])

Apparel Electronics Kitchen Healthcare Movie Finance

TF-IDF 74.2% 66.0% 65.0% 65.0% 75.4% 68.1%

AIPS 54.5% 53.3% 51.3% 49.0% 53.1% 71.7%
Opinion Lexicon 66.2% 64.2% 62.5% 60.3% 69.4% 58.0%

72.8% 69.2% 69.7% 66.5% 74.7% 65.6%

SentiWordNet 66.5% 63.2% 59.3% 59.2% 68.4% 57.7%

71.0% 65.9% 64.1% 64.2% 75.2% 63.6%

L&M 63.2% 60.0% 61.5% 53.2% 58.0% 54.0%

70.5% 64.2% 68.3% 62.7% 69.1% 62.0%

SenticNet 70.5% 64.8% 60.5% 63.2% 71.0% 62.7%

74.7% 69.2% 69.3% 65.7% 77.9% 69.8%

learning based procedures. SenticNet is one of the best methods without domain
adaptation and provides average classification accuracy that is 65.5%, come after the
Opinion Lexicon (63.4%) and SentiWordNet (62.4%). L&M is a domain-specific
lexicon; therefore, it is very clear that its functionality is the lowest (58.0%) for
diverse domains.

After the domain adaptation process, the gaps flanked by dissimilar lexicons are
tapering. SenticNet is still somewhat improved (71.2%), pursued by of. Opinion
Lexicon (69.7%), SentiWordNet (67.4%), and L&M (65.8%). Algorithm 6.1 perk
up L&M (7.8%) and Opinion Lexicon (6.3%) additional to SenticNet (5.7%) and
SentiWordNet (5.0%). This is most likely since the previous two have fairly limited
vocabulary extent. As a consequence, more vocabulary is supplementary in the
lexicon spreading out stage with dataset-induced polarity attained. This may also
entail that a best possible number of kernel words subsist: a steadiness amid former
information and the facility to adjust in a new domain.

6.5.2 A Showcase for Sentiment Shifts

Mounting emotion lexicons with appliance knowledge-based methods typically
bring in the difficulty of over-fitting. Vocabularies that hold no feeling are allocating
division scores due to the accidental statistical inequity. These lexicons might
carry out very fine on the preparation dataset, but do not craft sense and have
deprived simplification aptitude. To look at whether the version of word polarities in
Algorithm 6.1 is reliable with practical information, the words that most intensively
distorted their polarity scores are recorded. Figure 6.4 offers the necessary informa-
tion. To make the analysis brief, only the adaptation results using SenticNet as the
starting sentiment lexicon are indicated here because of its good performances both
before and after domain adaptation.
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Fig. 6.4 Sentiment shifts of words in different domains [194]. (a) Apparel. (b) Electronics. (c)
Kitchen. (d) Healthcare. (e) Movie. (f) Finance

Numerous instances offered here are confirmed by the preceding studies: war,
dark, and complex are positive descriptions for movies [111]; easy is typically used
for positive assessment in the electronics domain, e.g., easy to use; on the other
hand, it is negative in the movie domain [185]; unpredictable is affirmative in the
movie domain, e.g., the plot of this movie is amusing and changeable; still, it is a
negative expression in the kitchen domain [186]. All these statements are justified in
Fig. 6.4 and more similar instances exist throughout the domain adaptation process.

The trials propose that a lot of speech polarities move from approximately
unbiased to conflicting guidelines in different domains. For instance, cheap is
unbiased in the universal domain. However, it changed to positive in the electronics
domain, because it is a desirable property for clientele. In the finance domain, in
distinction, people do not like cheap stocks, so the polarity turns out to be somewhat
negative. Likewise, long is positive in the health and finance domain, e.g., long life
and long position. However, it is off-putting in the apparel and kitchen domain.
Words crime and monster are more often than not looked upon as negative in
the current domain. However, in the movie domain, they pass on to sort as an
alternative of their main meanings; power does not pass on to power or ability,
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but the foundation of energy in kitchen domain. Various less instinctive examples
are linked with jargons and words usage. For example, Monday is impartial in the
universal domain. Nevertheless, marketplace crashes and liquidity harms are more
likely to take place on Monday [3, 190], e.g., Black Monday. As a result, its division
happens to be very negative.
Word logic changed to negative in the Movie domain, not because of the feeling of
its nuance. Instead, the reason is that to say “I dislike the movie because it doesn’t
have any logic” is natural and extra probable than to say “I like the movie since it
has logic.” Likewise, when citizens talk about the rumor in the finance domain, they
usually entail a piece of information that could make an income, not awful reports
that could cause defeat.

Another motivating tip to observe is that in the movie and finance field, statement
polarity achieves and alters more era before the junction. Since these two fields
have quintuple dimension of other pasture in terms of the number of records, it
is reasonable to believe a more substantial training data enables a more accurate
search for word polarities. When supervision is weak, the adjustment takes more
significant steps and does not suffice to correct the small deviation from the causal
word division.

6.6 Summary

This chapter has shown a blueprint about how semantic and sentiment knowledge
can be stored and updated. This does not belong to the central asset allocation
part but is of equal importance for a knowledge-based financial asset management
approach to work and to be maintained. As an initiative, a cognitive-inspired
algorithm is proposed to adapt sentiment lexicons to the target domain. The
sequential learning algorithm is almost passive, regardless of how the results for the
performances are compatible with some questionable strategies for the collection of
information to learn the information. A promising extension of the algorithm is to
learn polarity for concepts, instead of words.

In particular, these sentiment adaptation techniques have appropriate charac-
teristics, i.e., it is robust, no negative learning occurs, and it presents an updated
sentiment lexicon for the specific domain, which embraces high interpretability.
This sentiment lexicon naturally serves as a fundamental form of the sentiment
knowledge base.



Chapter 7
Robo-Advisory

I’m telling you. Who’s on first, What’s on second, I Don’t Know
Who is on third.

— Abbott and Costello

Abstract Robo-advisory completes the last missing part of the vision of intelligent
asset management—featuring the human-computer interaction process that provides
the necessary information for the asset allocation algorithms. In this chapter, we
picture the industry by studying companies that do robo-advisory as a service. The
main body discusses the technical framework of a robo-advisor, how it is different
from the traditional financial advisory process, and the latest relevant research about
dialog systems and recommendation systems. In the end, we develop the outlook for
the future of robo-advisory.

Keywords Financial advisory · Dialog system · Recommendation system ·
Decision support · Digital assistant

Chapters 4, 5, and 6 describe the main techniques underlying AI-empowered asset
allocation strategies and the infrastructure knowledge base. Though in real-world
cases, the whole process of asset management cannot be accomplished without
the proactive participation and involvement of the investors. In delegated asset
management, the investors are clients who deposit their capital to the management
team. Robo-advisory mainly deals with the communication process between clients
and the investing agent. According to the CFA Institute (Chartered Financial
Analyst), robo-advisors are online platforms that provide automated investment
advice based on a customer’s answers to survey questions [150]. Jung et al. define
robo-advisors as digital platforms comprising interactive and intelligent user assis-
tance components that use information technology to guide customers through an
automated investment advisory process [81]. A more detailed definition by Day [44]
emphasizes that robo-advisory often uses algorithms with the characteristics of
low cost, availability, and ease-of-use. However, the core idea of customizing the
investment according to clients’ requirements remains unchanged. Sironi [156]
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Configuration Matching & Customization Maintenance & Rebalancing

Initiation Profiling Concept & 
Assessment Offer Implementation Maintenance

Robo-advisor 

Traditional advisory 

Fig. 7.1 Mapping between robo-advisory and the traditional financial advisory process. (Adapted
from [81])

describes the process straightforwardly as “translating the client’s” specific needs
into an adequate portfolio of financial products.” In the Markowitz model, this
information is compressed as a single parameter: the risk aversion coefficient. The
only evolution is that the process is digitalized and conducted in a more smooth and
convenient way.

Jung et al. [81] conceptualize the degree of digitalization with two waves: the
first wave brings the brokerage platform online, and the second wave makes the
process intelligent. Moulliet et al. [47] elaborate it with four stages. In the first stage,
the communication is facilitated by online questionnaire and proposal of candidate
portfolios for the client to choose. In the second stage, the algorithms will help the
client with automatic adjustment of positions and rebalancing. In the third stage, the
algorithm will not only manage the portfolio but also explicitly convey the rationales
to the client, for example, pre-defined rule sets. In the final stage, the algorithm
will have more advanced features such as self-learning and asset shifts not only
inside each class but across different asset classes. Figure 7.1 shows the mapping
between robo-advisory and the traditional financial advisory process, illustrating
the gradually simplified stages of services. In the traditional settings, the advisor
first prepares a meeting with her customer (initialization). During the meeting, the
advisor talks to the customer to get necessary information (profiling) and develops
a concept. The three phases are combined in robo-advisory. Based on the concept, a
human advisor would make an offer out of the investment universe: if the customer
accepts the offer, it will be implemented with capital from the customer. In robo-
advisory, this phase can be automated by matching a popular portfolio for customers
of-this-kind or customizing a new composition. In both cases, the advisor will have
to keep in contact with her customer and explain or ask for approval for vital changes
to the investment classes.

In fact, the simplified service is an adaptation to a key feature of low-cost
robo-advisory compared to the traditional financial advisory service. This is also
an important motivation for developing such systems. As a practice to financial
inclusion, robo-advisory makes an alternative to the expensive wealth management
service with higher efficiency and accessibility to common people with small
savings. Although these customers have not shown strong interest in robo-advisory,
it tends to become the only possible and economic way for them to participate in
financial investment [82]. This research also gives concrete guidelines for designing
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Fig. 7.2 Design principles for a robo-advisor [81]

the user interface for asset allocation algorithms. Figure 7.2 breaks down the four
design principles. In the next section, we will see how well the robo-advisory
companies follow the principles and design their products. Analysis from aspects
like the fee structures and minimum amount of investment shows that robo-advisory
generally cuts 70% to 80% of the cost compared to the traditional methods.

7.1 Industry Landscape

We study some famous robo-advisory companies in the USA, China, Europe, and
Singapore (see Table 7.1). The US robo-advisory industry thrives after the 2008
Financial Crisis due to risk aversion and that having a portfolio was a relatively
robust investment tool. Two flagship companies Betterment and Wealthfront, for
example, were established targeting at middle-class customers with 200 to 300
thousands annual income. Nowadays, the business has a market share of over 300
billion and is still fast growing according to Statista Market Forecast. Robo-advisory
in China started off from 2015, but already reached a scale of 90 billion USD asset
managed. Other representative companies are from regions with a strong financial
sector.

We observe that there are two types of fees pertinent to the robo-advisory
services. Annual management fee can either be a flat rate or tiered priced according
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Table 7.1 Representative robo-advisory companies and their products (Data collected on 2019-
04-09)

Minimum Assets
Company Product Country Fee structure amount invested

Betterment Smart
solutions

USA 0.25%–0.4%
annual fee

0 ETFs

Blackrock FutureAdvisor USA 0.5% annual
fee

5000 USD ETFs and
Stocks

Charles
Schwab

Schwab
Intelligent
Portfolios

USA Transaction
fee

5000 USD ETFs

Goldman
Sachs

HonestDollar USA 0.25% annual
fee

0 ETFs

Personal
Capital

Smart
Weighting

USA 0.49%–0.89%
annual fee

0 ETFs and
Stocks

Wealthfront PassivePlus USA 0.25% annual
fee

500 USD Stocks,
Bonds, Real
estate, Nature
resources

SIGFIG MANAGED
ACCOUNT

USA 0.25% annual
fee

2000 USD ETFs

China
Merchats
Bank

Mojie China 1%
transaction fee

N.A. Funds and
QDII

JRJ.com Lingxi Zhitou China Transaction
fee

500 CNY Stocks,
Bonds, Gold

Licaimofang Personalized
advisor

China Transaction
fee

N.A. Funds

Swissquote Robo-
Advisory

Switzerland 0.95%–1.25%
annual fee

10000 CHF Securities

Crossbridge
Capital

CONNECT Switzerland 0.2%–1.25%
annual fee

500000 SGD Cash, Fixed
income,
Equities,
Alternatives

StashAway ERAA Singapore 0.2%–0.8%
annual fee

N.A. ETFs

OCBC RoboInvest Singapore 0.88% annual
fee

3500 SGD ETFs and
Stocks

to the amount invested or coverage of system functions. Some of the robo-advisory
services do not charge management fees; instead, they charge the transaction
fees generated when allocating assets. In such cases, the advisory provider has a
motivation to frequently re-weight portfolios as this promotes the sale-side profit.
Chinese robo-advisory services are dominated with the transaction fee mode and the
rest of the world annual management fee mode. In terms of assets invested, ETFs
(exchange-traded funds) are popular because they are ideal tools for the philosophy
of long-term, passive, and diversified investment. ETFs are often highly liquid
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and low in transaction fees and can simplify the investing process, while Chinese
robo-advisory services mostly invest in funds, so the product becomes a fund of
funds (FOF) or fund recommendation system. No surprise to the phenomenon
given the fact that Chinese ETF market is underdeveloped on many assets such
as commodities, FOREX, real estate, etc. Though the product risk becomes more
unpredictable in such cases due to the subjective operations and shifts by fund
managers, except ETFs, individual stocks and alternatives such as real estate, natural
resources, and gold are also viable asset classes (see Table 7.1). Some companies
argue that ETFs have two kinds of inefficiency. First, ETF fees are passed to
the clients in a process known as “fee stacking,” so it is only necessary when
outright investment on certain stocks is not accessible. Second, the rebalancing
cost is higher for ETFs (because of position taken) compared to individual stocks
when markets move, which will impact investment returns. Furthermore, the ETFs
may already adopt a suboptimal diversification, reducing the opportunity to harvest
the same-class asset volatility. Another difference is that many robo-advisory
services in the USA are specialized in tax-efficient portfolios and retirement plans,
probably because of the complicated US taxation [77], whereas in other regions,
companies tend to mention more about their technical advantages. For example,
Lingxi Zhitou discloses techniques underlying their investing algorithms, including
constrained Black-Litterman model, the utility theory, and an asset weighting chart.
Economic Regime-based Asset Allocation (ERAA), a registered method brand of
StashAway on RBAA [125], detects the current economic regime and re-optimizes
its investment portfolio return with a constant risk when the economic environment
changes. The idea is similar to the macro-factor investing model and Bridgewater’s
“All Weather” strategy [2]. These characters are more popular on volatile markets.

There are huge differences for the companies’ capabilities of profiling their
clients. Traditional financial advisory uses questionnaires to assess the client’s
mindset and experience in investing. An instance is the Investment Personality
Assessment by Merrill Lynch,1 which discusses financial resources for family,
lifestyle, goals, priorities, etc. For robo-advisors, a rather simple product is Mojie
by the China Merchats Bank: the robo-advisor only takes two inputs from the client,
i.e., the investing time horizon (years) and the risk preference (scale from 1 to 10).
However, most other products look at more dimensions. For example, Lingxi Zhitou
will require client information such as age, family members, financial position, risk
tolerance level, and the target return so as to estimate the cash flow in the upcoming
years. The information is gathered through a carefully designed questionnaire to
validate its consistency and will be used to assess subjective risk preference and
objective risk tolerance. Overconfidence is a well-established cognitive bias in
investing. Therefore, the final risk level will be set on the conservative side of the
preference/tolerance spectrum.

The analyzed industry products mostly achieve the first or second stage of
digitalization [47]. To push forward the frontiers, researchers identify two fields in

1http://www.ml.com/life-goals/investment-personality-assessment.html

http://www.ml.com/life-goals/investment-personality-assessment.html
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artificial intelligence that work on refining the configuration and matching phases of
a robo-advisor as in Fig. 7.1. Dialog system can be used to acquire user information,
and recommendation system leverages this information to select from a pool of
candidate portfolios.

7.2 Robo-Advisory and Dialog System

Although dialog system has become a hotspot research direction in NLP in the
recent 3 to 5 years, few of them are applied to build a robo-advisor. There are several
reasons for it. First, dialog systems are mainly categorized to task-oriented dialog
systems and chatbots. The technical architecture and objective of the two types are
quite different. A task-oriented system has state trackers and policies for response
selection, while a chatbot uses neural generative models learned from datasets [34].
Robo-advisory, by its nature, is task-oriented. However, the experience with task-
oriented systems is inferior in terms of topic- and discourse-level coherence and
interactiveness compared to generative models. Therefore, there are not enough
incentives to migrate from the traditional questionnaire to a task-oriented system.
Second, the industry did not realize to collect such conversational data due to privacy
and cost concerns. The past interactions between financial advisors and clients are
also concentrated on high-value customers. The target middle-class group was not
involved in this service; thus the lack of data can be expected.

We believe the backbone model for a robo-advisor should be generative to
allow some flexibility. One option is to have a parallel task-oriented system and
switch between the two. Another option is to somehow integrate external domain
knowledge. As far as we know, Day et al. [45] was the first to attempt to combine
an asset allocation model with a standard Seq2Seq model to build a prototype robo-
advisor. Figure 7.3 shows the system architecture.

We see that the system uses a large corpus (STC_weibo) as the base to training
a Seq2Seq model and evaluates the model with a self-constructed financial question
answering dataset. Though there lacks a way to actually improves the training
model, it is integrated with asset allocation strategies to social media platforms.
Hopefully the conversational model still captures some information so that the asset
allocation strategy can be accordingly adjusted. The sequence-to-sequence model
(Seq2Seq) is the most widely applied neural architecture for dialog generation.
Proposed by Sutskever et al. [163] firstly for the machine translation task, the model
maps the dialog context to a sequence of words in the generated response. Given
a dialog context X = x1, x2, . . . , xN consisting of N words, the model outputs
a responsive sequence W = w1, w2, . . . , wM of length M via a hidden context
representation H = α1h1 + α2h2, . . . , αNhN , where each ht = φ(xt , ht−1) and
αi are attention weights normalized over the input sequence so that they sum up to
1. A Seq2Seq model has a RNN to map the function X → H called encoder and
another RNN to map the function H → W called decoder. Hence the objective of
the Seq2Seq model can be defined as:
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Fig. 7.3 System architecture of a conversational robo-advisor proposed in [45]

argmax
∏

p(wt |X,W−t ) (7.1)

where wt is drawn from a distribution over vocabulary based on H .
Another useful direction for robo-advisory is personalized dialog systems. The

related business scenarios are digital companions, such as in-car assistant, restaurant
booking, and well-being chatbots. In these scenarios, the dialog agent has to store
some features of the human-being that she has a long-term conversation with. To
enable this, user personality modeling via dialog history is helpful. The personality
models that have been used are Big Five personality traits2 and the MBTI theory. For
example, Fung et al. [63] developed an interactive dialog system that fuses multi-
modal information (visual, speech, and textual) to detect the user’s personality
based on the MBTI theory.3 The theory categorizes human personalities into 24
types using 4 dimensions, i.e., introversion vs extroversion, intuitive vs sensing,
thinking vs feeling, and judging vs perceiving. Figure 7.4 shows a screenshot of the
system panel.

The central problem in interaction with a robo-advisor lays on risk aversion
estimation, which has a tight connection to personality. Expressing the same level
of risk-aversion, an introversive person may be more vulnerablewhen high volatility

2Also known as the OCEAN model [142], which exams five factors: openness to experience,
conscientiousness, extraversion, agreeableness, and neuroticism.
3http://www.myersbriggs.org/my-mbti-personality-type/

http://www.myersbriggs.org/my-mbti-personality-type/
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Fig. 7.4 The system panel of “Zara”, a dialog system that detects human personality

events occur. Thus the asset management strategy customized should be more
conservative. How to quantify this adjustment is an interesting topic and worth
researching.

7.3 Robo-Advisory and Recommendation System

The ideal asset allocation module manages an asset pool specifically customized for
each client. However, because managing a large number of assets is a challenging
optimization task, companies usually like to downscale the portfolio in two ways.
The first way is to invest in ETFs instead of individual stocks. The second is to
formulate some “ready-made products” in advance and pick one of the most suitable
for each customer. A tech-savvy portfolio, for example, may invest a high weight on
the US tech companies such as FANG Stocks4 and is characterized by high expected
return and high volatility. In both cases the module reduces its cost by selecting from
a finite number of passive asset options, therefore many robo-advisory products are
actually recommendation systems, see Fig. 7.5 for an example.

The early purpose of using the recommendation techniques was to sale to
customers different types of financial services, for example, loans with certain
amounts [59]. Although not in the context of recommending assets, the VITA

4https://www.investopedia.com/terms/f/fang-stocks-fb-amzn.asp
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Fig. 7.5 The candidate portfolios to choose from at RoboInvest of OCBC

application uses a content-based recommendation system. For many dimensions of a
product, the information provided by each customer will be used to rate the product
according to the multi-attribute utility theory [147]. Therefore, a subset of products
that meet the customer’s requirement will be ordered and presented. Nowadays,
recommendation systems use two approaches or a hybrid of them. The collaborative
filtering approach leverages the knowledge of user representation. Users are defined
by their past behavior or their related characters. The system will recommend items
liked or purchased by the user’s peers; thus the problem is converted to measuring
user similarities or discovering similar users (through clustering). The content-based
approach leverages the analysis of the items themselves compared in a unified
framework. As a result, all the recommended items will be alike.

Robo-advisory has access to both item attributes and user-centered information,
such as family and income structures. Therefore, the recommendations are made
with a consideration of the customer’s social relations. Financial social networks are
complicated, and the nodes can be divided into several groups. The data used by Xue
et al. [196] contains three groups: investors, financial institutions, and the market
environment. Then, to measure the similarity between two investors, the system will
consider user ratings together with the graphical structure, which is implemented
by solving the rating matrix factorization problem with social regularizations [105].
The research also experimented with three strategies of model aggregation for group
recommendation, i.e., default, average, and least misery strategy. The results suggest
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the differences are not significant. With the group recommendation algorithm and
the introduction of a financial social network, the overall expected return and
maximum drawdown both decrease, perhaps showing that the recommendation in
general improves the portfolio for customers of all ranges of risk preferences.

7.4 Robo-Advisory and Active Investment

Being a cost-efficient investment channel, many robo-advisory products in Table 7.1
only charge 0.25% to 0.8% flat fee. This makes active management of assets
challenging. However, there are still more than half of the surveyed products in
Germany that provide active management options [47]. If the product is shaped to
provide high returns, the asset allocation model will have to be aware of the market
environment changes and jump from one weighting to another. Subsequently, the
major portfolio components do not have to be highly risky. In this situation, asset
risk premiums are substituted with the decision-making competency of the asset
allocation model, and the robo-advisory service itself becomes a derivative building
on the assets in its portfolio. Meanwhile, the ideal targets for active investment are
well-diversified, fixed-risk, and easy-to-trade assets due to cost constraints, such as
ETFs.

Passive investment, on the contrary, allows to include a wider range of assets.
PassivePlus by Wealthfront in Table 7.1 is a self-explanatory example that invests
even on some very illiquid assets such as real estate and natural resources, which
requires the asset allocation model to accurately estimate asset expected returns and
volatilities for a longer horizon. An important feature of asset allocation models
is the frequency for rebalancing. Most of the current industry products cope with
low-frequency models for multiple reasons. First, building trust between the robo-
advisor and its customer is even more difficult than between a human financial
advisor and her customer. Highly frequent strategies need to brief their customer
very often, which incurs additional cost. Second, in order to differentiate the product
from hedge funds and target for middle-class customers, the robo-advisor aims at
long-term growth in analogy with the market growth. So there is a strong motivation
to reduce transaction fees by introducing inertia. We observe several products that
rebalance four to six times per year, which allows quarterly reassessment of the
customer’s risk preference change.



Chapter 8
Concluding Remarks

We are forced to act largely in the dark.
—Fischer Black

Abstract In this final chapter, we summarize the whole book by reviewing concepts
and algorithms proposed, as well as theories derived in this book. An outline of
extracting and leveraging different aspects of knowledge from financial texts with
the help of NLP techniques is given. We also mention here the model limitations,
the issue of data availability, and statistical power of simulation results. Promising
future directions of this research topic are also discussed at the end of this chapter.

Keywords Data availability · Market liquidity · Knowledge integration ·
Financial text · Deep learning · System deployment

8.1 Concepts, Algorithms, and Theories Derived

Important novel concepts proposed in this book are:

1. Natural language-based financial forecasting: Forecasting activities on finan-
cial indicators, such as asset return, risk, and holding position using NLP
techniques and financial texts, mainly computational semantics and sentiment
analysis of financial reports, company releases, and social media data streams.

2. Narrative space for financial information: A dichotomy of semantics and
sentiment. A perspective that separates invariant correlations between financial
assets from the temporal volatile components.

3. Semantic vine: A regular partial correlation vine (dependence structure), where
the partial correlation value of edges is estimated from pairwise semantic
linkages between financial assets as nodes.

4. Market sentiment views: Market views of the Black-Litterman model, where
the investor’s subjective expected returns of assets are approximated by time
series of prices, trading volumes, and sentiment from social media.
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5. ECM-LSTM: A novel RNN design inspired by an online clustering method and
deep learning that filters learning instances to increase stability and avoid the
overfitting on the time axis.

Algorithms developed are:

1. Growing semantic vine structure (Algorithm 4.1): The process of sequentially
adding edge-spanning pairs to a group of financial assets providing their pairwise
semantic linkage.

2. Estimating robust correlation matrix (Algorithm 4.2): The process of estimat-
ing a robust correlation matrix (risk indicator) for a group of financial assets
based on the semantic vine structure.

3. ECM-LSTM training and forecasting (Algorithm 5.1): An online procedure
that deeply combines ECM and LSTM training and output and predicts the
subjective expected returns of assets.

4. Cognitive-inspired domain adaptation with higher-level supervision (Algo-
rithm 6.1): A supervised algorithm that searches polarity scores for words in a
lexicon and expands the vocabulary by adding new sentiment words.

5. Augmented sentic patterns: An extension that enables sentic computing to
produce not only a positive or negative label [136] but also an intensity value
of sentiment between −1 and 1.

Theories derived are:

1. Theory of development stages of NLFF (Fig. 1.1): A theory that asset allocation
models, as the second wave, would supersede the price prediction paradigm when
an investor considers heterogeneous assets and finally lead to intelligence in
financial asset management.

2. Types of financial texts: A theory that financial texts can be categorized into six
main groups—corporate disclosures, financial reports, professional periodicals,
aggregated news, message boards, and social media posts—according to three
criteria, text length, subjectivity, and the frequency of updates.

3. Hierarchical structures mapping (Fig. 3.5): A theory that there is a mapping
between different ways of describing the structure of language.

4. Human learning of sentiment: A group of metacognition processes that emulate
a human agent when the sentiment of neologisms is uncertain or unknown, e.g.,
exploration-exploitation, narrow down of search space, etc.

Besides, we proved some properties of market views and the formula for
calculating unconditional correlation.
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8.2 Limitations and Future Work

8.2.1 Limitations

As described in Chaps. 4 and 5, semantics and sentiment are separately used to
model asset correlations and expected returns. A limitation of this approach is that
a theoretical difficulty emerges: since the robust correlation matrix is static and
estimated from a different source, it cannot be interpreted as the covariance of
asset returns. This difficulty requires innovative elucidation of the mean-variance
optimization framework. It is also an unanswered question whether there is a third
way to integrate textual knowledge to asset allocation models—extending another
dimension for the narrative space for financial information—and how to do it.
Otherwise, new advances, e.g., in time expression analysis will have to be added
to one of the current dimensions.

It may be easy to notice that some developed algorithms contain many hyper-
parameters. These parameters have psychological connotations, e.g., risk aversion,
consequently, are almost impossible to optimize with the usual methods such as
grid search. We generally follow previous literature to decide these parameters. A
complete investigation on the sensitivity of them would be very interesting and
challenging. Another limitation is that in both the augmented Markowitz’s model
and Black-Litterman’s model, transaction cost is not considered. The hypothesis is
that the cost is negligible when the capital managed is extremely large. However, a
paradox is that in this case, the liquidity problem is the other side of the coin. The
investor may not be able to find a market maker to do large transactions, which is
not included in any model discussed in this book. It is still unclear how and to what
extent the portfolio strategies are affected by encouraging frequent rebalancing with
zero transaction cost. Since most of the strategies discussed in this book adopt daily
rebalancing, it may be potentially beneficial to abandon small changes in holding
positions.

Data availability is always a challenge in financial applications. Since we only
collected limited data, the method to inversely assess the quality of data employed is
not thoroughly developed, though many researchers are interested in it. Finally, this
limitation of insufficient data causes concept sparsity in the corpus, which may bring
difficulties when we use the CDAHS algorithm to build a concept-level sentiment
knowledge base in the future.

8.2.2 Future Work

We plan to pursue the following future work, a part of which is ongoing:

1. Constructing a concept-level sentiment knowledge base: An extension of
the CDAHS algorithm to include not only word entries but also concepts and



126 8 Concluding Remarks

corresponding polarity scores. Specifically, we have developed algorithms that
automatically extract and select concepts from formal financial reports, not only
in English but also in Chinese.

2. Studying portfolio optimization with transaction costs: This problem, in
general, can be formed as an optimization problem with constraints [13]. We plan
to substitute the Markowitz model with it and analyze the strategy sensitivity to
cost functions. This direction has practical meaning for building robo-advisors.

3. System deployment: The approaches proposed in the current stage have a great
potential for industry partners. We will look for applications in other research
projects and collaboration with banks, funds, and asset management entities.

8.3 Conclusions

In this book, we introduced several NLP techniques to tackle problems in asset
allocation models. This perspective generalizes price prediction problems when
multiple heterogeneous assets are available on the market. According to the type
of financial texts, we proposed to extract different aspects of information, such
as semantics and sentiment. Advantages and room for improvement of these
techniques are discussed and supported by experiments.

Econometric models can still be used in the asset allocation models just as their
wide applications in time series analysis. However, they may suffer from issues such
as instability and limitation of information sources. A major difference between
applying econometric models and our machine learning-based NLP methods is
that the latter usually have at least thousands of parameters doing nonlinear matrix
operations. This expressive power has merit in approximating complicated market
behaviors and phenomena. Moreover, despite the fact that econometric models can
include exogenous variables, there exists a gap between non-structured textual data
and numerical variables. NLP is still indispensable to facilitate this conversion in
real time and in a large volume.

We explored both sub-symbolic AI for semantic modeling of asset correlations
(Chap. 4) and a symbolic AI approach for sentiment analysis of the mass opinion
on asset returns (Chap. 5). Based on a portfolio of five stocks, we find that the
robust estimation of asset correlations by semantic linkages is superior to estimation
using historical price data. With the help of a proper semantic vine, the portfolio
outperformed 80% to 90% peers of its kind in terms of annualized return and is
even superior to the market portfolio in terms of Sharpe ratio. The method only has
O(log n) more complexity than naïve computation and can scale up to more than 50
stocks in less than 5 seconds.

With the help of augmented sentic patterns and sentic computing, we developed a
method to obtain sentiment time series on specific assets, which is further validated
by strong correlations to some commercial tools and products. The same portfolio
as the previous is strengthened by a novel neural network design (ECM-LSTM).
The impact of adopting the sentiment time series and ECM-LSTM are evaluated,
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respectively. The improvement in annualized return is circa 2% for sentiment and
more than 10% for ECM-LSTM. The first percentage of contribution is backtested
for 8 years; however, due to data availability, the latter one is only backtested for 3
months.

The application of AI in financial modeling is not well-realized until recent
years. One of the main reasons is that there are many pitfalls that would invalidate
normal practices in general machine learning problems. For example, preventing
information leak on time axis needs special efforts; model training cannot shuffle
data because the temporal structure is important; replicability in historical data
cannot guarantee replicability in the future. Another important requirement for
financial applications is the interpretability. Because the models need to be finally
customized for and briefed to investors, an end-to-end system with no meaningful
intermediate results is not preferred. If black box algorithms are necessary, they have
to be restricted to computing known variables in the minimum-possible modules.
The similar aim is also recognized by AI in healthcare and medical research.

Of course, this book does not cover all the aspects of intelligent asset man-
agement. Those materials on properties of asset types such as equities, bonds,
alternatives, and funds can be found in classic textbooks of finance, while hands-
on guide to incubate a viable product and regulation issues is more carefully
analyzed in white papers. Even in the scope of incorporating newly developed
AI techniques, there are emerging topics that have just come under the spotlight,
such as the fake news problem [115]. Even on professional platforms, malicious
and misleading information are accumulating, stimulating quests for algorithms that
evaluate the credibility and impact of financial news. Data privacy and security is
another unaddressed topic in this book. With more people from the legislative and
jurisdictional background involved, more progresses in this direction are expected.

Financial asset management is not only science but also an art. Recent advances
in AI and machine learning achieved a great deal in computer vision but less in
NLP because language is a more abstractive mental process. Every human baby
can recognize objects but not everyone has equal excellence in language ability.
Financial asset management is a challenging task even for professionals. There
is still a long way to go before we really understand how to achieve this type of
intelligence.
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The full stock list used for scalability analysis is:

Number Ticker Company name GICS TRBC

0 AAPL Apple Inc 4520 5710

1 ABT Abbott Laboratories 3510 5620

2 AXP American Express Co 4020 5510

3 BA Boeing Co 2010 5210

4 BAC Bank of America Corp 4010 5510

5 BMY Bristol-Myers Squibb Co 3520 5620

6 C Citigroup Inc 4010 5510

7 CAT Caterpillar Inc 2010 5210

8 CMCSA Compcast Corp 2540 5330

9 CBG CBRE Group Inc 6010 5540

10 COP ConocoPhillips 1010 5010

11 CTL CenturyLink Inc 5010 5810

12 CVX Chevron Corporation 1010 5010

13 D Dominion Energy Inc 5510 5910

14 DD DuPont (EI) de Nemours 1510 5230

15 DIS DISNEY (WALT) CO 2540 5330

16 DPZ Domino’s Pizza Inc 2530 5330

17 DUK Duke Energy Corp 5510 5910

18 ECL Ecolab Inc 1510 5110

19 EXC Exelon Corp 5510 5910

20 FTR Frontier Communications Corp 5010 5810

21 GE General Electric Co 2010 5230

22 HD Home Depot Inc 2550 5340

23 IBM Intl Business Machines Corp 4510 5720
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Number Ticker Company name GICS TRBC

24 INTC Intel Corp 4530 5710

25 JNJ Johnson&Johnson 3520 5620

26 JPM JPMorgan Chase&Co 4010 5510

27 KO Coca-Cola Co 3020 5410

28 MCD McDonald’s Corp 2530 5330

29 MMM 3M Co 2010 5230

30 MO Altria Group Inc 3020 5410

31 MOS Mosaic Co 1510 5110

32 MRK Merck&Co 3520 5620

33 MSFT Microsoft 4510 5720

34 NEE NextEra Energy Inc 5510 5910

35 NEM NewmonT Mining Corp 1510 5120

36 NKE Nike Inc 2520 5320

37 ORCL Oracle Corp 4510 5720

38 OXY Occidental Petroleum Co 1010 5010

39 PEP PepsiCO Inc 3020 5410

40 PFE Pfizer Inc 3520 5620

41 PG Procter&Gamble Co 3030 5420

42 S Sprint Corp 5010 5810

43 SLB Schlumberger Ltd 1010 5010

44 SO Southern Co 5510 5910

45 T AT&T Inc 5010 5810

46 UTX United Technologies Corp 2010 5210

47 VZ Verizon Communications Inc 5010 5810

48 WFC Wells Fargo&Co 4010 5510

49 WMT Wal-Mart Stores Inc 3010 5430

50 XOM ExxonMobil Corp 1010 5010

51 GS Goldman Sachs Group Inc 4020 5510

52 IBP.1 IBP Inc 3020 5220

53 V Visa Inc 4510 5720

54 AMZN Amazon.com Inc 2550 5340

The whole vine structure spans nodes in Fig. 4.8 is:
(40, 0)(40, 2)(33, 3)(25, 1)(9, 2)(47, 40)(44, 3)(37, 36)(40, 3)(39, 0)(30, 3)(37,
6)(47, 6)(10, 9)(25, 5)(35, 18)(33, 7)(42, 20)(18, 0)(54, 5)(37, 34)(38, 10)(28,
3)(40, 29)(49, 2)(45, 9)(19, 6)(24, 6)(41, 40)(40, 22)(38, 17)(13, 6)(35, 16)(48,
6)(46, 22)(37, 23)(25, 0)(20, 6)(49, 14)(51, 0)(50, 3)(48, 26)(34, 21)(52, 47)(6,
4)(10, 8)(38, 12)(11, 7)(15, 10)(32, 19)(43, 2)(27, 5)(53, 34)(31, 3)(40, 9)(2, 0)(40,
6)(40, 18)(33, 30)(40, 30)(47, 20)(40, 28)(45, 2)(22, 0)(29, 0)(36, 6)(47, 3)(34,
23)(23, 6)(47, 37)(47, 22)(5, 0)(7, 3)(37, 13)(24, 19)(38, 9)(37, 24)(47, 4)(45,
10)(5, 1)(40, 25)(48, 13)(41, 22)(50, 30)(44, 28)(26, 6)(9, 8)(39, 25)(35, 0)(51,
25)(42, 6)(27, 25)(46, 40)(49, 9)(33, 11)(15, 8)(12, 10)(52, 40)(54, 27)(40, 31)(53,
37)(14, 2)(37, 21)(18, 16)(17, 12)(32, 6)(43, 40)(40, 39)(40, 37)(17, 10)(18, 2)(22,
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18)(30, 7)(47, 36)(47, 0)(39, 5)(6, 3)(47, 42)(49, 40)(9, 0)(30, 28)(47, 23)(27, 1)(34,
6)(47, 24)(40, 33)(22, 6)(29, 2)(37, 19)(45, 40)(51, 40)(40, 35)(47, 28)(48, 37)(29,
25)(47, 41)(10, 2)(37, 20)(24, 13)(16, 0)(47, 46)(50, 33)(40, 4)(45, 8)(1, 0)(23,
21)(38, 8)(52, 3)(53, 23)(32, 24)(11, 3)(12, 9)(14, 9)(43, 0)(15, 9)(31, 28)(26,
13)(54, 25)(44, 40)(40, 10)(6, 0)(47, 18)(47, 44)(18, 9)(41, 6)(40, 36)(37, 3)(40,
5)(45, 0)(40, 23)(40, 24)(47, 19)(22, 2)(36, 20)(39, 29)(47, 34)(17, 9)(44, 30)(49,
0)(40, 14)(50, 7)(29, 18)(28, 6)(51, 29)(35, 2)(40, 16)(33, 28)(21, 6)(46, 41)(48,
24)(47, 13)(37, 22)(37, 26)(25, 2)(37, 4)(45, 15)(52, 6)(54, 1)(12, 8)(50, 40)(8,
2)(27, 0)(43, 18)(37, 32)(53, 6)(42, 37)(38, 15)(44, 31)(39, 1)(30, 11)(37, 0)(18,
6)(10, 0)(24, 22)(36, 3)(39, 2)(29, 5)(37, 28)(23, 3)(47, 2)(44, 33)(40, 13)(24,
23)(35, 9)(47, 30)(48, 47)(50, 28)(40, 1)(17, 8)(40, 7)(41, 0)(29, 9)(36, 4)(47,
32)(51, 2)(40, 20)(19, 13)(16, 2)(40, 8)(29, 22)(47, 21)(43, 22)(14, 0)(46, 6)(54,
0)(45, 38)(15, 2)(25, 18)(52, 28)(42, 36)(26, 24)(45, 18)(53, 21)(49, 18)(39, 27)(15,
12)(31, 30)(50, 11)(44, 6)(40, 34)(30, 6)(44, 37)(40, 19)(24, 0)(39, 18)(37, 18)(6,
2)(22, 9)(36, 28)(34, 3)(28, 7)(47, 33)(5, 2)(47, 29)(34, 24)(38, 2)(22, 13)(18,
10)(23, 22)(20, 3)(52, 44)(54, 39)(16, 9)(49, 35)(25, 22)(46, 0)(48, 19)(40, 21)(49,
29)(50, 44)(51, 18)(28, 23)(41, 37)(20, 4)(8, 0)(40, 11)(40, 15)(45, 35)(18, 14)(42,
40)(17, 15)(47, 43)(32, 13)(40, 27)(45, 12)(47, 31)(53, 47)(29, 1)(47, 26)(37, 2)(35,
10)(48, 40)(40, 38)(37, 30)(41, 24)(54, 40)(23, 0)(33, 6)(24, 21)(34, 22)(49, 22)(26,
19)(44, 7)(50, 47)(18, 5)(29, 14)(47, 25)(51, 22)(29, 6)(40, 32)(29, 27)(45, 16)(24,
18)(18, 8)(39, 22)(46, 37)(45, 17)(49, 16)(24, 3)(15, 0)(44, 23)(36, 23)(2, 1)(22,
19)(53, 40)(12, 2)(25, 9)(23, 13)(52, 37)(35, 29)(4, 3)(28, 20)(34, 28)(28, 11)(43,
29)(42, 3)(31, 6)(47, 9)(44, 34)(30, 23)(47, 39)(47, 7)(34, 13)(23, 19)(16, 10)(23,
18)(37, 29)(38, 0)(34, 0)(40, 12)(22, 5)(35, 8)(22, 3)(36, 34)(28, 24)(24, 2)(37,
33)(51, 9)(54, 29)(25, 6)(17, 2)(44, 11)(23, 20)(35, 22)(53, 24)(41, 18)(50, 6)(22,
21)(35, 14)(46, 24)(43, 25)(48, 22)(27, 2)(40, 26)(18, 1)(52, 23)(49, 25)(28, 4)(18,
15)(42, 28)(37, 31)(49, 45)(32, 22)(29, 16)(3, 0)(39, 6)(9, 6)(44, 36)(46, 18)(21,
0)(34, 30)(34, 19)(36, 24)(13, 3)(37, 25)(40, 17)(34, 20)(29, 24)(47, 5)(47, 11)(33,
23)(23, 2)(51, 49)(22, 1)(23, 4)(22, 16)(49, 10)(16, 8)(51, 47)(32, 23)(48, 23)(53,
22)(54, 2)(35, 25)(42, 4)(50, 37)(16, 14)(41, 23)(52, 30)(35, 15)(28, 22)(45, 29)(27,
18)(26, 22)(43, 6)(31, 23)(7, 6)(34, 18)(12, 0)(38, 18)(37, 9)(18, 3)(44, 20)(37,
7)(39, 37)(24, 20)(34, 2)(13, 0)(6, 5)(28, 0)(51, 6)(19, 3)(29, 23)(18, 12)(45, 22)(48,
34)(41, 2)(38, 35)(29, 10)(21, 18)(34, 33)(25, 24)(36, 22)(34, 4)(51, 35)(26, 23)(50,
23)(53, 0)(16, 15)(49, 47)(43, 37)(49, 8)(54, 18)(25, 16)(34, 32)(52, 33)(22, 14)(11,
6)(34, 31)(42, 23)(27, 22)(36, 30)(17, 0)(46, 23)(47, 1)(36, 33)(36, 0)(3, 2)(47,
35)(24, 9)(29, 8)(35, 12)(34, 29)(37, 5)(18, 13)(34, 26)(51, 37)(39, 9)(25, 23)(50,
34)(19, 0)(44, 24)(23, 7)(21, 2)(44, 4)(47, 27)(28, 13)(49, 6)(52, 50)(48, 3)(41,
29)(42, 34)(38, 16)(32, 3)(6, 1)(30, 20)(46, 2)(51, 16)(54, 22)(25, 14)(18, 17)(45,
25)(53, 18)(49, 15)(43, 9)(37, 11)(33, 31)(22, 20)(22, 10)(28, 19)(44, 22)(30, 4)(33,
20)(23, 9)(13, 2)(49, 38)(54, 47)(29, 3)(20, 0)(35, 6)(25, 10)(22, 8)(34, 7)(51,
24)(30, 24)(47, 16)(9, 5)(16, 12)(37, 1)(34, 25)(39, 24)(44, 42)(19, 18)(49, 37)(50,
36)(35, 17)(41, 34)(36, 13)(50, 31)(51, 45)(27, 6)(29, 15)(29, 21)(26, 3)(32, 0)(53,
2)(52, 34)(46, 29)(51, 14)(23, 11)(43, 24)(48, 32)(47, 45)(44, 0)(37, 35)(54, 6)(39,
23)(24, 5)(51, 23)(33, 24)(34, 9)(48, 0)(52, 7)(25, 3)(16, 6)(19, 2)(49, 24)(38,
29)(20, 13)(51, 10)(36, 7)(22, 15)(29, 13)(47, 14)(33, 4)(49, 12)(36, 19)(30, 22)(32,
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28)(17, 16)(41, 25)(9, 1)(28, 18)(25, 8)(21, 3)(37, 27)(53, 29)(34, 11)(43, 23)(32,
26)(52, 31)(42, 30)(46, 34)(50, 20)(30, 0)(9, 3)(47, 10)(44, 13)(51, 34)(45, 6)(41,
9)(49, 17)(23, 5)(28, 2)(49, 23)(21, 13)(36, 32)(43, 34)(36, 18)(20, 19)(54, 37)(39,
34)(37, 16)(50, 4)(26, 0)(20, 7)(25, 15)(52, 11)(53, 3)(14, 6)(38, 22)(46, 25)(25,
21)(29, 19)(24, 1)(27, 9)(51, 8)(42, 33)(29, 12)(48, 28)(36, 11)(50, 24)(31, 7)(33,
22)(35, 24)(47, 8)(24, 7)(45, 37)(29, 28)(35, 23)(10, 6)(46, 9)(33, 0)(7, 4)(29,
17)(51, 3)(39, 3)(36, 2)(20, 18)(44, 19)(41, 3)(54, 9)(20, 11)(21, 19)(22, 12)(38,
25)(48, 36)(30, 13)(50, 22)(37, 14)(43, 3)(49, 34)(28, 26)(32, 20)(53, 13)(21, 9)(51,
15)(25, 13)(23, 1)(24, 16)(52, 36)(27, 24)(31, 11)(50, 42)(34, 5)(44, 18)(35, 34)(13,
9)(37, 10)(48, 20)(20, 2)(22, 17)(30, 19)(45, 24)(34, 1)(24, 14)(24, 11)(49, 3)(22,
7)(46, 3)(5, 3)(8, 6)(25, 19)(36, 29)(43, 21)(24, 4)(51, 21)(51, 39)(23, 16)(41,
39)(36, 26)(47, 15)(52, 20)(53, 19)(51, 38)(44, 32)(25, 12)(50, 0)(42, 7)(28, 21)(27,
23)(36, 31)(54, 24)(33, 13)(30, 18)(48, 44)(35, 3)(44, 2)(51, 5)(19, 9)(42, 24)(3,
1)(37, 8)(49, 39)(47, 38)(28, 25)(41, 5)(24, 10)(7, 0)(29, 20)(25, 17)(46, 39)(45,
23)(22, 4)(39, 21)(51, 12)(34, 16)(33, 19)(34, 27)(52, 24)(11, 4)(53, 25)(54, 23)(23,
14)(43, 13)(15, 6)(32, 18)(36, 21)(50, 13)(51, 43)(31, 20)(26, 20)(36, 25)(16, 3)(28,
9)(30, 2)(23, 10)(39, 35)(42, 22)(21, 5)(33, 18)(47, 12)(38, 6)(49, 5)(27, 3)(44,
29)(24, 8)(48, 18)(42, 11)(44, 26)(45, 34)(4, 0)(51, 41)(51, 17)(41, 1)(21, 20)(51,
13)(32, 2)(46, 5)(54, 34)(50, 19)(53, 9)(31, 24)(34, 14)(37, 15)(52, 4)(43, 19)(43,
39)(13, 7)(19, 7)(30, 29)(38, 37)(48, 2)(23, 8)(39, 13)(34, 10)(39, 16)(49, 41)(36,
9)(51, 19)(47, 17)(45, 3)(33, 2)(54, 3)(35, 5)(44, 21)(26, 18)(51, 46)(14, 3)(49,
21)(51, 1)(13, 4)(22, 11)(32, 29)(50, 18)(42, 0)(12, 6)(43, 5)(41, 27)(24, 15)(52,
42)(53, 43)(53, 28)(25, 20)(31, 4)(10, 3)(19, 4)(54, 41)(30, 21)(18, 7)(17, 6)(39,
14)(44, 25)(33, 29)(45, 39)(52, 22)(34, 8)(53, 51)(41, 35)(13, 5)(37, 12)(39, 19)(38,
24)(11, 0)(48, 29)(42, 13)(51, 27)(26, 2)(23, 15)(41, 21)(16, 5)(46, 1)(49, 1)(53,
36)(32, 30)(49, 43)(50, 2)(43, 28)(20, 9)(42, 31)(44, 9)(39, 10)(37, 17)(51, 28)(38,
23)(19, 5)(18, 4)(33, 21)(42, 19)(8, 3)(14, 5)(35, 21)(7, 2)(53, 20)(50, 29)(33,
32)(52, 0)(41, 16)(29, 26)(49, 13)(43, 36)(34, 15)(45, 5)(48, 30)(54, 51)(49, 46)(49,
27)(21, 1)(31, 22)(13, 11)(43, 41)(53, 39)(30, 25)(24, 12)(39, 28)(49, 19)(30, 9)(24,
17)(23, 12)(15, 3)(10, 5)(51, 36)(43, 20)(39, 8)(33, 25)(45, 41)(42, 18)(41, 13)(41,
14)(30, 26)(29, 7)(50, 32)(53, 44)(48, 33)(19, 11)(54, 49)(50, 21)(4, 2)(53, 5)(21,
16)(31, 0)(46, 21)(35, 1)(52, 13)(43, 35)(27, 21)(38, 34)(38, 3)(28, 5)(21, 7)(39,
36)(41, 19)(23, 17)(41, 10)(34, 12)(33, 9)(50, 25)(51, 20)(43, 1)(46, 35)(35, 13)(8,
5)(42, 2)(32, 7)(29, 4)(53, 30)(33, 26)(45, 21)(18, 11)(21, 14)(16, 1)(52, 19)(31,
13)(53, 49)(44, 43)(54, 21)(35, 27)(39, 15)(50, 48)(36, 5)(21, 4)(49, 28)(51, 44)(35,
19)(39, 38)(34, 17)(12, 3)(52, 18)(46, 16)(39, 20)(32, 4)(48, 7)(41, 8)(31, 19)(11,
2)(50, 9)(25, 7)(53, 33)(14, 1)(42, 29)(13, 1)(21, 10)(15, 5)(43, 27)(53, 41)(27,
16)(54, 35)(45, 14)(43, 30)(50, 26)(9, 7)(44, 39)(41, 28)(25, 4)(38, 5)(17, 3)(20,
5)(43, 33)(51, 30)(52, 2)(19, 1)(48, 4)(49, 36)(39, 12)(31, 18)(53, 50)(42, 21)(42,
32)(41, 15)(27, 13)(14, 10)(46, 14)(54, 16)(21, 8)(45, 1)(53, 35)(54, 43)(27, 14)(26,
7)(29, 11)(39, 30)(26, 4)(48, 42)(35, 28)(46, 45)(21, 11)(41, 36)(44, 5)(39, 17)(54,
13)(53, 1)(51, 33)(10, 1)(41, 38)(14, 8)(52, 29)(54, 14)(21, 15)(9, 4)(32, 11)(45,
27)(27, 19)(50, 43)(49, 20)(53, 7)(12, 5)(42, 25)(43, 16)(31, 2)(30, 5)(54, 19)(42,
26)(28, 1)(36, 35)(42, 9)(17, 5)(46, 10)(41, 20)(27, 10)(38, 21)(49, 44)(53, 4)(51,
50)(54, 45)(16, 13)(31, 29)(8, 1)(43, 7)(52, 21)(25, 11)(52, 32)(41, 12)(43, 14)(15,
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14)(53, 27)(48, 11)(39, 33)(36, 1)(33, 5)(49, 30)(28, 27)(41, 17)(38, 14)(21, 12)(44,
41)(15, 1)(46, 8)(11, 9)(19, 16)(54, 10)(14, 13)(26, 11)(51, 7)(53, 42)(27, 8)(50,
39)(32, 31)(54, 53)(52, 48)(52, 25)(43, 4)(35, 20)(32, 21)(45, 43)(54, 28)(48,
21)(52, 9)(44, 35)(45, 13)(20, 1)(49, 33)(32, 25)(51, 4)(36, 27)(14, 12)(39, 7)(19,
14)(50, 5)(38, 1)(52, 26)(46, 15)(21, 17)(54, 8)(53, 11)(27, 15)(53, 16)(43, 42)(31,
21)(43, 10)(41, 30)(35, 30)(26, 21)(28, 16)(17, 14)(39, 4)(38, 27)(13, 10)(27, 20)(7,
5)(45, 19)(44, 1)(41, 33)(50, 49)(32, 9)(48, 25)(51, 42)(43, 11)(53, 52)(12, 1)(43,
8)(46, 27)(48, 31)(54, 15)(54, 36)(53, 14)(5, 4)(48, 9)(19, 10)(54, 38)(54, 20)(49,
7)(17, 1)(30, 1)(36, 16)(31, 25)(26, 25)(50, 41)(13, 8)(53, 32)(46, 38)(42, 39)(35,
33)(44, 27)(51, 11)(43, 15)(53, 45)(27, 12)(52, 43)(28, 14)(33, 1)(50, 35)(41, 7)(19,
8)(45, 28)(31, 9)(46, 12)(36, 14)(54, 44)(20, 16)(53, 48)(27, 17)(52, 51)(43, 32)(30,
27)(15, 13)(26, 9)(49, 4)(54, 46)(39, 11)(43, 38)(53, 10)(42, 5)(28, 10)(50, 1)(44,
16)(35, 7)(38, 13)(54, 30)(45, 36)(46, 17)(33, 27)(53, 26)(11, 5)(41, 4)(53, 8)(52,
39)(49, 42)(46, 43)(53, 31)(51, 32)(20, 14)(19, 15)(54, 12)(48, 43)(38, 19)(51,
48)(45, 20)(35, 4)(54, 33)(54, 17)(36, 10)(30, 16)(42, 41)(50, 27)(43, 12)(28, 8)(43,
26)(44, 14)(49, 11)(7, 1)(46, 13)(39, 32)(52, 5)(53, 15)(31, 26)(45, 44)(30, 14)(32,
5)(46, 19)(36, 8)(4, 1)(33, 16)(48, 39)(13, 12)(20, 10)(52, 49)(54, 50)(42, 35)(27,
7)(53, 38)(43, 17)(41, 11)(28, 15)(43, 31)(51, 26)(44, 10)(20, 8)(19, 12)(52, 41)(50,
16)(17, 13)(33, 14)(49, 32)(39, 26)(45, 30)(54, 7)(48, 5)(53, 46)(35, 11)(51, 31)(42,
1)(36, 15)(38, 28)(27, 4)(30, 10)(26, 5)(41, 32)(54, 4)(44, 8)(16, 7)(52, 35)(49,
48)(46, 28)(38, 36)(39, 31)(20, 15)(45, 33)(50, 14)(42, 27)(53, 12)(11, 1)(19,
17)(54, 42)(31, 5)(30, 8)(44, 15)(48, 41)(46, 36)(16, 4)(38, 20)(28, 12)(53, 17)(35,
32)(52, 1)(50, 45)(49, 26)(27, 11)(14, 7)(33, 10)(28, 17)(44, 38)(50, 10)(45, 7)(32,
1)(41, 26)(48, 35)(46, 20)(33, 8)(42, 16)(54, 11)(14, 4)(30, 15)(52, 27)(36, 12)(49,
31)(38, 30)(46, 44)(36, 17)(50, 8)(10, 7)(33, 15)(35, 26)(45, 4)(54, 52)(42, 14)(20,
12)(48, 1)(16, 11)(41, 31)(32, 27)(44, 12)(38, 33)(8, 7)(50, 15)(10, 4)(45, 42)(46,
30)(20, 17)(14, 11)(35, 31)(26, 1)(48, 27)(52, 16)(54, 32)(50, 38)(44, 17)(8, 4)(45,
11)(31, 1)(30, 12)(54, 48)(42, 10)(52, 14)(32, 16)(27, 26)(15, 7)(46, 33)(38, 7)(30,
17)(52, 45)(54, 26)(42, 8)(33, 12)(32, 14)(31, 27)(50, 46)(48, 16)(15, 4)(11, 10)(46,
7)(33, 17)(50, 12)(38, 4)(52, 10)(11, 8)(48, 14)(45, 32)(26, 16)(54, 31)(42, 15)(50,
17)(12, 7)(52, 8)(46, 4)(31, 16)(32, 10)(26, 14)(15, 11)(42, 38)(48, 45)(17, 7)(32,
8)(12, 4)(48, 10)(46, 42)(45, 26)(38, 11)(31, 14)(52, 15)(52, 38)(17, 4)(46, 11)(48,
8)(26, 10)(32, 15)(45, 31)(42, 12)(52, 46)(31, 10)(38, 32)(26, 8)(48, 15)(42, 17)(12,
11)(48, 38)(52, 12)(26, 15)(31, 8)(46, 32)(17, 11)(32, 12)(31, 15)(38, 26)(48,
46)(52, 17)(38, 31)(48, 12)(46, 26)(32, 17)(26, 12)(46, 31)(48, 17)(26, 17)(31,
12)(31, 17)
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Data Acquisition

Data acquisition from StockTwits is described as follows.
The StockTwits API provides snippets of posts in a JSON file at the URL address:

https://api.stocktwits.com/api/2/streams/symbol/ticker_name.json
The file structure contains posts with associated information such as post_ID,

text, timestamp, user, source, sentiment, etc. A sample is provided as below, where
sensitive data is anonymized with “?.”

{"response":{"status":???},
/*one post*/
{"id":1243???21,
"body":"$A??? Another green Premarket. Lets see how the day

goes.",
"created_at":"2018-0?-??T08:??:??Z",
"user":{"id":13???41,"username":"Mr???h","name":"Wil???k","

avatar_url":"http://avatars.sto???.jpg",
"avatar_url_ssl":"https://s3.ama???/images/???mb.jpg","

join_date":"2017-??-?1","official":false,"identity":"User
","classification":[],"followers":?,"following":?,"ideas
":4?1,"watchlist_stocks_count":1?,"like_count":1?1},

"source":{"id":2???,"title":"St???oid ","url":"http://www.???
le"},

"symbols":[{"id":???,"symbol":"A???","title":"A???","aliases
":[],"is_following":false,"watchlist_count":2???73}],

"mentioned_users":[],"
entities":{"sentiment":{"basic":"Bullish"}
},
/*another post*/
...
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136 B Data Acquisition

The URLs are frequently requested with the “urllib” Python package. The file
is stored in a temporary variable datatmp and loaded with a JSON parser. After
all the useful name/value pairs are recorded to a CSV file, the temporary variable is
emptied for reuse.

reader = codecs.getreader("utf-8")
req = urllib.request.Request(url)
req.add_header(’Pragma’, ’no-cache’)
datatmp = urllib.request.build_opener().open(req)

data = json.load(reader(datatmp))
del datatmp
urllib.request.urlcleanup()
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