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Abstract—Regional information based image emotion analysis has recently
garnered significant attention. However, existing methods often focus on identifying
region proposals through layered steps or merely rely on visual saliency. These
approaches may lead to an underestimation of emotional categories and a lack of
comprehensive inter-class discrimination perception and emotional intra-class con-
textual mining. To address these limitations, we propose a novel approach named
InterIntraIEA, which combines inter-class discrimination and intra-class correlation
joint learning capabilities for image emotion analysis. The proposed method not only
employs category-specific dictionary learning for class adaptation, but also models
intra-class contextual relationships and perceives correlations at the channel level.
This refinement process improves inter-class descriptive ability and enhances
emotional categories, resulting in the production of pseudo maps that provide more
precise emotional region information. These pseudo maps, in conjunction with
top-level features extracted from a multi-scale extractor, are then input into a weakly-
supervised fusion module to predict emotional sentiment categories. Extensive
experiments conducted on four image sentiment benchmark datasets validate the
superiority of our proposed method, InterIntraIEA, over state-of-the-art methods.

W ith the explosive growth of social media
leading to a substantial increase in on-
line image sharing, emotion analysis has

garnered significant attention [1], [2]. As a crucial
component of emotion analysis, image emotion analy-
sis (IEA) aims to analyze image content to facilitate
the understanding of public opinions, emotions, and
cultural trends, making it an increasingly important
field of study. The practical applications of IEA are
extensive [3].
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For example, IEA can personalize and enhance
user experiences by recommending content aligned
with users’ emotional states or preferences [4]. More-
over, in the academic sphere, IEA spans multiple dis-
ciplines, including psychology, computer science, and
linguistics, promoting interdisciplinary research and ap-
plications [5]. Traditional visual tasks aim to identify
and classify visible physical elements within images,
such as objects, or scenes [6], [7]. In contrast, IEA
seeks to capture the emotional essence conveyed by
images, which is often abstract and typically communi-
cated through subtle hints. However, current methods
of classifying emotions based on regional information
face the following challenges.
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Firstly, while the emotion regions detected in most
images directly convey sentiments, other categories
of emotional information containing context should not
be overlooked. Context provides additional insights for
analyzing emotions, particularly when they are vague,
and improves model robustness by diversifying the
features used for emotion recognition. Secondly, al-
though various visual saliency based approaches have
been developed to highlight the relative importance of
different areas, due to the inherent subjectivity and am-
biguity of human emotions [8], [9], [10], the semantic
features of each class are likely to be intertwined. Emo-
tion regions identified solely based on visual saliency
might not accurately represent the intended emotions.

Therefore, we propose a joint weakly-supervised
learning network named InterIntraIEA, which integrates
inter-class discrimination and intra-class correlation to
tackle challenges in region-based IEA research. This
approach enables the model to disentangle emotional
categories and understand the context of emotion
regions. Firstly, leveraging the advantages of data
aggregation, we design an inter-class discrimination
sub-module. This sub-module, utilizing a class-specific
dictionary, learns scaling factors for spatial features,
encoding each category to alleviate entanglement
and improve recognition of emotion regions. Sec-
ondly, drawing inspiration from visual saliency’s top-
down approach, we develop an intra-class correlation
sub-module. This sub-module establishes interactions
and connections between specific features expressing
emotions and their context, focusing on pivotal features
for predicting emotional categories. Subsequently, in
the pseudo map generation process, we integrate the
outputs of the inter-class discrimination and intra-class
correlation sub-modules to generate more accurate
pseudo sentiment maps. Finally, these pseudo maps,
combined with top-level features from the multi-scale
extractor, are inputted into a weakly-supervised fusion
module for predicting emotion categories.

Overall, our research contributions mainly encom-
pass the following four aspects:

› We propose a novel approach, InterIntraIEA,
which integrates inter-class discrimination and
intra-class correlation joint learning capabilities
for analyzing emotional sentiment in images.

› The proposed InterIntraIEA integrates a joint
learning module for analyzing both inter- and
intra-class emotional feature representations,
distinguishing between emotion categories and
capturing contextual correlations. This dual-
focus approach allows for precise identification
of emotion regions.

› The proposed InterIntraIEA utilizes a weakly-
supervised fusion module that integrates pseudo
maps from the joint learning module, and top-
level features extracted from a multi-scale ex-
tractor, to predict emotional categories.

› Experimental results across four distinct
datasets demonstrate the superior performance
of the proposed InterIntraIEA compared to
existing state-of-the-art methods. These results
not only showcase the effectiveness of the
proposed InterIntraIEA, but also validate its
practicality and significant advancement in the
field of IEA .

RELATED WORK

In the domain of IEA , pioneering researchers ini-
tially focused on constructing hand-crafted features at
various levels: low, mid, and high [12], for the cate-
gorization and understanding of emotions expressed
by images. As deep learning has advanced, a multi-
tude of methodologies exploit deep neural networks
to independently learn and derive features, marking
a significant shift from manual feature engineering.
Borrowed from object detection, the integration of re-
gion proposals represents an innovative stride. For
instance, Zhang et al. [13] harnessed region detectors
to unearth multi-level region proposals for nuanced
recognition. Rao et al. [14] proposed a specific method
for generating emotionally significant local regions tai-
lored for sentiment recognition. The essence of these
approaches lies in pinpointing sentiment-rich regions
within images, thereby boosting the efficiency and
accuracy of IEA .

Despite their advancements, those methods share
a common hurdle: the derivation of region proposals
entails intricate computational efforts, presenting an
opportunity for weakly supervised based approaches
to make a significant impact. Prevalent IEA frameworks
generally rely on weakly supervised strategies [15]. In
light of recent studies, some scholars introduced the
human cognitive mechanism [16] into IEA [17]. How-
ever, challenges persist in separating semantic fea-
tures across categories, often causing class-specific
trait overlap. InterIntraIEA adopts class-specific dictio-
nary learning beyond saliency information, improving
the network’s ability to differentiate emotional cate-
gories.
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FIGURE 1. Illustration of the pipeline of InterIntraIEA: Images undergo initial processing using a backbone network (Res2Net-
101 [11]) as a multi-scale feature extractor. Subsequently, the output is directed to a Joint Learning Module (JLM) consisting
of three sub-modules: (a) Inter-Class Discrimination for emotion category discrimination, (b) Intra-Class Correlation for context
correlation awareness, and (c) Pseudo Map Generation, utilized to generate pseudo emotional maps. Finally, these pseudo
maps, combined with top-level features from the multi-scale extractor, are inputted into a weakly-supervised fusion module for
predicting emotion categories.

THE METHODOLOGY

Overview

As illustrated in Figure 1, InterIntraIEA contains (i) a
multi-scale feature extractor that fully utilizes the multi-
scale features of images, employing the Res2Net-101
backbone network [11] to extract features at differ-
ent levels, which comprises n convolutional blocks
{F1, F2, ..., Fn}. (ii) a novel joint learning module, which
encompasses three distinct sub-modules: the inter-
class discrimination sub-module, aims to differentiate
among various emotional categories and extracts emo-
tion category discrimination; the intra-class correla-
tion sub-module focuses on identifying contextual links
within the emotional channels, building context cor-
relation awareness;and conclusively, the pseudo map
generation sub-module capitalizes on the synergistic
qualities of inter-class and intra-class dynamics, or-
chestrating the precise identification and localization
of pivotal regions that trigger the predominant emotion.
(iii) a weakly-supervised fusion module that integrates
pseudo maps with the top-level feature maps to weakly
supervise the final emotion classification, thereby en-
hancing the overall performance of the IEA task.

Joint Learning Module
As illustrated in Figure 1, the joint learning module
(JLM) consists of three components: the inter-class
discrimination sub-module (depicted in Figure 1(a)),
the intra-class correlation sub-module (shown in Figure
1(b)), and the pseudo map generation sub-module
(presented in Figure 1(c)). Drawing on the theory of
visual attention, we introduce the intra-class correlation
sub-module, which enhances the representation of
emotion-related semantic features and constructs an
emotion category-aware attention map, aiming to grasp
the subtle intra-class relationships. The inter-class dis-
crimination sub-module, by establishing an emotion
category dictionary, encodes specific categories as a
linear combination of a set of basis vectors based
on the emotional dictionary, thereby highlighting the
inter-class differences. After learning inter-class dis-
crimination and intra-class correlation, the pseudo map
generation sub-module employs a customized pooling
strategy to generate pseudo maps that precisely reveal
emotion regions within images.

Inter-class Discrimination
We construct an inter-class discrimination mechanism
by encoding explicit class semantic information into
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class attention maps for each atomic group. We build
a learned L class dictionary D = {d1, ...di , ..., dL×M},
di ∈ RC . Here M represents the number of atoms for
each category. We use the dictionary D and sparse
coefficients A = {a1, ...ai} to represent the learned
feature Fn, transitioning it from color space to sparse
space, which can be formulated as minD,A ∥Fn − DA∥2.

To solve the optimization problem of the
minD,A ∥Fn − DA∥2, we perform similarity computation
between a pixel vector vi from the feature in Fn and the
j-th class atom vector dj in D in the original space using
the inner product kernel function k (vi , dj ) = ((vi )T dj )2.
We then obtain the response avd of vi on dj through
Equation (1).

avd =
k (vi , dj )∑L×M

l=1 k (vi , dj )
(1)

Here, we construct the kernel function k (vi , dj ) =
exp(−dT

j vi ), where f (t) = et , −∞ < t < ∞. As
f (n)(t) = et > 0, k (vi , dj ) is a kernel function. There-
fore, the response matrices can be represented as
A ∈ RL×M×H×W . To obtain the class-specific guidance
maps, we perform an average pooling operation on the
second dimension of A, resulting in MAPD ∈ RL×H×W .
Considering reducing the computational complexity,
we utilize a channel-wise average pooling operation
to reduce the dimensionality of Fn ∈ RC×H×W to
F ′

n ∈ R1×H×W . Finally, we multiply MAPD and F ′
n to

obtain the MAP l
E as Equation (2):

MAP l
E = MAPD ⊗ F ′

n (2)

where ⊗ represents the multiplication operation. Then
we concatenate l ∈ L categories of MAP l

E to obtain
the output MAPE of this sub-module.

Intra-class Correlation
We utilize intra-class correlation sub-module to model
channel correlations, adaptively aggregating contextual
information, thereby enhancing the representation of
emotion-related features. We leverage the features Fn

generated by the last convolutional block in the multi-
scale feature extractor as the input. In the context
awareness attention, we perform reshape and permute
operations on Fn, resulting in (Fn)R ∈ RC×N (N =
W ×H) and (Fn)P , respectively. To capture the channel
dependencies between any two positions within Fn,
we first calculate the matrix multiplication result Am

of the enhanced matrices (Fn)R and (Fn)RP : Am =
(Fn)R ⊗ (Fn)RP , where ⊗ represents the matric mul-
tiplication. Then we apply the OP(·) operation to sup-
press features that are less prominent or have lower
values, and make emotion-related features more easily

interpretable by subsequent layers of the network:
OP(Am) = fM (Am,−1) − Am, where fM represents the
function that takes the maximum value between Am

and −1. We adopt the Equation (3) below to obtain a
C × C adjacency matrix, which reallocates weights to
emotion-related features, helping the network to focus
on more significant emotional features:

Aji
S =

exp(OP(Ai
m · Aj

m))∑C
i=1 exp(OP(Ai

m · Aj
m))

(3)

where Ai
m represents the i-th channel, while Aji

S rep-
resents the influence of the i-th channel on the j-
th channel in the attention map. Finally, the output
of the context-awareness attention is obtained by the
following formula:

MAPC = θFn + (
C∑

i=1

Aji
S ⊗ (Fn)R) (4)

where θ represents a learnable scale factor that is
initialized to zero.

Pseudo Map Generation
After obtaining MAPE from inter-class discrimination
sub-module and MAPC from the intra-class correlation
sub-module, we calculate the weight wl for image-level
pseudo emotion label as follows:

wl =
1
n

n∑
i=1

gGAP {MAPIT (i , l)} (5)

where we utilize n emotional class-related detectors
to generate wl . gGAP represents the global average
pooling function. {MAPIT (i , l)} refers to an interaction
between feature maps and emotion categories, that the
corresponding i-th feature map of the l-th emotional
label. Then we leverage the pooling strategy gpooling

(shown in Equation (6)) to obtain the the emotional
region map MAPP , which serves as the pseudo map
for the entire weakly-supervised framework.

gpooling =
L∑

l=1

(
1
m

m∑
i=1

MAPIT (i , l))wl (6)

Weakly-supervised Fusion Module
InterIntraIEA first highlights emotion-related regions
through the JLM, thereby enhancing the classification
effect and generating pseudo maps to guide the predic-
tion for multi-class emotions [18]. Therefore, we derive
the final prediction Pre with MAPP from JLM module
and Fn from the last convolutional block of multi-scale
feature extractor:
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Pre = fst (gGAP (concat(MAPP , Fn))) (7)

where fst denotes the Softmax function, and
concat(MAPP ,Fn) represents the concatenate
operation for MAPP and Fn.

EXPERIMENTAL EVALUATION

Datasets
We’ve leveraged four datasets to validate InterIn-
traIEA’s performance across different emotional con-
texts. We engage with both large-scale public datasets
and more specific affective collections: one large
dataset, Flickr and Instagram (FI-8) [19], and three
additional widely recognized datasets: EmotionROI (6
classes) [15], IAPS-Subset [20], and Twitter II [15].

Implementation Details
The entire implementation was employed on the Py-
Torch 1.2.0 framework. The input images were resized
to 448 × 448 pixels for uniformity, and then through a
combination of random crop and horizontal flips to en-
hance the variety of the training set. During the training
phase, given the role of InterIntraIEA in tackling tasks
involving multiple emotion classifications, the Cross
Entropy Loss was utilized for both the pseudo map
generation process and the weakly-supervised fusion
module. We selected Stochastic Gradient Descent for
optimization. The values of momentum and weight
decay rates were set to 0.9 and 0.0005, respectively.
The batch size was set to 12, and the learning rate
was initialized to 0.0001. During the testing phase,
the model is conducted three times, and the average
of these results is reported as InterIntraIEA’s overall
performance. The experiments were performed on an
Nvidia Tesla P100-PCIE with 16GB on-board memory.

Comparison with Different Methods
We evaluate the performance of InterIntraIEA on the
extensive FI-8 dataset compared to various frame-
works in Table 1, and on smaller-scale datasets as
shown in Table 2. Against baseline approaches, In-
terIntraIEA shows enhancements in evaluation met-
ric accuracy. For the large-scale dataset (shown in
Table 1), InterIntraIEA surpasses the state-of-the-art
methods by Yang et al. [21] and DCNet [17], improv-
ing performance by 1.71% and 1.19%, respectively.
Large datasets often contain noise, however, results
indicate that InterIntraIEA can effectively handle the
inevitable noise within large-scale datasets. For small-
scale datasets (shown in Table 2), Yamamoto et al. [19]

combine visual and semantic features of emotion re-
gions to train a support vector machine emotion classi-
fier. Yang et al. [21] employs a feature fusion, while DC-
Net [17] integrates high-level and low-level features to
identify emotionally significant areas to guide emotion
classification. InterIntraIEA emphasizes leveraging hu-
man visual attention for solving challenges in IEA , and
focuses on identifying semantic features of emotion
categories from a class-specific encoding perspective,
enhancing accuracy of IEA by integrating this with
visual attention metrics, which shows improvements
over the state-of-the-art method DCNet: a 0.37% on
EmotionROI, 0.12% on IAPS-Subset, and 0.56% on
Twitter II.

TABLE 1. Comparison with different methods on FI-8 dataset.
Methods Publication Year FI-8
Zhao’s [22] 2014 46.13
Sentibank [12] 2013 49.23
DeepSentibank [23] 2014 51.54
ImageNet-AlexNet 2017 38.26
ImageNet-VGG16 2014 41.22
ImageNet-ResNet101 2016 50.01
Yang’s [24] 2017 66.79
WILDCAT [25] 2017 67.03
CAM [26] 2016 68.54
WSCNet [15] 2019 70.07
Yamamoto’s [19] 2021 70.46
Yang’s [21] 2023 71.13
DCNet [17] 2023 71.65
InterIntraIEA 72.84

Additionally, we present the confusion matrices for
FI-8 in Figure 2, and for two smaller datasets in Fig-
ure 3. InterIntraIEA performs well on both multi-class
and binary datasets, despite some confusion between
categories. For example, in Figure 2, Disgust is easily
confused with other classes, which we attribute to the
high feature overlap in the large FI-8 dataset, making
distinction more challenging and potentially leading
to confusion. In Figure 3, such issues are mitigated
in the two smaller datasets categorized into positive
and negative emotions. The clear dichotomy between
these two categories simplifies distinction, reducing
the complexity of model recognition and classification.
Overall, the correct identification rate surpasses the
confusion rate with accurate categories.

Ablation Studies for JLM
Since WSCNet [15] is a classic and effective method
in this field, and DCNet [17] represents state-of-the-
art accuracy, we regard them as baseline benchmarks.
We conducted a comprehensive evaluation of three
methods (WSCNet, DCNet, and InterIntraIEA) across
two distinct datasets (FI-8 and EmotionROI), which
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TABLE 2. Performance comparison on three small-scale datasets using accuracy as the metric.
Methods EmotionROI Methods IAPS-Subset Methods Twitter II
Zhao’s [22] 34.84 SentiBank [12] 81.79 DeepSentiBank [23] 70.23
DeepSentiBank [23] 42.53 DeepSentiBank [23] 85.63 VGGNet 71.79
Yang’s [24] 52.40 PCNN [27] 88.84 WILDCAT [25] 78.81
WILDCAT [25] 55.05 VGGNet 88.51 CAM [26] 79.13
CAM [26] 55.72 Yang’s [28] 92.39 Sun’s [29] 80.91
WSCNet [15] 58.25 Zhang’s [20] 95.83 WSCNet [15] 81.35
DCNet [17] 59.60 DCNet [17] 95.90 DCNet [17] 82.50
InterIntraIEA 59.97 InterIntraIEA 96.02 InterIntraIEA 83.06

FIGURE 2. Confusion matrix on large-scale FI-8 dataset.

FIGURE 3. Confusion matrix on two binary datasets.

is demonstrated in Table 3. We observed that the
inclusion of intra-class correlation and inter-class dis-
crimination, both individually and combined, not only
universally enhances the performance of models in
emotion recognition tasks but also reveals a signifi-
cant synergistic effect on performance improvement
when these components are integrated. Notably, the
proposed method, with both components integrated,
achieved the highest accuracy rates on both datasets
(72.84% on FI-8 and 59.97% on EmotionROI), under-
scoring the efficacy of combining intra-class correla-
tion and inter-class discrimination to enhance emo-
tion recognition precision. Moreover, although DCNet
showed higher accuracy before the integration of these

components, the proposed model, upon their integra-
tion, exhibited more significant performance improve-
ments on both large and small datasets, particularly
on EmotionROI, highlighting InterIntraIEA’s potential in
understanding and analyzing more complex emotional
scenarios. Furthermore, our analysis revealed that
InterIntraIEA, incorporating intra-class correlation and
inter-class discrimination in all tested configurations,
not only improved overall accuracy but also achieved
a more balanced recognition rate across different emo-
tion categories.

TABLE 3. Impact of the proposed Joint Learning Module.

Intra-class Inter-class FI-8 EmotionROI

WSCNet

✗ ✗ 70.07 58.25
! ✗ 70.51 58.80
✗ ! 70.59 58.84
! ! 71.06 59.15

DCNet

✗ ✗ 71.65 59.60
! ✗ 72.23 59.73
✗ ! 72.30 59.75
! ! 72.55 59.92

Ours
! ✗ 71.87 59.01
✗ ! 72.25 59.42
! ! 72.84 59.97

Comparison of Different Pseudo Maps
In Figure 4, we visualize the pseudo maps generated
by different methods, which highlight crucial areas that
expose underlying emotions. Specifically, we compare
the saliency maps generated based on visual saliency
theory [30] (column 2) with different pseudo maps
produced by CAM [26] (column 3), DCNet [17] (column
4), and InterIntraIEA (column 5). In simple scenes,
such as the first row where a lady is covering her face
while crying, saliency maps roughly outline the lady’s
figure, while the CAM method identifies the hands as
the main region for classification. In contrast, pseudo
maps from InterIntraIEA, after intra-class correlation
and inter-class discrimination processes, locate emo-
tion regions more accurately than other methods. In
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the second and third rows, saliency maps fail to pin-
point salient regions. While both the CAM method and
DCNet identify emotion regions, they remain somewhat
vague. InterIntraIEA, however, can determine the final
emotion regions more clearly in complex scenes.

FIGURE 4. Visualization for pseudo maps generated by
different methods.

CONCLUSION
In conclusion, this paper delves into the branch of IEA
focusing on regional information-based approaches,
addressing the limitations inherent in existing methods
reliant on region proposals or visual saliency. We
have developed a weakly-supervised framework built
around a joint learning module that effectively employs
category-specific dictionary learning to improve class
adaptation and models the intra-class contextual rela-
tionships of emotional categories. This approach not
only strengthens the discriminative capability between
classes but also refines emotional categories, leading
to a more precise identification of emotion regions
through the pseudo map generation process. For future
research directions, we aim to delve into the integration
of multimodal data, incorporating textual information
alongside visual cues.
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