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Abstract
Prompt Engineering has garnered significant at-
tention for enhancing the performance of large
language models across a multitude of tasks.
Techniques such as the Chain-of-Thought not
only bolster task performance but also delin-
eate a clear trajectory of reasoning steps, of-
fering a tangible form of explanation for the
audience. Prior works on interpretability as-
sess the reasoning chains yielded by Chain-of-
Thought solely along a singular axis, namely
faithfulness. We present a comprehensive and
multifaceted evaluation of interpretability, ex-
amining not only faithfulness but also robust-
ness and utility across multiple commonsense
reasoning benchmarks. Likewise, our investi-
gation is not confined to a single prompting
technique; it expansively covers a multitude
of prevalent prompting techniques employed
in large language models, thereby ensuring a
wide-ranging and exhaustive evaluation. In ad-
dition, we introduce a simple interpretability
alignment technique, termed Self-Entailment-
Alignment Chain-of-thought, that yields more
than 70% improvements across multiple di-
mensions of interpretability. Code is available
at https://github.com/SenticNet/
CoT_interpretability

1 Introduction

In recent trends, Large Language Models (LLM)
have shown impressive performance across a di-
verse array of tasks, primarily through extensive
scaling of model size (Brown et al., 2020). Tech-
niques such as instruct-tuning (Wei et al., 2021) ap-
plied across diverse tasks have empowered LLMs
to execute inference on previously unseen tasks.
One attributing factor lies with the extensive efforts
put into innovating new ways of prompting the
LLM to better exploit their knowledge base. Chain-
of-Thought (CoT) (Wei et al., 2022) has gathered
much attention due to its simple setup which allows
the LLM to generate not only the task output but
also the steps undertaken.

In addition to its efficacy in enhancing the
model’s performance, this prompting method con-
currently touches on one of the important aspects
of utilizing these models for decision-making: in-
terpretability. The assumption is that the reasoning
chain preceding the answer illustrates the model’s
thought process, enabling the audience to under-
stand how the answer is derived. However, such
claims though seemingly plausible should be taken
lightly as they may not be faithful to the model’s
reasoning process (Jacovi and Goldberg, 2020).
In this context, plausibility refers to the extent to
which an explanation resonates with and is deemed
acceptable by a human audience. Faithfulness,
on the other hand, is characterized by the extent
to which the explanation accurately reflects the
model’s decision-making process.

There has been a large number of works that
seek to introduce modifications to CoT, including
Self-Consistency (Wang et al., 2022b), Least-to-
Most (Zhou et al., 2022), while others specifically
focus on establishing faithful reasoning (Creswell
and Shanahan, 2022; Lyu et al., 2023). We intro-
duce a simple extension to the list of CoT variants,
but purely with a focus on enhancing interpretabil-
ity in the reasoning chain. The approach coined
Self-Entailment-Alignment CoT (SEA-CoT) oper-
ates similarly to Self-Consistency, but additionally
utilizes a form of consistency between the corre-
sponding reasoning steps and supported context.
This action is missing in Self-Consistency, as the
focus is only on the resultant output, potentially
leading to unfaithful reasoning which may not sup-
port the underlying answer.

Moreover, we conduct an extensive investiga-
tion into the reasoning explanations by evaluating
under three pivotal axes of interpretability: faith-
fulness, robustness, and utility on three common-
sense reasoning datasets. These assessments are
implemented across multiple prompting techniques
including CoT and various adaptations of it.

https://github.com/SenticNet/CoT_interpretability
https://github.com/SenticNet/CoT_interpretability


2 Motivation

Efforts aimed to enhance faithfulness in NLP take
various forms. Extractive rationalizing model (Lei
et al., 2016), designed to be faithful, generally com-
prises two separate components: explainer and
predictor. This design paradigm conditions the
predictor exclusively on text spans extracted by
the explainer, positing that the resultant output,
ŷ is faithfully aligned with the extracted text, ê.
However, prior studies (Wiegreffe et al., 2020) cau-
tions against such beliefs, identifying limitations
in adopting the explain-then-predict approach. The
authors mentioned that such an approach restricts
the focus of the predictor toward the target iden-
tified by the explainer, thereby raising questions
about what is being explained. Conversely, Jacovi
et al. (Jacovi and Goldberg, 2021) highlight con-
cerns relating to the lack of meaningful insights
from multiple text spans.

In accordance, we hypothesize that besides the
limitation of narrowing the predictors’ context, gen-
erating the explanation and output using separate
modules could compromise the quality of the ex-
planation. We set up a simple study, comparing
a modular against a single LLM setup on two in-
terpretability traits, faithfulness, and utility, cov-
ered in deeper detail in section 5. We adopt the
PINTO framework (Wang et al., 2022a), where the
explainer, rθ is a frozen pre-trained LLM and the
predictor, fϕ is finetuned on the downstream task,
conditioned on both the generated explanation and
context, ŷ = fϕ(x⊕ ê), where ê = rθ(x), x is the
given context and ⊕ is the concatenation process.

For the single LLM setup, we directly train fϕ to
generate both ê and ŷ jointly. We measure faithful-
ness by computing the drop in performance when
swapping êi with another instance within the same
batch, ˆej ̸=i before deriving ŷ|x; ê. We use Leakage-
Adjusted Simulatability (LAS) (Hase et al., 2020),
to measure the utility of the rationale, a higher
score would indicate that ê is more useful towards
learning ŷ. The details of LAS are covered in A.7

We conduct experiments on two common-
sense reasoning datasets: Commonsense QA
(CSQA) (Talmor et al., 2018) and OpenBookQA
(OBQA) (Mihaylov et al., 2018). Figure 1 shows
that the joint approach scores higher on both ac-
counts of faithfulness and utility. We hypothesize
that a single model is in better control of aligning
its explanation to the resultant outcome. Contrarily,
a model relying on explanations synthesized by an

Figure 1: Faithfulness and Utility scores for joint and
modular approach on two reasoning datasets: CSQA
and OBQA.

external model may instead exhibit a diminished
correlation between the interdependent variables,
explaining the marginal difference in performance
despite being given an unrelated stimulus.

Notably, this observation resonates well with
the recognized capability of recent LLMs to self-
generate text serving diverse objectives. In partic-
ular, LLMs pre-trained on a large amount of text
can elucidate their reasoning processes, assisted
with the appropriate prompting format. This pre-
liminary experiment serves as the main motivation
to conduct experiments to scrutinize the quality of
explanations produced by a singular LLM.

3 Prompt Techniques

In this section, we systematically review various
ways an LLM, fϕ can be prompted. These meth-
ods primarily differ in how the language model is
queried to derive the final answer. Furthermore, we
proposed an approach, SEA-CoT, aimed at improv-
ing the interpretability traits of the reasoning chain
to serve as the explanation for the resultant output.
A high-level overview is shown in Figure 2.

• CoT: Chain-of-thought prompting has shown
promising results in encouraging an LLM to
better answer the task by reasoning aloud the
steps before arriving at the final answer. (Ko-
jima et al., 2022) has shown that it is possible
in the zero-shot setting simply by appending

‘Let’s think step by step’ at the end of the in-
struction.

• Self-Consistent CoT (SC-CoT): Following
on, other works like Self-Consistency (Wang
et al., 2022b) address the suboptimality of
greedy decoding in CoT by sampling multi-
ple, N paths and choosing the final answer,



Figure 2: Overview of different prompting techniques to derive the reasoning chain, to serve as the explanation
(boxed with dashed line). [Left to Right]: Cot, SC-CoT, SEA-CoT, QD, and Self-Refine (SR). SC-CoT and SEC-CoT
differ in the explanation selection stage, where the former selects based on maximum cumulative probability and the
latter on two objectives: entailment, E, and overlap, O with an additional forward pass. Each robot figure denotes a
forward pass from the LLM, SR stops when a stopping criteria is encountered or exceeds the max number of passes.
SR requires the most pass, 3 per round.

ŷ∗ via majority voting. SC-CoT has shown
improvements across multiple arithmetics and
commonsense reasoning benchmarks. Since
multiple explanations may lead to the majority
answer. We choose the explanation with the
highest cumulative probability. We also exper-
iment with different ways, further discussed
in the ablation section.

• Question decomposition (QD): (Zhou et al.,
2022) demonstrates that decomposing a com-
plex problem into more manageable sub-
problems significantly facilitates the problem-
solving capability of the model. The model
answers each sub-problem and pieces together
the answers to conclude the principal prob-
lem. We treat the sub-question and answers
as the target explanation and assess their inter-
pretability properties.

• Self-Refine (SR): SR (Madaan et al., 2023)
is a type of iterative process of prompting the
LLM with a set of instructions. The main idea
is to instruct the LLM to continuously pro-
vide feedback for its’ own output and refine
using the feedback, the process stops when
the feedback deems the output as sufficient
in solving the task at hand. The whole iter-
ative process is achieved by self-prompting

the same language model. There exist other
forms of acquiring feedback, such as querying
a trained feedback model or using external fac-
tual knowledge (Pan et al., 2023). We choose
the approach of querying the same LLM as we
are focused on the explainability of generated
outputs from a sole LLM.

4 Proposed Approach

Most adaptations on CoT are only aimed at max-
imizing task performance as covered in Section
3. Our work is instead focused on enhancing the
interpretability of the presented reasoning chain
preceding the task output. We adapt from SC-CoT,
by focusing on the N sequences produced, ranked
based on specified objectives. Instead of picking
explanations based on heuristics such as highest cu-
mulative probability, the reasoning is chosen based
on the maximization of two objectives: entailment
and overlapping score between the supported con-
text (x⊕ ŷ) and reasoning ê.

We posit that a credible explanation should in-
trinsically align with the given context it aims to
elucidate (Jie et al., 2024); in this scenario, it en-
compasses both the question being addressed and
the prediction label, measured by the level of en-
tailment.



We additionally maximize the overlap between
two sets of key tokens1, which we show in later
experiments to be beneficial towards producing
higher quality explanations. This simple approach
can be regarded as performing a self-alignment step
to pick the most suitable explanation with the N
sequences.

Inspired by works that employ the LLM itself to
do self-correction, we do the same by asking the
LLM to rate the entailment level between each own
generated reasoning, êi and the joint context, x⊕ ŷ.
We prompt the LLM with few-shot examples of
natural language inference (NLI), xe in Figure 16
and determine if the hypothesis entails the premise.
The final score to be ranked, ST is a combination
of both the probability of entailment, Se, and the
IoU score, So.

Se = pe(fϕ(x⊕ ŷ, êi|xe)) (1)

So =
|êi ∩ (x⊕ ŷ)|
|êi ∪ (x⊕ ŷ)|

(2)

ST = Se + So (3)

The most interpretable explanation is then chosen
via maximizing ST . One caveat is that in the event
where |ŷ∗| = 1, we fall back to SC-CoT. However,
this can be avoided by trivially setting the number
of sequences, N to be higher than the number of
possible options.

5 Interpretability Qualities

Figure 3: The interpretability qualities measured by
different perturbation tests, to achieve the corresponding
goals of an explanation. Goals referenced from (Yeo
et al., 2023)

1The two sets of tokens are compared after removing any
stopwords to minimize noise within the context

Interpretability is a multifaceted characteristic
with multiple desirable traits concerning various
goals of interpretability. Inspired by existing work
on desirable goals of explainable AI (Yeo et al.,
2023), we assess three aspects of interpretability:
faithfulness, robustness, and utility. We propose
these traits as we believe they are directly linked
to achieving such goals, illustrated in Figure 3.
We discuss the connections in further sections.
In accordance, we outline the corresponding
evaluations sought out to assess each trait, shown
in Figure 4. These evaluations are primarily
conditioned on both the context and self-generated
reasoning chain.

Faithfulness: The concept of faithfulness
seeks to gauge the extent to which the explanation
aligns with the underlying decision-making pro-
cess. (Lanham et al., 2023) conducted a series of
tests assessing the faithfulness of reasoning chains
generated using CoT from an LLM. However,
the authors only investigated a single prompting
technique, while we conducted extensive experi-
ments covering multiple prompting approaches.
A faithful explanation is crucial as it fosters
trust (Cambria et al., 2023) and fairness, ensuring
that users can rely on the explanation to reflect the
decision-making process and identify any potential
biases, thereby improving model transparency and
understanding of any causal relationships

Robustness: Robustness seeks to measure
how resilient or consistent a given explanation
is under various circumstances. For instance,
employing adversarial attacks on an explanation,
as delineated by (Chen et al., 2022), could serve
as a mechanism to ascertain whether the model’s
decision is susceptible to diversion or distraction
induced by these attacks. A robust explanation
instills confidence and trust in users that the model
would behave appropriately despite noises in the
input.

Utility: A largely understudied but impor-
tant trait, utility is paramount to maximizing
the information conveyed to the audience. A
useful explanation can allow the discovery of new
knowledge to human users such as understanding
the causal relationships or enable more efficient
knowledge distillation between neural models.



Figure 4: Interpretability test for faithfulness, robustness, and utility. The reasoning chain is subjected to perturba-
tions: paraphrasing and inserting mistakes, before re-generating the subsequent output. Counterfactual: the original
question is changed to check if the resultant reasoning accounts for edits (shaded red). Simulatability: increase in
task performance when training data is augmented with reasoning chain, measured with a student model.

5.1 Paraphrase

Paraphrasing ê corresponding to ŷ allows us to
question the robustness of the explanation, ie how
robust is the explanation against minor variations,
assuming that these variations do not alter the core
intent, yet still enable the model to produce the
same outcome? Albeit such a test concurrently
touches on the concept of faithfulness, where simi-
lar thought processes should lead to identical con-
clusions given the same model (Jacovi and Gold-
berg, 2020). However, for the sake of differenti-
ation, we consider the primary objective of para-
phrasing as an evaluation of robustness in the fol-
lowing experiments.

5.2 Adding mistakes

In contrast to ensuring answer consistency among
similar reasoning, inserting erroneous inputs into
an explanation can assess if the reasoning preced-
ing the output is truly faithful. One would expect
the model to change its decision given an erroneous
reasoning chain if it is faithful from the start. We
focus on the alteration in prediction rather than ac-
tual task performance, since incorrect reasoning
may potentially correct an erroneous explanation,
though such occurrences are exceedingly rare.

5.3 Simulatability

As it is costly to employ humans to assess if a
reasoning chain is useful, we employ forward sim-
ulatability as a proxy for utility. We measure simu-

latability using LAS in Section 2 (further details in
A.7) as it highly correlates with human judgment.
A 220M T5-base (Raffel et al., 2020) is selected as
the student model, to measure utility from improve-
ment in downstream performance. The generated
reasoning, ê is appended to the input context x,
which is then used as the final context for predict-
ing the task label, ŷ = fs(ê⊕ x), where fs refers
to the student model. The student model undergoes
fine-tuning with the aid of these explanations, fol-
lowed by an evaluation of its performance. A key
aspect of LAS lies with the notion of subtracting a
baseline, Ms(fs(x)) from Ms(fs(ê ⊕ x)), where
Ms is a task scoring function such as accuracy or
F1-score. This is used to assess the benefits gained
by adding ê into the training process.

5.4 Counterfactual reasoning
An alternative method to ascertain faithfulness fol-
lows by evaluating whether an explanation would
change when the original question is modified in
a different direction, particularly when directed to-
wards a counterfactual scenario. (Atanasova et al.,
2023) shows that an instance of unfaithfulness can
be detected if the counterfactual explanation, e′

does not acknowledge the modifications, c in the
counterfactual instance x′i : y′, yet still success-
fully predicting the counterfactual label, y′ ̸= y.
The distinction from Section 5.2 is that besides de-
tecting signs of unfaithfulness, it also embodies a
directed approach that assesses a model’s capacity
to contemplate alternative scenarios.



Conversely, introducing mistakes can be seen as
an undirected measure aimed at gauging the decline
in confidence, given an erroneous prior belief. We
deemed an instance of unfaithfulness under the
following conditions:

1. x′i = {xi,1, xi,2...c, ...xi,L} : y′i

2. ŷ = y ∧ ŷ′ = y′

3. e′ ∩ c = ∅

The first two conditions are prerequisites for assess-
ment, while the third indicates signs of unfaithful-
ness.

6 Experiments

Datasets: We implement perturbation experiments
across three commonsense reasoning benchmarks.

1. OpenBookQA (Mihaylov et al., 2018), which
has 4 answer choices for each question and
assesses open-book reasoning capabilities.

2. QASC (Khot et al., 2020), is an 8-choice
multi-hop reasoning dataset, requiring assem-
bling multiple real-world facts to successfully
answer the question.

3. StrategyQA (Geva et al., 2021) is a binary
question dataset structured such that the
model is required to strategize a chain of rea-
soning steps to derive the correct answer.

We use only the test set to run the experiments for
all perturbations introduced in Section 5, except
LAS, where we employ the LLM to generate
explanations for the training set as well.

Implementation details: We use the 70B
Llama-v2 (Touvron et al., 2023) from Meta as
the choice of LLM for this experiment. We use a
4-bit quantized version, via applying the GPTQ
technique (Frantar et al., 2022) since the full 32-bit
model would require extensive resources. The
full model implementation details can be found in
Appendix A.2.

Explanation modifications: We perform
automatic checks on the modifications to prevent
errors in the experiments. In paraphrase, the
modified explanation is chosen only when the
resultant output ŷ|em remains the same, and the
opposite for mistakes insertion. In counterfactual

generation. OpenAI’s GPT3.5 is used for both
paraphrasing and mistake insertion and GPT4 for
counterfactuals since the task is much harder as x′

has to correspond to an alternate answer choice.

Metric details: We use the percentage of
flipped predictions as the measurement unit for
both paraphrased and mistake insertion. For
counterfactual inputs, we only consider e to be
unfaithful if the counterfactual part, e′ has a
zero overlap with modification c. This applies
to singular reasoning chains, except QD where
we only assessed each sub-answer. Utility is
measured using the LAS score, corresponding to
the increase in performance when supplemented
with explanation during training. We list the
prompt templates in Appendix A.1. We compute
an aggregate score, averaging across the four
qualities, after normalizing each score between
0 and 1. For paraphrase and counterfactual, we
take the complement score, 1 − s, where s is the
original unit.

6.1 Results

We show the full experimental results in Figure 5.
SEA-CoT surpasses all other baseline methods
based on the average normalized score, notably dis-
playing a significant difference in OBQA (> 75%)
over majority of the baselines. Although SC-CoT is
competitive, it still underperforms substantially as
compared to SEA-CoT. We observe that the under-
performance of SEA-CoT in the mistakes criteria
can be explained via the relationship between SR’s
weak task performance and high score in mistakes,
attributed to a higher likelihood of altering its out-
put. Whereas, SEA-CoT achieves the highest task
performance, albeit causing a trade-off in this re-
gard. Nonetheless, despite comparable levels of
task performance, SEA-CoT consistently surpasses
SC-CoT across other metrics, indicating that the
superior score achieved is still dependent on the
selected reasoning.

The key distinction between SC-CoT and SEA-
CoT is the latter’s self-critique step, which evalu-
ates how its explanations align with the context and
the intended answer. This approach significantly
boosts utility and reduces unfaithfulness in coun-
terfactual contexts. Higher utility scores support
the hypothesis that context-aligned stimuli enhance
the efficiency of learning signals, facilitating easier
training for student models.



Figure 5: Interpretability results for the 5 prompting techniques across 3 commonsense reasoning benchmarks.
Three axes of interpretability were assessed. 1) Robustness measured via paraphrasing (Para). 2) Faithfulness is
measured with both counterfactual explanations (CF-UF) and mistake insertion. 3) Utility is represented using
simulatability (Simu) of explanation. Aggregate is the combined average score across the three axes. CF-UF
measures unfaithfulness instead of faithfulness. We take the complement of Para and CF-UF since a lower score is
better.

Figure 6: StrategyQA example, the reasoning chain
produced by SEA-CoT reflects the important points
in the context, making it easier for a learner model to
simulate the answer from the given explanation.

Looking closer in Figure 6, where the word
"shunned" is mentioned while other baselines used
"would not wear", which does not directly relate
to the target question, causing the model to erro-
neously infer the wrong label. While CoT suc-
cessfully determines the correct answer, it fails
to acknowledge the mention of "Amish cousins",
thus exhibiting a tenuous connection to the ques-
tion. Unexpectedly, Self-Refine underperforms
compared to other baselines, aligning with (Huang
et al., 2023) who highlight the drawbacks of self-
correction in reasoning tasks.

The primary challenge stems from the intricacy
of designing few-shot examples that can effectively
drive successive enhancements over prior outputs,
limiting the potential for self-improvement. SEA-
CoT, however, not only prompts self-assessment
but also offers targeted guidance to enhance rea-
soning consistency with the relevant context. This
simple extension greatly improves the quality of
the explanation, with no downside on performance.

6.2 Ablation

Type P(↓) CF-UF (↓) M (↑) S (↑)

Random 6.1 6.44 62.17 11.87
Max 1.8 6.6 61.8 12.59

Overlap (O) 1.56 5.04 70.83 14.88
Entailment (E) 2.38 5.46 69.99 13.46

O&E (SEA-CoT) 1.2 3.81 61.24 16.97

Table 1: Ablation over ways of selecting reasoning steps
to serve as an explanation on StrategyQA. (O&E) is the
proposed SEA-CoT which uses both components.

This ablation seeks to study the effectiveness of
choosing the most suitable reasoning chain. We
break down SEA-CoT’s ranking components and
assess each of them, namely the entailment and
keyword overlapping score. We additionally im-
plement a baseline of SC-CoT that randomly picks
from the list of explanations corresponding to the
majority answer. The results from Table 1 demon-
strate the efficacy of considering both components
of SEA-CoT when ranking reasoning explanations.



Choosing the most probable reasoning step has
shown to not perform well, whereas our approach
targeted at enhancing the important traits of an
explanation is simple and yet does not hinder per-
formance. We also conduct additional studies on
different values of N sequences in Table 3.

6.3 Model size

Size P(↓) CF-UF (↓) M (↑) S (↑)

70B 1.2 3.81 61.24 16.97
13B 4.1 4.38 69.62 6.16
7B 3.79 7.81 70.62 15.97

Table 2: Interpretability scores between different model
sizes

The scaling laws of model size primarily con-
cern the downstream performance of LLMs but
little is known regarding the influence on inter-
pretability properties. We replicate the experiments
on the StrategyQA dataset with a focus on SEA-
CoT prompting. We present the results in Table 2.
The largest model, 70B generally outperforms the
smaller sizes across all metrics while observing the
same phenomenon in mistake insertion, previously
discussed in 6.1. The improvement over smaller
sizes may also be attributed to the enhanced accu-
racy in generating entailment scores for the expla-
nation, analogous to observing greater performance
of larger models in NLI tasks. Llama-13B surpris-
ingly performs worse than its smaller variant, de-
spite having a bigger network. Moreover, we note
that by using SEA-CoT, even a 7B-sized model can
generate more interpretable reasoning chains than
a 70B model with other baseline prompts.

7 Related Works

Natural Language Explanation (NLE): NLE can
primarily be categorized as either abstractive (AE)
or extractive (EE). The former is unrestricted by
the context and as such produces more plausible
explanations, while the latter is aimed at ensuring
faithfulness. Notably, EE falls short in the realm of
plausibility since humans do not understand spans
of text without a full context in view (Gurrapu
et al., 2023). (Majumder et al., 2021) utilizes a
union of both forms, conditioning the generation
of AE on the extracted spans of text while concur-
rently grounding the generation on relevant world
knowledge. Similar works include faithfulness
through task decomposition (Sanyal et al., 2022),

label-specific explanations (Kumar and Talukdar,
2020). (Narang et al., 2020) demonstrate the
possibility of zero-shot explanation generation
by pretending the word explain to the input prompt.

Interpretable CoT: Since its introduction,
CoT has garnered interest in the research com-
munity to innovate adaptation of it (Chu et al.,
2023). Despite CoT being primarily introduced to
improve reasoning skills of LLMs, there is much
interest to see if these reasoning steps could be
used to explain the model’s thought process. Most
works primarily investigate faithfulness of the
reasoning (Lanham et al., 2023; Radhakrishnan
et al., 2023; Turpin et al., 2023) or improving the
faithfulness in CoT outputs, via refinement through
knowledge retrieval (He et al., 2022), symbolic
reasoning (Lyu et al., 2023), iterative information
selection (Creswell and Shanahan, 2022) and
factuality calibration (Ye and Durrett, 2022). Other
works focus on ascertaining the faithfulness of an
explanation to the presence of factuality (Wang
et al., 2023; He et al., 2022; Prasad et al., 2023).
While factuality is an important trait, it is not
a sufficient component to ascertain faithfulness.
Non-factual explanations may still align faithfully
with an incorrect answer. Other works concentrate
on semantic correctness (Golovneva et al., 2022),
regarded closer to plausibility, which differs from
the traits assessed in this study. Our work strives
to conduct a holistic assessment of interpretability
across various forms of prompting techniques used
in LLMs, taking into account multiple properties
that may be of importance to various audiences.

8 Conclusion

This work studied multiple ways of assessing the
interpretability of an explanation. Our work is cen-
tered on assessing different variants of CoT and
how we can better determine the suitability of the
reasoning by-product as an explanation for the un-
derlying prediction. We also propose a modifica-
tion to the SC-CoT framework called SEA-CoT, de-
signed specifically to yield explanations that better
fulfill the objectives of interpretability. Our pro-
posed framework surpasses the Robustness, Faith-
fulness, and Utility dimensions across multiple rea-
soning benchmarks. In the future, we plan to ex-
tend our work towards instilling interpretability
and safety in the training stages (Yang et al., 2023),
such as safety alignment in LLM.



9 Limitations

Our work only investigates a single LLM - Llama-2
This work could be extended toward transformers
of different structures such as encoder or encoder-
decoder, or larger models, such as GPT3.5/4.0,
which due to limiting resources are restricted to
generate modifications instead. A secondary limi-
tation is the quality of modifications to the original
explanation, though we ask the modifier to check
the outcome of the modified inputs (i.e. output
remains the same when paraphrased), the correct-
ness is nonetheless subjected to the ability of the
modifier. This work did not study techniques that
ground the LLM’s response via external knowledge,
which we note is an interesting avenue to consider
next. An inherent weakness in LLM is self hal-
lucination where it produces plausible text which
are non-factual. Our work also left out investigat-
ing hybrid approaches such as Neuro-symbolic AI,
which combines the learning abilities of neural net-
works and inherent interpretable decision-making
frameworks of symbolic AI.
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A Appendix

A.1 Perturbation details

We use GPT3.5 to generate paraphrased versions
of the reasoning explanation produced by prompt-
ing the LLM, except QD. For QD, we select one
subquestion-answer pair to apply the perturbations
to, we paraphrase both chosen question-answer
pairs and only add mistakes to the answer as the
focus is on producing wrong answers and not in-
comprehensible questions. To convert the ques-
tion x to a counterfactual instance x′, we use
GPT4 as GPT3.5 frequently produces nonsensical
questions that the available answer options can-
not answer. Furthermore, we subsequently deploy
GPT3.5 again to identify the edited and original
portions of x, namely the modification c. Thus, we
end up with two sets of templates for both para-
phrasing and addition of mistakes (one for QD, one
for others) and one set of counterfactual genera-
tion. We use 2-shot examples for adding mistakes,
3-shot for counterfactual generation, and 0-shot for
paraphrasing. All figures are from Figure 7 to 11

A.2 Inference details

We do not use API for the bulk of the experiments
except perturbation generation and ablation using
GPT3-5. We mainly rely on local resources to
conduct inference. We use 4 x A6000 GPU for
all experiments, each GPU has 46GB of VRAM
and this gives us a total of 184GB VRAM. A 70B
model would require at least 140GB VRAM, leav-
ing only 44 VRAM left for text generation. Given
an average input size of 1000 (usually longer for
prompts such as QD) and a single batch size of
1, it would require an additional >60 GB VRAM
(computed based on L = 80, H= 64, dim = 8192 for
70B) which makes it infeasible to implement. Thus,
we perform the experiments using a 4-bit quantized
version instead, which is performed using GPTQ
on the original Llama-2 70B model. GPTQ is suit-
able for quantizing models consisting of billions

of parameters. It has been validated on models up
to 176B parameters and shown comparable perfor-
mance with 16-bit models. The GPTQ-ed models
are readily available on huggingface.

We utilized text-generation-inference,
an optimized platform for conducting fast in-
ference on LLMs by Huggingface, to speed up
the inference process. Overall, this allows us to
process up to a batch size of 16 across the full
hardware stack.

A.3 Hyperparameters

Besides the prompting techniques that use best-of-
n preference to select the final output, we stick to
greedy decoding. This leaves SC-CoT and SEA-
CoT, where we set N to 10 and fix temperature
and k to 1.0 and 50 respectively while doing sam-
pling. This is only applied during the process of
generating explanations, where we revert to greedy
decoding during evaluation across all prompting
techniques. The number of sequences is set to 10 to
balance the computational resources such as RAM
and speed. N = 10 is also reported to be sufficient
in (Wang et al., 2022b).

A.4 Few-shot Prompts

We show the few-shot examples used for the OBQA
dataset, highlighting the differences in the instruc-
tion prompt between the various techniques re-
viewed. The few-shot examples are similar to (Wei
et al., 2022), and adjusted when necessary, depend-
ing on the specific prompting methodology.

For Self-Refine, there are three stages of
instruction-prompting, where the second (feed-
back) and third (refine) stages continue iteratively
until the LLM detects a stopping criterion which
ends the cycle, denoted as "Stop refining the an-
swer.". In the initial generation, the optimal ex-
amples are given, similar to CoT. In the feedback
stage, we list scoring criteria which are focused on
improving the interpretability of the reasoning ex-
planation, instead of focusing on the performance.
To simulate various qualities of output, we include
both positive and negative examples. The examples
in the refine stage are similar to the feedback but
are instead designed in a continuous conversion dis-
playing the full process of refining a bad example
into a good one. We limit the number of examples
in the refine stage to 3 as the context length is much
longer here. The few-shot example prompts are
displayed from Figure 12 to 15.



A.5 Entailment Generation

We designed a separate prompt to be used solely
by SEA-CoT, where the LLM is instructed to self-
critique the entailment between its reasoning chain
and the combined context of both the question and
the produced answer. We use samples from the
e-SNLI dataset (Camburu et al., 2018), we only
picked instances corresponding to either entailment
or contradiction and left out the neutral ones, as the
LLM is only instructed to infer if the explanation
entails or contradicts the target context.

The probabilities for the entailment label “yes”
are directly used while we take the complement
if generated "no", with the assumption that other
tokens in the vocabulary are negligible. The exam-
ples are displayed in Figure 16.

A.6 Number of sequences

We carry out additional experiments on increasing
N sequences, to see if increasing the number of
options allows the ranking process to select more
interpretable explanations. The results in Table 3,
showed that increasing N has positive effects on the
utility of the reasoning steps, while slight negative
effects on the paraphrasing and counterfactual tests.
The higher number of sequences may make it dif-
ficult to optimize for each quality simultaneously,
as one explanation may be more faithful but lacks
usefulness in teaching a less technical model to fol-
low its reasoning process. Nonetheless, this study
is promising for context distillation, where we may
be interested in using the generated response of
a larger LLM to teach a smaller model, by using
higher N values.

A.7 Leakge-Adjusted Simulatability (LAS)

We define the formal definitions of the LAS met-
ric (Hase et al., 2020) used in assessing the util-
ity of an explanation here. LAS is primarily used
to measure the improvement in task performance
upon the addition of an explanation, ê to the given
context, x in producing an outcome, ŷ|x, ê. Most
importantly, it accounts for the two cases of phe-
nomena encountered. The first is when the model
can guess the outcome directly from the input, x. In
such cases, this renders the explanation, ê as a false
causal input in producing any improvements on the
task score. The second is when ê directly leaks the
label to the model and the outcome can be easily
guessed without consuming the given question.

The first scenario can be solved by introducing a

N P(↓) CF-UF (↓) M (↑) S (↑)

10 1.2 3.81 61.24 16.97
30 2.01 5.98 67.77 17.2
50 1.8 6.49 68.40 18.7

Table 3: Interpretability scores across different numbers
of sequences generated per sample.

baseline, ŷ|x, and subtracting the task performance,
1[ŷi|ê, xi] from 1[ŷi|xi]. The second case is ac-
counted for by measuring the performance when
the explanation either leaks, 1[ŷi|ê] = 1 or not,
1[ŷi|ê] = 0. 1 denotes the event where outcome is
correctly guessed, ŷ = y.

The overall LAS score regards both scenarios by
taking the average of the subtracted performance in
both non-leaking, LAS0, and leaking group, LAS1

below.

LAS0 =
1

N0

N0∑
i=1

(1[ŷi|xi, êi]− 1[ŷi|xi]) (4)

LAS1 =
1

N1

N1∑
i=1

(1[ŷi|xi, êi]− 1[ŷi|xi]) (5)

LAS =
1

2
(LAS0 + LAS1) (6)

N0 and N1 denote the number of non-leaking and
leaking encounters.



Figure 7: 0-shot paraphrase template. Input [Underline] Generated: [highlighted]

Figure 8: 2-shot inserting mistake template for all prompts except QD. Input [Underline] Generated: [highlighted].
Only show 1 example.

Figure 9: 2-shot inserting mistake template for QD. Input [Underline] Generated: [highlighted]. Only show 1
example.



Figure 10: 3-shot counterfactual generation Input [Underline] Generated: [highlighted]. Only show 1 example.
First, identify the next possible answer before editing the question towards it.

Figure 11: 0-shot edit highlighting. Input [Underline] Generated: [highlighted]. Identify edits corresponding to the
original text.



Figure 12: 7-shot prompt used for CoT, SC-CoT and SEA-CoT. There are newlines between answer choices and
each given choice, is opted out to save space.

Figure 13: 7-shot prompt used for QD. We show only 4 examples here, and there are newlines between each
sub-questions and answers, which we similarly leave out to save space.



Figure 14: Prompt for Self-Refine, we show a single example for the initial generation, the rest is similar in CoT
examples. For the feedback, we include both good and bad examples, both displayed here. We use 7 examples for
both initial generation and feedback.

Figure 15: Refine stage in Self-Refine, we show a single example here, where each example demonstrates the entire
refining process from a bad to a good example.



Figure 16: NLI examples for entailment generation for SEA-CoT, used across all datasets.
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