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Abstract
This paper introduces a semantics-aware approach to natural language inference 
which allows neural network models to perform better on natural language inference 
benchmarks. We propose to incorporate explicit lexical and concept-level seman-
tics from knowledge bases to improve inference accuracy. We conduct an extensive 
evaluation of four models using different sentence encoders, including continu-
ous bag-of-words, convolutional neural network, recurrent neural network, and the 
transformer model. Experimental results demonstrate that semantics-aware neural 
models give better accuracy than those without semantics information. On average 
of the three strong models, our semantic-aware approach improves natural language 
inference in different languages.

Keywords Language inference · Semantics · Recurrent neural networks · 
Transformers · Commonsense · Text

1 Introduction

Many important problems in natural language processing (NLP) such as dialogue 
systems, information retrieval, semantic parsing, commonsense reasoning, depend 
on natural language understanding (NLU). The task of natural language inference 
(NLI) is well positioned to serve as a benchmark task for research on NLU (Wil-
liams et al., 2018). This task is also known as recognizing textual entailment (Bos & 
Markert, 2005; MacCartney & Manning, 2009).
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In the NLI task, a model is presented with a pair of sentences and is asked to 
judge the relationship between their meanings, typically entailment, contradiction 
or independence (or neutral). In order for a NLI model to be efficient, it must han-
dle crucial linguistic phenomena like coreference, quantification, tense, modality, 
lexical entailment, and lexical and syntactic ambiguity. On the one hand, a good 
NLI model must be able to extract good representations for the meanings of sen-
tences, notably their lexical and compositional semantics. On the other hand, it 
must succeed at one or more difficult machine learning problems like structure 
prediction and knowledge access.

Before 2015, the primary sources of annotated NLI corpus were the recog-
nizing textual entailment (RTE) challenge tasks. There are generally high-qual-
ity, manually-labeled datasets but all have a small size, fewer than a thousand of 
examples each. The SemEval 2014 task, called Sentence Involving Compositional 
Knowledge (SICK), prepared a larger corpus of 4,500 training examples, which 
used a semi-automatic construction approach. The Stanford NLI corpus (SNLI, 
Bowman et  al. (2015)) was introduced in 2015 is the first large-scale manually 
annotated corpus, containing 570K sentence pairs. This corpus has enabled a 
good deal of progress on NLU, especially on core representation learning tech-
niques for sentence understanding. Table  1 shows some examples of sentence 
pairs and their annotations from the development section of the SNLI corpus.

The SNLI corpus has two main limitations. First, the sentences in SNLI are 
derived from only a single text genre—image captions. This makes that the 
curated sentences are typically short and cannot cover a wide range of important 
phenomena such as temporal reasoning, belief and modality. Second, SNLI was 
proved to be not sufficiently demanding to serve as an effective benchmark for 
NLU—the best machine learning model performance nearly reaches human accu-
racy, making fine-grained comparisons between strong models difficult. In 2018, 
the Multi-Genre NLI corpus (MultiNLI) was introduced, which improved upon 
the SNLI corpus in both its coverage and difficulty (Williams et al., 2018). This 
corpus has 433K sentence pairs, representing both written and spoken speech in a 
wide range of styles, degrees of formality and topics.

The MultiNLI corpus has allowed explicit evaluation of models both on the 
quality of their sentence representations within the training domain and on their 
ability to derive good representations in unfamiliar domains. However, all the ten 
different genres of this corpus are of written and spoken American English and 
models trained on this corpus cannot be directly used beyond English. In order to 
perform and evaluate cross-lingual language understanding (XLU), the develop-
ment and test sets of the MultiNLI corpus were extended to 15 languages, includ-
ing low-resource languages. This dataset is called XNLI. XNLI consists of 7500 
human-annotated development and test examples in NLI three-way classification 
format, making a total of 112,500 annotated pairs (Conneau et al., 2018). In par-
ticular, the Vietnamese section of XNLI has never been used for supervised learn-
ing evaluation in a monolingual setting. It has been used to evaluate cross-lingual 
pretrained models for NLI.

In this paper, we make the following main contributions:



613

1 3

A semantics‑aware approach for multilingual natural language…

• We present and compare four neural models for natural language inference and 
establish the first baseline on the Vietnamese dataset. The proposed models make 
use of different sentence encoders, including continuous bag-of-words, convolu-
tional neural network, recurrent neural network, and the transformers network.

• We propose to integrate two important pre-processing steps, namely word seg-
mentation and part-of-speech tagging, to split input sentences into lexical units 
so as to improve the performance of the proposed models.

• We propose a method to exploit and integrate lexical semantics information of 
ConceptNet into the neural models for NLI. Extensive experiments demonstrate 
that semantics-aware neural models give better accuracy than those without 
semantics information.

• In addition to Vietnamese, we extend our method to English where we perform 
evaluation on an English dataset and also obtain improvement. Our findings are 
potentially valid for many languages.

• Our code, embeddings and dictionaries are publicly available.1

The remainder of this paper is structured as follows. Section 2 presents related work, 
focusing on natural language inference and integration of knowledge into deep learn-
ing models. Section 3 describes the four different neural network models, namely 
bag-of-words models, sequential models, parallel models, and BERT models. Sec-
tion  4 proposes a method for exploiting and integrating semantics information of 
ConceptNet into the neural network models to improve their performance. Section 5 
presents experimental results on NLI datasets of Vietnamese and English. Finally, 
we provide concluding remarks and discuss future work in Sect. 6.

Table 1  Some examples of sentence pairs and their annotations from the SNLI corpus

Premise Label Hypothesis

A man inspects the uniform of a figure in 
some East Asian country

contradiction The man is sleeping
C C C C C

An older and younger man smiling neutral Two men are smiling and laughing 
at the cats playing on the doorN N E N N

A black race car starts up in front of a 
crowd of people

contradiction A man is driving down a lonely road
C C C C C

A soccer game with multiple males playing entailment Some men are playing a sport
E E E E E

1 https:// github. com/ phuon glh/ vlp, under the nli module.

https://github.com/phuonglh/vlp
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2  Related work

2.1  Natural language inference

Over the past two decades, NLI has been addressed using a variety of techniques, 
including those based on symbolic logic (Fyodorov et  al., 2000; MacCartney & 
Manning, 2009; Bos & Markert, 2005), statistical methods (Giampiccolo et  al., 
2007; de Marneffe et  al., 2008) and neural networks (Bowman et  al., 2015; Liu 
et  al., 2019). More recently, deep contextual language models have been shown 
effective for learning universal language representations, leveraging large amount 
of unlabeled data and obtaining very good results in many natural language process-
ing tasks, including NLI. The best performing system has achieved the GLUE score 
(General Language Understanding Evaluation) of 90.7% (Wang et al., 2019).2 Some 
of the most prominent contextual models are ELMo (Peters, et  al., 2018), GPT 
(Radford et al., 2018), BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019). 
These are neural network language models which are usually trained on large corpus 
of text data using unsupervised objectives. In order to apply a pre-trained model to a 
specific language understanding task such as NLI, it needs to be fined-tuned by add-
ing task-specific layers and training on task-specific labeled data. To this end, these 
pre-trained models can be considered as the encoder which provides fine-grained 
contextual embeddings for downstream models.

Despite the success of those strong pre-trained language models, it has been 
shown that they are limited by its lack of comprehension of the world.3 They can be 
further improved by incorporating extra knowledge. A recent study suggested that 
the current NLU models suffer from insufficient contextual semantic representation 
and proposed to enrich sentences with predicate-specific argument sequences. By 
incorporating semantic role labels with BERT, the model for NLI has achieved an 
accuracy score of 91.9% on the SNLI dataset (Zhang et al., 2020).

We are particularly interested in improving NLI for Vietnamese. Due to the lack 
of annotated datasets, there has not existed much work on Vietnamese NLI. The 
most recent work about supervised Vietnamese NLI was published in 2015 (Nguyen 
et al., 2015) in which an experimental study of using the support vector machines 
(SVM) was conducted on a small dataset of 1600 sentences. These sentences are 
translated from the RTE-3 dataset (Giampiccolo et  al., 2007). Another published 
work dates back in 2012, where a machine translation approach was proposed for 
Vietnamese NLI (Pham et  al., 2012). The experiments were also conducted on a 
small translated dataset from RTE-3.

With the rise of applying pre-training methods in language processing, some 
recent works have been applied to Vietnamese language processing in recent years. 
Pre-trained language models, especially BERT-based models, have helped produce 
improvements for a variety of tasks. Bui et  al. presented a study on using multi-
lingual BERT embeddings and some new neural models for improving sequence 

2 As of September 15, 2020 on the latest GLUE test set.
3 https:// cs. nyu. edu/ facul ty/ davise/ papers/ GPT3C omple teTes ts. html.

https://cs.nyu.edu/faculty/davise/papers/GPT3CompleteTests.html
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tagging tasks for Vietnamese, achieving new state-of-the-art results on part-of-
speech tagging and named entity recognition (Bui et  al., 2020). A little bit later, 
two pre-trained PhoBERT language models for Vietnamese were introduced where 
a specific word segmentation method was incorporated in order to take into account 
the difference between syllable-level and word-level representation. These pre-
trained monolingual models improved four downstream tasks, including part-of-
speech tagging, named entity recognition, dependency parsing and natural language 
inference (Nguyen & Nguyen, 2020). In particular, on the NLI task, these models 
are fined-tuned on a training set of 392,702 samples (which is released as a machine-
translated version of the corresponding English training set of the XNLI project), 
the validation set and test set are manually-constructed, containing 2490 and 5010 
samples respectively. They obtained an accuracy of 78.5% with the base model and 
of 80.0% with the large model respectively.

In this work, we focus on developing and experimenting with supervised mod-
els for NLI, including BERT without pre-training. To our knowledge, this present 
work is the first one that proposes neural network models for Vietnamese NLI. In 
addition, the experiments are conducted on the Vietnamese portion of the XNLI 
corpus, which is nearly five times larger than existing Vietnamese NLI corpus ever 
evaluated.

2.2  Integration of commonsense knowledge into deep learning models

The importance of background knowledge in natural language understanding has 
long been recognized. There has been a surge of interest in developing methods 
which allow integration of linguistic and commonsense knowledge in deep learn-
ing models. Earlier systems mostly exploited restricted linguistic knowledge such 
as manually-encoded morphological and syntactic patterns. With the advanced 
development of knowledge base construction, large amounts of semantic knowl-
edge become available, ranging from manually annotated semantic networks like 
WordNet to semi-automatically or automatically constructed knowledge graphs like 
DBPedia (Lehmann et al., 2015) and NELL (Carlson et al., 2010). More recently, 
neural sequential models leverage the lower-dimensional real-valued representation 
of knowledge concepts as additional inputs such as KBLSTM (Yang & Mitchell, 
2017). However, these models have treated the computation of neural sequential 
models as a black-box without tight integration of knowledge and computational 
structure. Most recently, Ma et al. (2018) proposed Sentic LSTM, an extension of 
the LSTM model which is capable of tightly integrate the commonsense knowledge 
of SenticNet (Cambria et al., 2020) into the recurrent encoder. This method is inter-
esting in that it can exploit external knowledge to generate the hidden outputs and 
controlling the information flow, thereby outperform state-of-the-art methods in tar-
get-dependent aspect sentiment tasks.

Learning word representations for sentiment analysis has been an active topic of 
research recently. It has been shown that incorporating prior linguistic knowledge 
into deep learning models has the potential to learn better representations for senti-
ment analysis (Li et al., 2020; Peng et al., 2017). To this end, the newly introduced 



616 P. Le-Hong, E. Cambria 

1 3

AffectiveSpace 2 model, a general vector space model for concept-level sentiment 
analysis that allows for reasoning by analogy on natural language concepts, even 
when these are represented by highly dimensional semantic features (Cambria et al., 
2015). This model can be regarded as a general framework for analogical reasoning 
that can be embedded in potentially any cognitive system dealing with real-world 
semantics, not only for NLP tasks but also for multimodal data processing (Poria 
et  al., 2015). In addition, the study of microtext classification based on different 
methods, including phonetic based approaches has gained attraction, as presented in 
a recent comprehensive review (Satapathy et al., 2020).

Other work has focused on integrating knowledge bases into neural architectures 
for specific tasks such as reading comprehension (Wang & Jiang, 2019; Mihaylov & 
Frank, 2018), question answering (Sun et al., 2018; Bauer et al., 2018).

Transformer-based approaches have become a cornerstone in NLP systems, 
achieving state-of-the-art results in a wide variety of NLP tasks (Vaswani et  al., 
2017; Devlin et al., 2019). There have been some approaches that leverage knowl-
edge bases like WordNet and DBPedia to fine-tune the internal hidden states 
of language models such as KnowBERT (Peters et  al., 2019). Most recently, at 
SemEval2020, the Commonsense Validation and Explanation (ComVE) task was 
proposed to evaluate deep learning algorithms and models against commonsense 
tasks (Wang et al., 2020). The general purpose of the task is to test whether an NLP 
system can differentiate statements that make sense from those that do not. JUSTers, 
one participating system in that task has evaluated five-pretrained transformer-based 
language models, achieving good performance scores (Fadel et al., 2020).

In the last two years, there has been increasing interest in knowledge extraction 
and integration for deep learning architectures, which is the main topic of the Dee-
LIO workshop series (Deep Learning Inside Out). Lauscher et al. proposed lexically 
informed BERT (LIBERT) which integrates the discrete knowledge on word-level 
semantic similarity into pretraining (Lauscher et  al., 2020). This research group 
have also investigated models for complementing the distributional knowledge 
of BERT with conceptual knowledge from ConceptNet using adapter training to 
improve BERT results (Lauscher et al., 2020). Also two recent approaches to infuse 
knowledge graphs into pretrained language models to improve social commonsense 
task have been proposed (Chang et al., 2020). These methods are evaluated on the 
SocialIQA dataset.

3  Methods

In our approach, each sentence, either a premise or a hypothesis, is encoded by a 
real-valued dense vector by a computational model. In this work, we propose four 
different model architectures which are employed and compared. These architec-
tures make use of different neural models, including bag-of-words (BOW) model, 
convolutional neural network (CNN), gated recurrent unit (GRU) network and the 
transformer. Given an input sentence of n tokens, s = [w1,w2,… ,wn] , each token 
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wt, t = 1,… , n is represented by an embedding vector of u dimensions. Each model 
computes an output vector of v dimensions for the entire input sentence s.

The following subsections present in detail the four architectures. They are purely 
neural network based models. The integration of semantic information into these 
models will be described in the next section.

3.1  Bag‑of‑words model

BOW is the most simple model in which each sentence is represented as the sum of 
the embedding representations of its words. More precisely, given a premise sen-
tence of m words [p1, p2,… , pm] , each word pt is embedded into a vector e(pt) ∈ ℝ

u 
and the BOW encoder simply computes the premise embedding as e(p) =

∑m

t=1
e(pt) . 

In this model, the premise dimension is always the same as that of token embed-
dings, that is v = u . Similarly, the embedding of each hypothesis sentence of n 
words [h1, h2,… , hn] is computed as e(h) =

∑n

t=1
e(ht).

Two sentence embeddings e(p) and e(h) are then concatenated to get a vector of 
2u dimensions, which is passed to a single tanh layer, followed by a linear and a 
three-way softmax classifier. Given a premise and hypothesis pair, the model pro-
duces a probability distribution of that pair bearing an entailment (E), a neutral (N) 
or a contradiction (C) relationship. Figure 1 illustrates the BOW model architecture.

3.2  Sequential model

In this architecture, the premise and hypothesis sentences are processed sequen-
tially in order. The rationale for this is that the premise could establish the context 
for the hypothesis. The input to the sequential model is the sequence of m + n 
words [p1, p2,… , pm, h1, h2,… , hn] . This word sequence is encoded by an encoder 
of type CNN, uni-directional GRU or bi-directional GRU. With the CNN encoder, 
we use a 1d convolutional layer with 5 filters and the rectifier linear activation 
function, followed by a global max pooling layer to extract salient hidden fea-
tures. With GRU encoders, we can view that the final hidden state of the premise 
becomes the initial hidden state for the hypothesis GRU, as depicted in the Fig. 2.

In this work, we choose GRU as the recurrent unit rather than the Long Short-
Term Memory (LSTM) unit. The GRU is like LSTM with forget gate but has 
fewer parameters than LSTMs, as it lacks an output gate (Kyunghyun et  al., 
2014). Through many experiments, we see that GRUs give better results than 
LSTMs while being faster to train. GRUs have been shown to exhibit even better 
performance on certain smaller datasets (Chung et al., 2014).

A GRU has two gates, a reset gate r and an update gate z. Intuitively, the reset 
gate determines how to combine the new input with the previous memory, and 
the update gate defines how much of the previous memory to keep around. If we 
set the reset gate to all one and update gate to all zero, we get the plain recurrent 
model. The equations of the GRU unit at each time step t are as follows:
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where W ⋅,U⋅ are parameter matrices and b⋅ are bias vectors, and �(⋅) is the sigmoid 
function. In this work, we use both the unidirectional and bidirectional GRU model 
to allow capturing both past and future information at each sequence position. This 
model consists of two GRUs which are run in parallel, one on the input sequence 
and the other on the reverse of the input sequence. At each time step, the hidden 
state of the bidirectional model is the concatenation of the forward and backward 
hidden states are concatenated, that is xt = ��⃗xt ⊕ �⃖�xt .

The recurrent network block in the model can also be replaced by a CNN. The 
network learns filters that in traditional algorithms were hand-engineered. This 
independence from prior knowledge and human effort in feature engineering is a 
major advantage of CNN.

We build our CNN upon that of Kim (2014) which is originally proposed for 
sentence classification. The CNN block consists of a 1d convolutional layer to 
recognize w-grams, a non-linear layer with the rectifier activation function, and 
a max pooling layer to extract the most relevant features.

zt = 𝜎
(

Wzxt + Uzst−1 + bz
)

rt = 𝜎
(

Wrxt + Urst−1 + br
)

ut = tanh
(

Wuxt + Uu(st−1 ⊙ rt) + bu
)

st = (1 − zt)⊙ ut + zt ⊙ st−1,

Fig. 1  The continuous BOW model

Fig. 2  Sequential model architecture with RNN encoder. xt ∈ ℝ
d are token embeddings and st ∈ ℝ

o are 
hidden states of a GRU at time step t. The last output state is taken as the embedding vector of both the 
premise and hypothesis
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The input sequence can be viewed as a tensor of token embeddings 
X = [x1, x2,… , xm+n]

⊤ of size (m + n) × d . This matrix is fed into the convolu-
tional layer to extract higher level features. Given a window size w, a filter is 
seen as a weight tensor F of size o × d × w , where o is the output frame size of 
the filter. The core of this layer is obtained from the application of the convolu-
tional operator on the two tensors X and F. The output layer of the convolutional 
layer is precisely computed as

for all t = 1, 2,… , n − w + 1,∀i = 1, 2,… , o , where b = [b1, b2,… , bo] is the bias 
tensor of size o. Then a rectifier linear unit layer is applied element-wise on the out-
put layer to produce score tensor.

The pooling is then applied to further aggregate the features generated from 
the previous layer. The popular aggregating function is max as it bears responsi-
bility for identifying the most important features. More precisely, the max pool-
ing layer produces z = [z1, z2,… , zo] , where zi = max1≤t≤n−w+1 Yti.

3.3  Parallel model

In the parallel architecture, the premise and hypothesis sentences are encoded sepa-
rately. The rationale for this encoding scheme is that the model might have a chance 
to find rich abstract relationships between them. In addition, these sentences encod-
ing could facilitate transfer to other tasks. As in the sequential architecture, each 
sentence can be encoded by using a CNN, a uni-directional GRU or bi-directional 
GRU.

Figure 3 depicts the parallel model. After concatenating the last output states of 
the premise and hypothesis encoders, the resulting 2o-dimensional vector represen-
tation is passed to a linear layer and then a three-way softmax layer to compute the 
predictive distribution.

3.4  BERT model

Many NLP tasks have been shown to greatly benefit from large network pre-trained 
models. In recent years, these pre-trained models have led to a series of break-
throughs in language representation learning (Radford et  al., 2018; Peters et  al., 
2018; Devlin et al., 2019; Yang et al., 2019; Clark et al., 2020). Introduced in late 
2018, BERT (Devlin et al., 2019) stands for Bidirectional Encoder Representation 
from Transformers, which is designed to pre-train deep bidirectional language rep-
resentations by jointly training on both left and right contexts of a given word in all 
layers of the model. The core of BERT’s model architecture is a multi-layer bidi-
rectional transformer encoder, which was proposed by Vaswani et al. (2017). Trans-
formers dispense entirely with recurrence and convolution mechanisms and rely 
solely on attention mechanisms, which significantly decreases training time.

Yti =

d
∑

j=1

w
∑

k=1

Fijk ∗ Xt−1+k,j + bi,
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In this work, we implement two BERT model architectures for natural lan-
guage inference and compare them with other models. One model is purely super-
vised which is trained from scratch on the same training set. One model employs 
a state-of-the-art pre-trained language model for Vietnamese (PhoBERT-base) 
which is fine-tuned on the training set. For completeness, we describe briefly this 
model as follows.

BERT relies on several layers of transformers blocks, as shown in Fig.  4, 
where Trm are transformers and Ek are embeddings of the k-th token.

Each transformer block consists of two sub-layers, a multi-head self-attention 
mechanism followed by a simple position-wise fully-connected feed-forward net-
work. Residual connections exist around each of the two sub-layers, and dropout, 
following after each sub-layer, provides layer normalization, as shown in Fig. 5.

In essence, the multi-head attention layer in the transformer architecture 
encodes a value V according to the attention weights from query Q to key K. If 
Gf  is a position-wise feed-forward network, then the transformer F(Q,K,V) com-
putes an output as follows

where Q, K, V, O are matrices of size N × o . The attention mechanism is performed 
in parallel for each token in the sentence to obtain their updated features in one shot. 
This parallel computation offers a plus point for transformers over recurrent network 
models. Given the concatenated token embeddings E of premise and hypothesis sen-
tences, the transformer F(E,E,E) is then used to encode E and the last hidden state 
of the output is then used to perform classification as in the recurrent models.

The pre-trained PhoBERT model used in this work is the base version, using the 
same architecture of BERTbase (Nguyen & Nguyen, 2020). Its pre-training approach 
is based on RoBERTa (Liu et  al., 2019) which optimizes the BERT pre-training 

O = V + Gf (���������(Q,K,V)),

Fig. 3  Parallel model architecture with RNN encoders. xt ∈ ℝ
d and yt ∈ ℝ

d are token embeddings of 
the premise and hypothesis respectively. The last output states � and � of the two GRUs are concatenated 
as the joint embedding of the premise and hypothesis pair
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procedure for more robust performance. The model was trained on a 20GB dataset 
of uncompressed texts.

4  Integration of semantic information

This section presents our method for incorporating lexical and concept-level seman-
tic information into the machine learning models to improve their performance. The 
integration process has three main stages, including word segmentation, semantic 
lookup, and incorporation of semantic concepts into the proposed models.

Fig. 4  BERT architecture

Fig. 5  Transformer architecture  (Vaswani et al., 2017)
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4.1  Word segmentation

The first important task is to segment a sentence, either a premise or a hypothe-
sis into lexical units. Many languages use alphabetic script, which usually separate 
words by blanks and a tokenizer which simply replaces blanks with word boundaries 
and cuts off punctuation marks, parentheses and quotation marks at both ends of a 
word, is already quite accurate. However, many languages, including Vietnamese, 
blanks are not only used to separate words, but they are also used to separate syl-
lables that make up words. Furthermore, many syllables are words by themselves, 
but can also be part of multi-syllable words whose syllables are separated by blanks 
between them. This phenomenon creates problems for all NLP tasks, complicating 
the identification of what constitutes a word in an input text.

The dataset which is used in this study contains Vietnamese sentences. For exam-
ple, two sample sentences in the dataset are as follow:

• Anh ấy rất trung thành và tử tế. (He is very faithful and nice.)
• Tôi ghét anh ta vì anh ta quá kiêu ngạo. (I hate him because he is too arrogant.)

Each sentence can be considered as a list of syllables, for example, the list of sylla-
bles of the first example sentence is

[“Anh”, “ấy”, “rất”, “trung”, “thành”, “và”, “tử”, “tế”, “.”]

However, the lexical units, or words, the smallest units which have meaning in 
that sentence are as follows:

[“Anh”, “ấy”, “rất”, “trung_thành”, “và”, “tử_tế”, “.”]

In this example, in addition to monosyllabic words, there are two disyllabic words 
which should be segmented correctly—“trung_thành” (faithful) and “tử_tế” (nice). 
Word segmentation of Vietnamese text is itself an interesting problem. In this work, 
we perform word segmentation using the hybrid method proposed by Le-Hong et al. 
(2008), which is both fast and accurate. Naturally, we can either consider a syllable 
or a word as a token and feed them into the proposed models. However, for semantic 
lookup and integration, only word-level tokens make senses. For this reason, seman-
tic-aware models is concerned with only word-level tokens.

4.2  Part‑of‑speech tagging

The second pre-processing step that we perform is part-of-speech tagging. Because 
of its inflectionless nature, Vietnamese does not have morphological aspects such as 
gender, number, case...such as in occidental languages. Vietnamese words are clas-
sified based on their combination ability, their syntactic functions and their general 
meaning. Beyond the classical part-of-speech tags which are used in Western lan-
guages (noun, verb,...), the Vietnamese tagset has classifiers, which are commonly 
found in Asian languages, and modal words, which convey some of the nuances 
borne by flection in synthetic languages (Le-Hong et al., 2010).
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After word segmentation, we use a statistical part-of-speech tagger to label word 
sequences of both premise and hypothesis sentences with their part-of-speech tags. 
Important words are then filtered based on their word category. A word is considered 
important if it is a noun, either proper noun (of tag Np), unit noun (Nu) or common noun 
(N), a pronoun (P), a verb (V), an adjective (A). The important word category set includes 
five tags out of 18 part-of-speech tags defined by the VLSP Vietnamese treebank.4

4.3  Semantic lookup

In this work, we propose to include lexical semantic information provided by Con-
ceptNet into the deep learning models. ConceptNet (Speer et al., 2017) is a freely-
available semantic network, designed to help computers understand the meanings of 
words that people use. ConceptNet originated from the crowdsourcing project Open 
Mind Common Sense, which was launched in 1999 at the MIT Media Lab. It has 
since grown to include knowledge from other crowdsourced resources, expert-cre-
ated resources, and games with a purpose.5

Figure  6 shows an illustration of ConceptNet in graph. Much of ConceptNet 
knowledge comes from Wiktionary, the free multilingual dictionary. This gives us 
information about synonyms, antonyms, translations of concepts into hundreds of 
languages, and multiple labeled word senses for many words. ConceptNet also con-
nects to a subset of DBPedia,6 which extracts knowledge from the infoboxes on Wiki-
pedia articles. In addition, ConceptNet integrates dictionary-style knowledge that 
comes from Open Multilingual WordNet,7 which provides access to open WordNets 
in a variety of languages, all linked to the Princeton WordNet of English (PWN).8

The nodes of ConceptNet are words and phrases of natural language. Each node 
has a URI within ConceptNet that starts with /c/ and a language code, such as 
/c/en/beautiful. Given a word or phrase, we will know the complete URL, 
then we can look it up using a publicly available API. The actually interesting infor-
mation is inside the edges list that connect a node with other nodes. Each edge 
specifies a relation between a start node and an end node. In the current version of 

Fig. 6  An illustration of Con-
ceptNet in graph

4 http:// vlsp. org. vn/.
5 http:// conce ptnet. io/.
6 https:// wiki. dbped ia. org/.
7 http:// compl ing. hss. ntu. edu. sg/ omw/.
8 http:// wordn et. princ eton. edu/.

http://vlsp.org.vn/
http://conceptnet.io/
https://wiki.dbpedia.org/
http://compling.hss.ntu.edu.sg/omw/
http://wordnet.princeton.edu/
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ConceptNet, a set of 34 relations are defined that can apply to text in any language. 
The relations are given canonical, camel-cased English names in the /r/ names-
pace, such as /r/PartOf. Table 2 lists 12 relations along with their description 
and examples. For a full list of relations defined in ConceptNet, the reader may refer 
to its website.9 These relations are used in this study to extract semantic information 
from text.

As an example, consider the word “vào” in Vietnamese. This word has multiple 
senses and its correct meaning depends on the context that it appears in a given 
sentence. Using ConceptNet, we can look up all the words and phrases that have 
an interesting relation with it, as specified by the relations defined in Table 2. More 
interestingly, these relations are specified in across different languages such as Eng-
lish (en), French (fr), German (de), or Vietnamese (vi).

As shown in Fig. 7, ConceptNet provides us the synonyms of the source word 
“vào” both in Vietnamese (vô), and in English (enter), and also in German (herein). 
Antonyms are also important for detecting contradiction relation and many lexical 
units in ConceptNet has references to their antonyms. The Vietnamese antonym of 
“vào” is “ra” (go out/out). In addition, we can pull out related concepts of that word 
in these languages, and French if there is any.

4.4  Semantic integration

We propose a method to enrich both premise and hypothesis sentences with con-
cept-level semantics information. For each premise and hypothesis pair p and h, the 
method has the following steps: 

1. Tokenize p and h into words;
2. Tag the word-based sequences with their parts-of-speech;
3. Filter important words by using parts-of-speech of types pronoun, noun, verb and 

adjective;
4. Enrich the filtered words with their end nodes information in the ConceptNet by 

looking them up using a pre-defined set of semantic relations. We now have a bag 
of concepts for premise sentence p and a bag of concepts for the corresponding 
hypothesis sentence h.

5. Encode the bag of concepts with the BOW-like model and integrate resulting 
real-valued vectors into the proposed models.

Figure 8 illustrates the steps. For illustration, we take three samples from the Viet-
namese XNLI dataset where the premise sentence is “Tên của tiền cũng được lấy từ 
các thứ và các loài động_vật.” (“Money has also derived its names from things or 
animals.”). Three hypothesis sentences with the corresponding inference label are as 
follows:

9 https:// github. com/ commo nsense/ conce ptnet5/ wiki/ Relat ions.

https://github.com/commonsense/conceptnet5/wiki/Relations
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• entailment: “Tên của tiền được lấy từ động_vật.” (Money got its name from ani-
mals.)

• contradiction: “Tiền không được đặt tên theo động_vật.” (Money was not named 
after animals.)

• neutral: “Một đồng xu được đặt theo tên một con sư_tử.” (One coin is named 
after a lion.)

The content words of noun and verb category in the premise are “tên”, “tiền”, “lấy”, 
“thứ”, “loài”, and “động_vật”. These important word also appear in the first and the 
second hypothesis. The third hypothesis has three more content words which are 
“đồng”, “xu” and “sư_tử”. Looking up each of these content words in the Concept-
Net with the pre-defined semantic relations, we can extract the following concepts:

• “tên”:

– Vietnamese: /r/Synonym → {mũi_tên}, /r/RelatedTo → {họ, cung, 
nỏ}

Fig. 7  Cross-language relations 
of the Vietnamese word “vào”

Fig. 8  A semantic-enriched parallel model architecture. xt ∈ ℝ
d are token embeddings and st ∈ ℝ

o are 
hidden states of a GRU at time step t. The last output states � and � of the two GRUs are concatenated as 
the joint embedding of the premise and hypothesis pair
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– English: /r/RelatedTo → {arrow}
– French: /r/RelatedTo → {flèche, placé, devant, mauvais}

• “tiền”:

– Vietnamese: /r/IsA → {tiền}
– English: /r/Synonym → {money}, /r/RelatedTo → {pre}
– French: /r/RelatedTo → {argent}
– German: /r/Synonym → {geld}

• “lấy”:

– English: /r/RelatedTo → {steal, charge, marry, wed, take, seize }
– French: /r/RelatedTo → {soi_même, extraire, retirer, voler, fonder, 

dérober, embaucher, ôter, lever, emparer, moyens, enlever}

• “thứ”:

– English: /r/RelatedTo → {object, inferior, sort, rank, vice, second, par-
don, type, kind, order, under, forgive}

– French: /r/RelatedTo → {objet, rang, jour, pardonner, second, passable, 
sorte, chose, espèce}

• “loài”:

– English: /r/RelatedTo → {species}
– French: /r/RelatedTo → {espèce, catégorie}

• “động_vật”

– Vietnamese: /r/IsA → {động_vật}
– English: /r/RelatedTo → {animal}
– French: /r/RelatedTo → {animal}

• “đồng”:

– English: /r/RelatedTo → {currency, dong, medium, thousand, sorcerer, 
field}

– French: /r/Related → {champ}

• “xu”:

– English: /r/RelatedTo → {penny, xu, cent}

• “sư_tử”:

– Vietnamese: /r/IsA → {động_vật}
– English: /r/RelatedTo → {lion, leo}
– French: /r/RelatedTo → {lion}
– German: /r/Synonym → {löwe}

It can be seen that these concepts represent rich semantic information which may 
help models in inference. For example, they have cross-lingual information that lion 
is an animal or first name is related to a family name. In our method, all the 12 
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semantic relations presented in Table 2 are used. For the multilingual relation links, 
we incorporate all available links from all languages for which the data are availa-
ble. For Vietnamese concepts, we observe that most links point to popular languages 
such as English, French or German.

It is worth noting that, in the example above, we are concerned with Vietnam-
ese, which is an isolating language. Vietnamese is a monosyllabic language and its 
word forms never change, contrary to occidental languages that make use of mor-
phological variations (plural form, conjugation, etc.). For this reason, we can lookup 
concepts in the Vietnamese concept net directly, without any text pre-processing 
other than word segmentation. However, when experimenting with English, we need 
an extra pre-processing step called stemming to reduce inflected or derived words 
to their word stem before word lookup. For example, the word “cats” should be 
reduced to “cat” before searching for this concept with ConceptNet.

5  Experiments

5.1  Datasets

We test our proposed method on two natural languages, including Vietnamese and 
English. The two datasets are drawn from the XNLI corpus.

The Vietnamese portion of the XNLI corpus contains 7500 sentence pairs. We 
randomly split this corpus into a training set and a test set with the ratios of 80% and 
20% respectively. The average number of tokens per sentence in the XNLI corpus 
for Vietnamese is 27.6 for premises and 13.5 for hypotheses. The English portion of 
the same corpus also contains 7500 sentences. This corpus is also split into a train-
ing set and a test set with the same ratio 80/20.

5.2  Training details

All models are initialized with random token vectors rather than reference pre-
trained word vectors. This allows to establish results in a pure supervised learning 
setting rather than a semi-supervised or transfer learning setting. The models are all 
trained by the Adam optimizer (Kingma & Ba, 2015) with default parameters. We 
use the cross-entropy loss function for 3-way classification as usual. All models are 
trained in 50 epochs.

We first evaluate the performance of the models with respect to the token embed-
ding size, which varies in the set {25, 50, 80, 100} . This experiment allows investiga-
tion of the effect of input embedding size on the performance. In the experiments 
with the sequential and parallel models, we set the number of hidden units of the 
CNN or GRU models to different values ranging from 25 to 300. These varied sizes 
allow us to evaluate the effect of encoder size to the accuracy of the proposed mod-
els. Each model is trained repeatedly five times with different randomly initialized 
parameters, and their scores are averaged.
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In the experiments with the BERT models, we vary the number of transformer 
blocks (or layers) in the set {1, 2, 4, 8} , the hidden size ranges from 8 to 30410 while 
keeping the number of self-attention heads fixed at 8 and the intermediate size (i.e, 
feed-forward) fixed at 256. These varied parameters allow us to evaluate the scal-
ability of the models, i.e. how their performance changes as they are made to have 
more parameters or layers. As in sequential and parallel models, each BERT model 
is trained repeatedly five times with different randomly initialized parameters, and 
their averaged scores are reported. We observed that training a BERT model requires 
significantly more time than that of other models.

All the models presented in this paper, except the models using pre-trained 
PhoBERT, are implemented by ourselves in the Scala programming language. We 
use the BigDL and Analytic Zoo libraries11 as the deep learning framework. These 
libraries provide an end-to-end pipeline for applying AI models and high-level 
machine learning workflow for automating machine learning tasks. Furthermore, we 
can quickly code inline with Apache Spark12 code for distributed training and infer-
ence, easily scale out on multiple commodity servers, without relying on expensive 
GPU devices. The pre-trained models utilizing PhoBERT are implemented using 
PyTorch, an optimized tensor library for deep learning using GPUs and CPUs.13 
Specifically, we load the vinai/phobert-base model with 12 pre-trained transformer 
blocks, producing a context vector of 768 dimensions for each sample, and then feed 
this vector to a RoBERTa classification head to perform 3-way prediction. Our code 
and detailed experimental results are publicly available in a GitHub directory.14

5.3  Experimental results

In this subsection, we present the result of four sets of experiments. The first three 
concern Vietnamese NLI and the fourth one concerns English NLI. The first experi-
ment set compares the performance of four neural network models: continuous bag-
of-words model, sequential model, parallel model, and BERT model as presented in 
Sect. 3 using the syllable-based inputs. The second experiment set is similar to the 
first one except that word-based inputs are used rather than syllable-based inputs. 
The third experiment set presents results of semantics-enriched models as described 
in Sect. 4. Finally, the fourth set presents results for English NLI.

5.3.1  Syllable‑based performance

The training and test accuracy of the BOW model are shown in Table 3. It seems 
that for this model, increasing the token embedding size makes the model overfit—it 

10 Note that in transformers-based models, the hidden size must be a multiple of the number of self 
attention heads.
11 https:// analy tics- zoo. github. io/.
12 http:// spark. apache. org.
13 https:// pytor ch. org.
14 https:// github. com/ phuon glh/ vlp/, under the nli module.

https://analytics-zoo.github.io/
http://spark.apache.org
https://pytorch.org
https://github.com/phuonglh/vlp/
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gives better training accuracy, up to a limit of its generalization capability, but has 
worse test accuracy.

In the sequential model, the GRU encoder outperforms the CNN model. The 
gap is quite large, of about 22.7% of F1 score on average. More precisely, the best 
sequential model with the CNN encoder has a test score of 27.84% with the encoder 
size of 256 and the token embedding size of 25; this score is even worse than a ran-
dom guess for 3-way classification. Meanwhile, with the GRU encoder, the sequen-
tial model attains its best score of 50.57%.

The CNN encoder performs better in the parallel model than that in the sequen-
tial one. It attains an accuracy of 44.49%, as shown in Table 4. The GRU-encoder 
parallel model has its peak score of 50.18%. Since the size of the dataset is relatively 
small, we see in the experiments that a small value of token embedding size of 25 or 
50 gives better results than large token embedding sizes. We observe that the GRU 
encoder performs quite similarly in both the sequential and parallel model.

The BERT models outperform both sequential and parallel ones, as shown in 
Table  5. On this relatively small corpus, using a minimal number of transformer 

Table 3  Performance of the 
BOW model

The numbers in bold are the best score for each column
The best score is 36.41% with a small token embedding size of 25

Token Embedding Size Train. Score Test Score

25 0.7665 0.3641
50 0.7878 0.3455
80 0.7878 0.3438
100 0.7878 0.3347

Table 4  Performance of the sequential and parallel model using CNN encoder or GRU encoder with 
respect to syllable embedding size d and encoder output size o on the test set

The numbers in bold are the best score for each column

Sequential Model Parallel Model

Token Embedding Size (d) Token Embedding Size (d)

CNN Encoder GRU Encoder CNN Encoder GRU Encoder

Size (o) 25 50 25 50 25 50 25 50
100 0.2703 0.2599 0.4089 0.4512 0.4013 0.4030 0.4276 0.4168
128 0.2620 0.2680 0.4253 0.3920 0.3911 0.4103 0.4634 0.4388
150 0.2685 0.2683 0.5012 0.4163 0.4145 0.4089 0.4221 0.5018
200 0.2637 0.2709 0.5057 0.4942 0.4207 0.4443 0.4566 0.4965
256 0.2784 0.2643 0.4999 0.5057 0.4336 0.4151 0.5008 0.4788
300 0.2746 0.2759 0.4999 0.4938 0.3992 0.4449 0.4954 0.4930
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blocks (or layers) gives better scores than using a large number of blocks. The best 
test F1 score is 52.75% with one self-attention head and 200 hidden units.15

5.3.2  Word‑based performance

We next compare the performance of the models on word-segmented input sen-
tences. The input sentences are first split automatically in lexical units before feed-
ing into the word embedding layer of the proposed models, as described in the 
Sect.  4.1. As in the syllable-based experiments, we conducted a series of experi-
ments with different models. We observed the same fact that the BOW models are 
all outperformed by the others. For brevity, in this subsection, we report the experi-
mental results of better models, including the parallel models with GRU encoder 
and the BERT models.

As shown in Fig. 9, with parallel architecture, the word-based models are more 
accurate than its syllable-based counterpart by an average test score of 1.36% of 
absolute points. The word-based models achieve the best score of 51.18% with the 
GRU encoder of 300 hidden units.

Figure 10 shows the comparison between the syllable-based models, the word-
based models and semantics-enhanced models when using the BERT architecture 
with different numbers of transformer blocks. The word-based model achieves its 
best score of 53.65%, about 0.9% of absolute score better than the best syllable-
based supervised BERT model.

Table 5  Performance of the 
BERT models with respect 
to the number of transformer 
blocks on the test set. Here, the 
number of self-attention heads 
is fixed at 8 and the intermediate 
size is fixed at 256

The numbers in bold are the best score for each column

Blocks Best Test F
1

Best 
Encoder 
Size

1 0.5275 200
2 0.5109 128
4 0.5036 80
8 0.4952 64

Fig. 9  Word-based parallel 
models versus syllable-based 
parallel models with the GRU 
encoder

15 More detailed experimental results can be found in our GitHub repository.
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We test the statistical significance of the results by performing a paired sample 
t-test with � = 5% . The test result confirms that the differences between scores of 
the models are statistically significant, where the two-sided p-value is less than 10−7
.16

How do these purely supervised models compare to a pre-trained PhoBERT 
model? The PhoBERT base model fine-tuned on the same training set with the same 
input words achieves a test accuracy of 66.60%. This is quite a large gain compared 
to the best supervised word-based BERT model above. This experimental result 
demonstrates the importance of pre-trained language models for Vietnamese such as 
ViBERT (Bui et al., 2020) and PhoBERT (Nguyen & Nguyen, 2020) in improving 
Vietnamese language inference. Note that, this result is not comparable to the work 
presented in Nguyen and Nguyen (2020) since the training and test sets are not the 
same. As discussed in Sect. 2, the original PhoBERT model was fined-tuned on a 
training set of 392,702 samples and tested on 5,010 samples to obtain an accuracy 
of 78.5%.

5.3.3  Semantics‑enriched performance

Table  6 presents the performance of the sequential model with CNN encoder or 
GRU encoder when semantic information is integrated. The last two columns of 
this table show the score gain in comparison to the best scores of the corresponding 
sequential model without semantic integration.

We observe a large gain on the CNN encoder. The best performing CNN-sequen-
tial model without semantic enhancement is 27.84%; while with semantic integra-
tion, this score is 35.87%, that is about 8% of absolute point. However, the perfor-
mance gain with the stronger GRU-sequential model is smaller, of about 1.4%, from 
50.57 to 51.97%. This peak score is also better than 51.18%, the best score of the 
GRU-parallel model without semantics integration reported in the previous experi-
ment set.

Table 6  Performance of the 
sequential models with semantic 
information integrated

The numbers in bold are the best score for each column

Size CNN Encoder GRU Encoder Δ CNN Δ GRU 

25 50 25 50

100 0.3317 0.3540 0.4731 0.4840 0.0837 0.0328
128 0.3528 0.3464 0.4840 0.4875 0.0848 0.0622
150 0.3372 0.3587 0.4835 0.4805 0.0902 − 0.0178
200 0.3456 0.3549 0.4850 0.4997 0.0840 − 0.0060
256 0.3446 0.3402 0.4941 0.5197 0.0662 0.0140
300 0.3499 0.3507 0.4906 0.4972 0.0748 0.0027

16 We use the package HypothesisTests of the Julia programming language to perform the statistical 
tests.
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As shown in Fig.  10, with lexical semantics integration, the scores are pushed 
further by about 1% in average. The pre-trained PhoBERT model is also benefited 
by lexical semantics by about 1%. This result confirms effectiveness of using lexical 
units and lexical semantics integration into BERT architectures in language inference.

5.4  Performance on the English dataset

In the final set of experiments, we evaluate the proposed models on the English 
dataset. Since the BOW model is consistently outperformed by stronger ones and for 
saving space, we report only results of strong models including sequential, parallel 
and BERT models, without or with semantic information integration.

The performance scores of the sequential and parallel models are shown in the 
Table below.

Performance of the sequential and parallel model on the English dataset
Size Sequential Model Parallel Model

CNN Encoder GRU Encoder CNN Encoder GRU Encoder

25 50 25 50 25 50 25 50

100 0.3235 0.3327 0.3844 0.4529 0.4102 0.4514 0.4307 0.4207
128 0.3249 0.3412 0.4841 0.4448 0.4164 0.4351 0.4482 0.4738
150 0.3301 0.3359 0.4587 0.4926 0.4176 0.4734 0.4356 0.4811
200 0.3225 0.3580 0.4997 0.4841 0.4570 0.4310 0.4803 0.4365
256 0.3369 0.3333 0.4841 0.4962 0.4057 0.4430 0.4911 0.5119
300 0.3416 0.3493 0.4876 0.4997 0.5137 0.4962 0.5032 0.4806

We see that the GRU encoder outperforms the CNN encoder in both sequential 
and parallel architecture. The best performance of the sequential model is 49.97% 
with 25-dimensional token embeddings and 200-dimensional encoder size. Mean-
while, the best performance of the parallel model is 51.19% with 50-dimensional 
token embeddings and 256-dimensional encoder size.

Figure 11 shows the test score of the BERT-based model on the English data-
set with different encoder sizes. In this experiment, we use either one transformer 
block or two transformer blocks with 8 attention heads and 256 hidden states for the 

Fig. 10  Word-based models 
versus syllable-based BERT 
models using different number 
of transformer blocks



634 P. Le-Hong, E. Cambria 

1 3

intermediate size. We see that the peak performance of the model on the test set is 
about 51.54% when using 64 dimensions and two blocks or using 200 dimensions 
and one block.

Figure 12 presents the performance gain when semantic information is integrated 
into the proposed models. The sequential, parallel and BERT models improve by 
about 0.71%, 0.53% and 0.4% respectively when semantic information is integrated. 
On average, semantic integration improves the performance by about 0.54%. The 
BERT model gives the best score of 51.94% on the test set.

5.5  Discussion

The experimental results have shown that Vietnamese inference is difficult. The 
Vietnamese portion of the XNLI corpus, as well as nine other languages, are trans-
lated from the English portion by human translators. This translation approach car-
ries with it the risk that the semantic relations between the two sentences in each 
pair might not be reliably preserved. Indeed, by investigating closely the Vietnamese 
dataset, we find that issue—many examples are not well written due to mediocre 
translation or semantic shift. This problem concerns many sentences. We show in 
Table 7 some of sentence pairs which highlight the problem.

A native Vietnamese speaker can easily see that nine samples above are results 
of a bad translation which makes the annotated labels incorrect or inconsistent. For 
example, the first three premise sentences mean I did not have time to participate 
in all. which are very different semantically to the original English sentence which 
says I didn’t have time to enter in all kinds of whatever.. For this reason, the second 
and third hypothesis sentence which mean I entered there in time. and I ran out of 

Fig. 11  F
1
 scores of the BERT-

based model on the English test 
set with different encoder sizes 
and numbers of transformer 
blocks

Fig. 12  Performance gain when 
semantic integration is inte-
grated into the proposed model 
on the English dataset
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time to enter it all in. respectively do not contradict or entail the premise sentence as 
being annotated.

The word “nhẹ nhàng” in the next three premise sentences (4, 5, 6) is incorrectly 
translated from its original English word light. The original sentence reads And the 
fact is she was light!, in which the word light should be translated to nhẹ (not heavy 
at all) rather than nhẹ nhàng, which means sweet, graceful or soft. An incorrect 
translation of a single word alone is enough to make all three hypothesis sentences 
wrongly annotated.

In a similar way, the English word store in samples 7, 8 and 9 is wrongly trans-
lated to câu chuyện which means story. This results in inconsistency of the corre-
sponding annotated inference labels.

This analysis reveals that if the XNLI datasets were annotated more correctly, the 
meaning of sentences would be better preserved and integrating semantic informa-
tion into the models may achieve a better score.

6  Conclusion

In this work, we have presented a method that incorporates explicit lexical and con-
cept-level semantics to improve language inference. The semantic information is 
provided by the multilingual ConceptNet knowledge base. A thorough experimental 
study is conducted on four neural network architectures with state-of-the-art encoder 
models, including convolutional network, recurrent network and bidirectional 
transformer network. On average of the three strong models, our semantic-aware 
approach improves natural language inference in different languages.

There are several lines of research for future exploration. Firstly, we will seek 
a better way to exploit semantics information by combining lexical semantics with 
dependency semantics which comes from a dependency parser. We think that 
explicit semantic dependency between concepts of a sentence will be more fruit-
ful than treating concepts as independent as in the current work. In a recent study, 
we have demonstrated the usefulness of syntactic structures in improving lexical 
embeddings (Dang & Le-Hong, 2021). Secondly, we plan to investigate an abstract 
meaning representation of whole sentences and seek a way to incorporate this hier-
archical semantic information into the models. Thirdly, we would like to study the 
effect of semantic specialization for BERT (Lauscher et al., 2020) in the language 
inference task. In our current method, synonymy and antonymy information is indis-
criminately combined in the bag of concepts, and this conflation can negatively 
impact model performance. We project that a finer-grained treatment of synonymy 
and antonymy would help improve further our current methods. Finally, we will 
investigate the accuracy of our proposed framework on other languages.
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