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Abstract—The task of resolving repeated objects in natural
languages is known as co-reference resolution. It is an important
part of modern natural language processing and semantic
cognition as these implicit relationships are particularly difficult
in natural language understanding in downstream tasks. Mention
identification and mention linking are the two sub-tasks in the
general co-reference resolution research community. Gold-two-
mention style co-reference resolution is a special type of co-
reference resolution that focuses on linking the ambiguous pronoun
to one of the two candidate antecedents. In this paper, we proposed
a joint learning model that learns mention identification and
mention linking tasks together, because we find that the learning
of mention identification can provide supportive dependent
information for the learning of mention linking. As far as we know,
we propose the first model that introduces a multi-task learning
framework to the gold-two-mention co-reference resolution task.
We find that our proposed model outperforms state-of-the-art
baselines and a single-task learning model on three gold-two-
mention co-reference resolution datasets. By comparing the errors
made by either the single-task learning model or the multi-task
learning model, our error analysis also yields interesting findings
about in which way our multi-task learning model makes fewer
resolution errors.

Index Terms—Co-reference Resolution, Natural Language
Processing, Linguistics, Deep Learning

I. INTRODUCTION

To achieve coherence within natural language understanding,
it is necessary to have a firm grasp of the argumentation
structure and information flow. Co-reference resolution (CR)
is among these parsing attempts and refers to the process of
resolving any spans in a context that point to the same physical
object or event. CR can be broken into two sub-tasks, namely
mention identification, i.e., recognizing potential mentions in
the previous discourse, and mention linking, i.e., linking the
mentions that are co-referential.

Recently, there has been a line of work focusing on “hard”
cases of CR [1], the resolution of which often requires
either reasoning from the discourse or external lexical and
commonsense knowledge. Given examples:

(1) a. My cat only eats canned food because it is very
picky.

b. My cat only eats canned food because it is very
tasty.

The pronoun ‘it’ refers to different antecedents, while only
one token is different in these two sentences (i.e., ‘picky’ and
‘tasty’).

Fig. 1: Transformer attention weight visualization. Brighter
color denotes higher weights (more attention).

Building on this, Levesque et al. introduced the Winograd
Scheme Challenge (WSC) in which there are hundreds of such
minimal pairs and which is designed to assess CR models’
ability to link mentions in these pairs. Following this scheme,
extensions have been done by enlarging the dataset [2] or
by looking at other kinds of “hard” cases that link to gender
bias [3], [4]. Since WSC-like CR tasks always provide the
gold-standard position of each mention and always ask models
to choose between two antecedents, tasks as such are often
called Gold-two-mention CR (henceforth, GTM-CR).

In order to equip CR models with world knowledge, GTM-
CR models often rely on pre-trained language models (PLMs).
For example, Joshi et al. [5] and Attree [6] used BERT [7],
while, most recently, Kocijan et al. [8] used a BERT that was
re-trained on Wikicrem, a very large Wikipedia dataset where
mentions are masked.



Here, we argue that, though GTM-CR models do not need
to identify mentions, the ability to distinguish mentions from
their contexts is still helpful for a neural network model, as it
might enable the model to acquire more positional information
that is related to CR. This could include information about the
grammatical role, syntactic parallelism (i.e., whether the target
referent is in the same syntactic position as its antecedent), and
many others, which have been proved to be essential for CR [9],
[10]. As a matter of fact, jointly modeling identification and
linking has been deployed in the classic CR task. For instance,
Daume and Marcu [11] organized the two tasks into a single
search space and tackled CR as a searching problem. Lee
et al. [12] modeled mention identification and linking as a
single end-to-end task. These embody the superiority of joint
modeling mention identification and linking. However, the
searching-based paradigm [11] and single-task learning (STL)
paradigm [12] cannot share useful dependency information that
is learned from different tasks and training objectives.

Taking the setting of GTM-CR into consideration, we follow
a different paradigm: We propose to train a GTM-CR model
by jointly identifying mentions and linking them by using
Multi-Task Learning (MTL). Concretely, we develop an MTL
model to learn the mention identification and linking tasks
together with a shared encoder and task-specific towers upon
the shared encoder. The shared encoder aims at learning the
general dependency relationship of an input sequence. The task-
specific towers aim at learning the dependencies of mention
identification and linking, respectively. The sharing encoder
and task-specific towers are Transformer [13]-based.

Given the fact that Transformer encodes features via a multi-
head attention mechanism and a feed-forward layer, the multi-
head attention can learn different dependency features from
different tasks. The visualization of the attention in our model
in Fig. 1 further demonstrates the need of mention identification:
learning mention identification likely allows the attention head
of a referent (‘it’) to attend to its dependent antecedent (‘cat’) in
Example (1-a), while the attention head of ‘it’ attends to ‘food’
in Example (1-b). This is a strong signal for the learning of
mention linking, e.g., linking ‘it’ with ‘cat’ for Example (1-a),
and linking ‘it’ with ‘food’ for Example (1-b). Simply learning
mention linking may miss such a helpful signal.

Additionally, to better balance the training of the two tasks
of MTL, we propose a dynamic weight-balancing mechanism.
During training, it dynamically adapts the weight for each task
with respect to the ratio of the loss of the two tasks.

We examine our MTL model on three GTM-CR datasets:
GAP [3], DPR [2], and Winogender [4]. We find that our
model outperforms state-of-the-art (SOTA) baselines for GAP
in terms of both F1 score and Bias (NB: GAP and Winogender
were designed to assess bias in CR models). It also exceeds
the SOTA baseline for Winogender and achieves a comparable
result as the SOTA baseline for DPR even though the fine-
tuning dataset we used is 99.95% smaller than that of the
SOTA model. We further compare our MTL model with its
STL alternative and observe that the MTL model exceeded the
STL model on all these three datasets.

Finally, we conduct an error analysis, yielding interesting
findings. For example, MTL dramatically helps CR systems to
be less likely to make false predictions for feminine pronouns.

The contribution of this paper has three-fold:

• We propose an MTL learning paradigm for GTM-CR.
The new learning paradigm exceeds previous learning
paradigms on three datasets;

• We introduce a dynamic weight balancing mechanism
which allows our multi-task learning co-reference resolver
balance between mention identification and mention
linking dynamically;

• We conduct a series of insight analyses for investigating
the effects of dynamic weight balancing and multi-task
learning for CTM-CR and analyzing what kind of error
our model is more capable of overcoming.

II. RELATED WORK

CR is considered as one of the most difficult tasks in natural
language understanding. It is important for downstream natural
language processing activities such as entity linking [14],
named entity recognition [15], and sentiment analysis [16].
It also has strong connections in referring expression gener-
ations [17], [18], [19], [20]. In this section, we review CR
models that use PLMs and the GTM-CR Models and introduce
the motivations of this work.

A. Co-reference Resolution with Pre-trained Language Models

Approaches for CR can be break into four categories [21]:
feature-based [22], recurrent neural network-based [23],
knowledge-based [24] and Transformer-based [5], [25] ap-
proaches. Despite the fact that there are no absolute boundaries
between their timelines, we can roughly conclude that over
the years, the research interest has shifted from feature-based
traditional machine learning models to deep learning models
that rely on multilayer perception or recurrent neural networks,
and then to Transformer-based large scale PLMs. According to
the most recent survey by Liu et al. [21], the SOTA models on
18 CR datasets respectively are all Transformer-based models.
This shows the strength of large-scale PLM-based models. Due
to page limits, we would like to refer readers to [21] for the
comprehensive list of models under these four categories, and
their performances under different datasets.

The work of Joshi et al. [5] is the first one that incorporates
PLMs into CR models. It is based on a coarse-to-fine co-
reference model presented by Lee et al. [26], coined c2f-coref.
The LSTM-based encoder in c2f-coref was fully replaced by
BERT in [5]. BERT representation of the beginning word
piece, ending word piece, as well as the attended form of the
whole mention were concatenated to represent the mention. The
representations are fed for CR following the same paradigm of
c2f-coref. Later on, SpanBERT [25] was proposed and used in
CR, which leads to better representations of mentions (better
than roughly concatenate presentations of a number of tokens
in the mention).



B. GTM-CR Models

Along with the introduction of several GTM-CR datasets,
including GAP [3], DPR [2], and Winogender [4] (see more
details in Section IV-A), a bank of models that focus on the
GTM-CR task has been introduced.

The current SOTA GTM-CR model on the GAP dataset
was presented by Attree et al. [6]. It includes two main
components: the pronoun BERT module and the evidence
pooling module. The pronoun BERT module extracted the last
layer embedding for the pronoun from the BERT model. The
evidence pooling module combined the clustering information
from four other CR models: AllenNLP [27], NeuralCoref,
Parallelism+URL [3] and e2e-coref [12]. The evidence pooling
would encode the information from all these models via the self-
attention mechanism and generate an evidence vector. Finally,
the evidence vector is concatenated with the BERT embedding
of the pronoun and goes through the linear and softmax layers
to get the classification result.

The current SOTA GTM-CR model on DPR and Winogender
datasets is [8] that re-trains BERT with WikiCREM. They
first collected a large-scale unsupervised corpus generated
from English Wikipedia, namely, the Wikipedia CoREferences
Masked (WIKICREM) dataset, and re-trained BERT on it. On
WIKICREM, they designed a training task targeting pronoun
resolution as its downstream task. More specifically, they
gave BERT a sentence with an antecedent or a pronoun
masked out, together with two candidates. The model is
then to predict which of the candidate is more proper.
For CR, they trained two versions of BERT_WIKICREM:
BERT_WIKICREM_DPR which was fine-tuned as a CR model
on DPR and BERT_WIKICREM_ALL which was fine-tuned
on both GAP and DPR. BERT_WIKICREM_ALL performed
the best on DPR, achieving an accuracy of 84.8% while
BERT_WIKICREM_DPR performed the best on Winogender,
achieving an accuracy of 82.1%.

C. Motivations of This Work

Previous SOTA GTM-CR models [11], [12] learned the task
in a single-task learning fashion. However, the multi-task learn-
ing community [28], [29], [30] believes that learning related
but different tasks can achieve complementary strengths for the
learning of each task. Besides, we found that learning mention
identification likely yields supportive dependent information
for the learning of mention linking (see Fig. 1). Thus, we were
motivated to introduce multi-task learning into the GTM-CR
task. Since this was a new learning paradigm for GTM-CR,
we were also inspired to explore the gains and losses of using
multi-task learning, compared to single-task learning.

III. METHOD

In this section, we present our MTL-based GTM-CR model,
namely Coref-MTL, as well as a dynamic weight balancing
algorithm that allocates a dynamic weight for the learning of
each task loss to support the MTL.

A. Joint Model for Mention Identification and Mention Linking

Fig. 2 represents the structure of the proposed model
that collaboratively optimizes the mention identification and
mention linking tasks. The input sentence is first processed by
the PLM after tokenization, the outputs of which are then passed
into two task-specific towers. In what follows, we introduce
details of each task-specific tower.

1) Mention Identification: Given an input representation
encoded by a PLM, the mention identification module decides
whether each token in the input belongs to a mention or not. A
mention is an antecedent or a referent. A mention can contain
more than one token. The mention identification (MI) task-
specific tower passes the representations from PLM through
𝑙 layers of Transformer encoders. Formally, suppose 𝑋0 ∈
R𝑠×𝑒 is the contextualized representation of the input sentence,
where 𝑠 represents the sequence length and 𝑒 represents the
embedding size. Then, the representation (𝑋𝑀𝐼

𝑖
∈ R𝑠×𝑒) of

the sentence after passing through the 𝑖th Transformer encoder
TransEnc𝑀𝐼

𝑖
(·) (𝑖 ∈ {1, ..., 𝑙}) is given by:

𝑋𝑀𝐼
𝑖 = TransEnc 𝑀𝐼

𝑖

(
𝑋𝑀𝐼
𝑖−1

)
. (1)

Subsequently, the hidden states of the last Transformer layer
(𝑋𝑀𝐼

𝑙
) are linearly transformed and passed to a softmax layer

to generate a set of probability distributions over whether a
token belongs to an entity mention span or not:

𝑃𝑀𝐼 = softmax
(
𝑊𝑇

1 𝑋𝑀𝐼
𝑙 + 𝑏1

)
, (2)

where 𝑃𝑀𝐼 (𝑃𝑀𝐼 ∈ R2×𝑠) denotes the set of the probability
distribution over the output space for all input tokens in the
mention identification task. 𝑊1 (𝑊1 ∈ R𝑒×2) and 𝑏1 (𝑏1 ∈ R2)
are parameters learned parameters. We use Cross Entropy loss
𝐿𝑀𝐼 for the mention identification task:

𝐿𝑀𝐼 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦

(
𝑌𝑀𝐼 , 𝑌𝑀𝐼

)
, (3)

where 𝑌𝑀𝐼 is the predicted labels of the mention identification
task, based on 𝑃𝑀𝐼 . 𝑌𝑀𝐼 denotes the ground-truth labels.

2) Mention Linking: Similar to the mention identification
task, for the mention linking task, the embedding of the
tokenized sentence is first routed through numerous stacked
Transformer layers as depicted in Fig. 2 to provide the final
vectorized representation required for the mention linking
task. In the mention linking (ML) task-specific tower, we
used 𝑘 stacked Transformer encoders. Then, the representation
(𝑋𝑀𝐿

𝑗
∈ R𝑠×𝑒) of the sentence after passing through the 𝑗 th

Transformer encoder TransEnc𝑀𝐿
𝑗

(·) ( 𝑗 ∈ {1, ..., 𝑘}) is given
by:

𝑋𝑀𝐿
𝑗 = TransEnc 𝑀𝐿

𝑗

(
𝑋𝑀𝐿
𝑗−1

)
. (4)

The vector representations of mentions are extracted by a mask
from the last Transformer layer of the mention linking task-
specific tower. The mask is a list of digits of 0 or 1 with
each element matching the corresponding token in the input
sentence (see Fig. 2 (b)). The mask is used to do the element-
wise products with the vector representations of tokens.
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Fig. 2: (a) Model structure of multi-task co-reference resolution (Coref-MTL). The colored input tokens denote mentions and
pronouns. 𝑀𝑎𝑠𝑘𝑚 is the mask for obtaining the representations of an antecedent-pronoun pair. ⊗ denotes element-wise product.
(b) The shape of masks for obtaining the representations of pronoun 𝑤8 and antecedent {𝑤2, 𝑤3} and the representations of
pronoun 𝑤8 and antecedent {𝑤5, 𝑤6}.

For the irrelevant tokens (tokens out of mention spans in a
sentence), their representations are wiped out by multiplying
with the 0s in the mask. For candidate mentions and pronouns,
their representations are retained by multiplying with the 1s in
the mask. In practice, a sentence may have multiple masks, if
there are more than two mention spans. Each mask retains the
representations of an antecedent-pronoun pair. Formally, the
representations (𝑉 ∈ R𝑠×𝑒) of the input after masking out with
a mask (𝑀𝑎𝑠𝑘𝑚) for mention linking are given by

𝑉 = 𝑀𝑎𝑠𝑘𝑚 ⊗ 𝑋𝑀𝐿
𝑙 , (5)

where ⊗ represents element-wise products. In the end, we
only retain two vectors. One represents a candidate mention.
The other one represents the pronoun. These two vector
representations are utilized to determine whether or not the
represented candidate antecedent and the pronoun are co-
referred.

The representations of the candidate mentions are the
average of all unmasked constituent tokens. This is because
an antecedent may contain more than one word, e.g., a
multi-word expression. Let v𝑐 ∈ R𝑒 denote the candidate
antecedent representation vector and v𝑝 ∈ R𝑒 denote the
representation vector of the pronoun. These two vectors
are fused via a fusion operation to obtain a fused vector
v 𝑓 ∈ R𝑒. We examined various fusion methods in this study,
including the concatenation of the two vectors, element-wise
addition, element-wise products, and element-wise square of
the difference. We found that element-wise products yielded the
best performance. Formally, the new fusion vector (v 𝑓 ∈ R𝑒)
is given by:

v 𝑓 = v𝑐 ⊗ v𝑝 ∈ R𝑒 . (6)

After obtaining the fusion vector v 𝑓 , it is processed through
a softmax layer to produce the probability distribution over
two classes: 1 (there is a co-reference relationship between
the pronoun and the candidate mention) and 0 (there is no
co-reference link between the two mentions)

𝑝𝑀𝐿 = softmax
(
𝑊𝑇

2 v 𝑓 + 𝑏2

)
∈ R2, (7)

where 𝑝𝑀𝐿 (𝑝𝑀𝐿 ∈ R2) denotes the probability distribution
over the output space for the mention linking task. 𝑊2 and 𝑏2
(𝑏2 ∈ R2) are trainable parameters. The size of 𝑊2 is R2𝑒×2 if
the fusion method is concatenation and R𝑒×2 otherwise. Next,
we use cross entropy loss to learn the mention linking task

𝐿𝑀𝐿 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦( �̂�𝑀𝐿 , 𝑦𝑀𝐿), (8)

where �̂�𝑀𝐿 denotes a mention linking predicted label, based
on 𝑝𝑀𝐿 . 𝑦𝑀𝐿 denotes a ground-truth label of the mention
linking task.

The final loss 𝐿𝐶𝑜𝑟𝑒 𝑓 is the weighted sum of the mention
identification loss (𝐿𝑀𝐼 ) and the mention linking loss (𝐿𝑀𝐿)

𝐿𝐶𝑜𝑟𝑒 𝑓 = 𝑤𝑀𝐼𝐿𝑀𝐼 + 𝑤𝑀𝐿𝐿𝑀𝐿 , (9)

where 𝑤𝑀𝐼 and 𝑤𝑀𝐿 are two hyperparameters that represent
the loss weights of the two sub-tasks, respectively.

B. Dynamic Weight Balancing

When training mention identification and mention linking
together for GTM-CR, it is important to decide what weight
should be allocated to each task, because the difficulty of
learning mention identification and mention linking tasks are
different.



We adopted a dynamic weight-balancing method based on
loss adaption. After each epoch, we record the losses of each
task and compare that with the initial loss after the first epoch.
For tasks that have more reduction in the loss, it will be
weighted less in the next epoch of training. For tasks that have
less reduction in the loss, they will have higher weights in the
next iteration. Adjustment is based on the square of the relative
percentage of all tasks and they are passed through a softmax
function to make sure all the weights of different tasks sum to
one. A detailed description of the proposed weight-balancing
algorithm can be found in Algorithm 1.

Algorithm 1 Dynamic Weight Balancing based on Loss
Changes

Given T tasks.
Initialize task weights to be 1/𝑇 .
for each epoch 𝑒 do

for each batch 𝑏 do
get batch loss and add to epoch loss
Update weighted loss ℓ(𝑒,𝑏) =

∑𝑇
𝑖=1 ℓ(𝑒,𝑏,𝑡 ) × 𝑤𝑡

Update 𝑊 with respect to ℓ(𝑒,𝑏) .
end for
Get the epoch loss on each task ℓ𝑒 ∈ R𝑇 .
the first epoch loss as ℓ0 ∈ R𝑇 .
for each task 𝑡 do

Set the task weight 𝑤𝑡 =

(
ℓ(𝑒,𝑡 )
ℓ(0,𝑡 )

)2
.

end for
Unify the weights to make sure they sum to one

𝑤𝑡 =
𝑒𝑤𝑡∑𝑇
𝑖=1 𝑒

𝑤𝑖

end for

IV. EXPERIMENTS

A. Datasets and Evaluation Protocols

In our experiment, we used three GTM-CR datasets: GAP,
DPR, and Winogender. Table I records the statistics of each
dataset.

a) GAP [3]: GAP is collected from Wikipedia to reflect
the real-world challenges of pronoun co-reference resolution.
It comprises 8908 pairs of pronoun and candidate mention that
are split into 3 subsets: test (4000 pairs), development (4000

TABLE I: Statistics of datasets, Val. stands for the validation
set. P-M stands for the number of pronoun-mention pairs. As
there are two mentions and one pronoun for each example, the
number of P-M pairs is twice the total number of examples.
Avglen stands for the average length of the examples in terms
of words.

Dataset Train Val. Test Total P-M Avglen

GAP 4000 908 4000 8908 17816 71.57
DPR 1322 - 564 1886 3772 14.27

Winogender - - 720 720 1440 14.49

pairs), and validation (908 pairs). In each subset, there is the
same number of examples with masculine pronouns (e.g., him,
his) and feminine pronouns (e.g., she, her). We use F1 and
Bias as the main evaluation measures on the GAP dataset. F1
scores are calculated on three kinds of examples: the group
of examples with masculine pronouns, the group of examples
with feminine pronouns, and the group of examples with all
kinds of pronouns. The bias score is calculated as the ratio of
feminine F1 over masculine F1.

b) DPR [2]: The Definite Pronoun Resolution (DPR)
corpus is a modified version of WSC minimal pairs (see
Section I). These sentence pairs span a wide range of themes,
from real occurrences to cinematic events to entirely fictitious
circumstances, primarily representing pop culture as experi-
enced by American children born in the early 1990s. DPR
includes cases that do not need commonsense reasoning, as
well as situations where the “special word” is a phrase. DPR
contains 1322 training examples and 564 test examples. Totally,
there are 1886 example sentences.

c) Winogender [4]: Winogender is a dataset for testing
the gender biases in CTM-CR, using the WSC format. Each
sentence has an occupational noun and a referring pronoun.
The pronoun could be represented as “he”, “she” or “they”,
respectively. The occupational nouns are usually gender-
oriented. E.g., women are likely to be employed as secretaries.
Given “the secretary asked the visitor to sign in so that he could
update the guest log” [4], a co-reference resolution classifier
may fail in connecting “he” to “secretary” if the classifier is
gender-biased. This dataset means to examine how altering
the gender of the pronoun impacts the accuracy of a model.
Winogender contains 720 sentences in total. Winogender is
only used as a test set.

B. Baselines

We used SOTA GTM-CR models on the three datasets
as our baselines. ProBERT/GREP [6] is the current SOTA
model for the GAP dataset. BERT fine-tuned on Wiki-
CREM [8] (henceforth, BERT_WIKICREM) is the current
SOTA model for the DPR and Winogender datasets. For
BERT_WIKICREM, we tried two different versions, namely
BERT_WIKICREM_ALL as well as BERT_WIKICREM_DPR.
BERT_WIKICREM_ALL has the best performance on DPR
dataset whereas BERT_WIKICREM_DPR has the best perfor-
mance on Winogender dataset. Details of each model can be
found in Section II.

C. Setups

NVIDIA RTX3080Ti GPU was used to train all mod-
els (16GB memory). The language model component was
implemented using the Transformers library from hugging-
face [31], and initialization was accomplished using pre-
trained checkpoints. Adam [32] optimizer was employed with
𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1𝑒−8, and a warm-up learning
rate of 2𝑒−6. The mention identification specific-tower has 2
Transformer encoder layers (𝑙 = 2), while the mention linking
specific-tower has 4 Transformer encoder layers (𝑘 = 4).



TABLE II: Performance on the GAP test dataset, F1, and bias
are used as the evaluation metrics.

Model Overall Masculine Feminine Bias

ProBERT[6] 89.70 90.80 88.60 98.00
GREP [6] 92.50 94.00 91.10 97.00

Coref-MTL (Ours) 92.72 92.65 92.45 99.76

All layers were regularized using a fixed dropout [33] rate
of 0.2. For each Transformer encoder, embedding size 𝑒 was
set as 1024, and the number of heads was set to 16. The batch
size is set as 32 while training. To evaluate the performance
of each model, the model was trained on the DPR training
set when evaluating DPR and Winogender and trained on the
GAP training set when evaluating GAP, the best checkpoints
were determined by the validation dataset if the validation set
is available and by the test dataset if the validation set is not
available. If the corresponding metrics (F1 or accuracy) are
not improved after 60 consecutive epochs, the training will be
stopped.

V. RESULTS

In this section, we first compare our full model with the
current SOTA models on the GAP, DPR, and Winogender
datasets, followed by a hyperparameter analysis. Next, we
added an ablation study to investigate how the model will
perform after the DWB and MTL mechanisms were removed.
Furthermore, we did an error analysis to discuss why our multi-
task learning model could improve performance on GTM-CR
datasets.

A. Overall Results

a) Results on GAP: Table II charts the results of our
model and baselines on GAP. As seen, our Coref-MTL
outperforms all the baseline models in terms of overall F1
and Bias. This improvement mainly attributes to the ability to
link feminine pronouns to the correct candidates (feminine F1
increased by 1.3% compared with GREP), therefore reducing
the overall bias.

b) Results on DPR and Winogender: Table III presents
the results of our models and the baselines on the
DPR test set and Winogender dataset. As seen, on
DPR, Coref-MTL’s performance is slightly below the
current SOTA model BERT_WIKICREM_ALL, but is
higher than BERT_WIKICREM_DPR. The major reason
for being lost to BERT_WIKICREM_ALL is because that
BERT_WIKICREM_ALL was re-trained on multiple corpora
(i.e., WIKICREM, GAP, and DPR) in a mention-aware way
(which was designed specifically for CR) and, more impor-
tantly, one of them, i.e., WIKICREM, is remarkably large
(approximately 2.4M samples). In contrast, our Coref-MTL
is fine-tuned on only DPR, which, for reference, contains
only 0.05% samples of WIKICREM. Additionally, Coref-MTL
wins BERT_WIKICREM_DPR, which was re-trained on both
WIKICREM and DPR.

TABLE III: Performance on the DPR and Winogender datasets.

Model DPR acc. Winogender acc.

BERT_WIKICREM_ALL [8] 84.80 76.70
BERT_WIKICREM_DPR [8] 80.00 82.10

Coref-MTL (Ours) 84.57 83.06

TABLE IV: Ablation study of removing dynamic weight
balancing (DWB) and multi-task learning (MTL) respectively.
Acc stands for accuracy. For GAP Bias, the closer to 100 the
better.

Model GAP F1 GAP Bias DPR acc. Winogender acc.

Coref-MTL 92.72 99.76 84.57 83.06

-DWB 92.35 99.74 84.31 80.35
-MTL 92.22 99.22 83.60 80.21

This suggests that modeling mention identification jointly
helps to train a CR model with way less data, which is not
only saving time but also is environmentally friendly (as we
trained our model with much fewer computing resources). On
Winogender, in line with the results on GAP, which also aims
at gender bias in CR, our Coref-MT performs very well and
defeats both baselines. Its success on GAP and Winogender
embodies that better modeling the locations of antecedents
(through modeling mention identification jointly) helps with
eliminating spurious correlations while training a co-reference
resolver. Additionally, by comparing the two baselines, in
addition to reducing biases, MTL, again, saves time and energy.

B. Ablation Study

To analyze the contribution of each component of our model,
we report on an ablation study by removing either DWB or
both DWB and MTL (which results in a single-task learning
(STL) model, henceforth Coref-STL).

Table IV records the results of the ablation study on the
three datasets. Generally, on all three datasets, removing any
components would scarify the performance. For example, on
GAP, the overall F1 score drops by 0.37% after removing
DWB, and further drops to 92.22% by further removing MTL.
Similar trends also happen in the rest two datasets. These
suggest that both MTL and a good strategy for balancing the
tasks during training play vital roles for CR. We discuss more
in what way DWB and MTL help CR in Section V-C.

Focusing the results on Winogender, we observe that the gain
of using MTL and DWB is significantly higher than that of the
other two datasets. Recall that Winogender is the only dataset
that has no training set which models cannot fine-tune on. One
explanation is that the capability of reducing biases of joint
modeling mention identification and linking using MTL and
DWB may come from its contribution to the generalizability
of the model (by eliminating spurious correlations).
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Fig. 3: (a) illustrates loss changes for Coref-MTL when training
on the DPR training set. (b) illustrates the weight changes when
training Coref-MTL. MI stands for mention identification task
while ML stands for mention linking task

C. The Effects of MTL and Dynamic Weighting

To better understand the effects of MTL and the DWB
mechanism, we print how the loss and weight of each task
change across time in Fig. 3. When the training begins, the
loss of both tasks drops dramatically, but since the mention
identification loss starts at a relatively low value, mention
identification loss approaches zero. Thus, subsequently, the
weight for mention identification decreases while the weight
for mention linking increases, making the training focus more
on mention linking. From this moment, a good mention
identification helps to train mention linking better and faster.
Along with the reduction of mention linking loss, the loss
of mention identification and mention linking increases and
decreases, respectively. After the two weights converge to be
balanced and steady, the two tasks are trained collaboratively
and further improve the performance of mention linking.

TABLE V: Error analysis on Winogender dataset based on
pronoun types, Male represents male pronouns (he, his, and
him), Female represents female pronouns (she and her), Gender
neural represents gender-neutral pronouns (they, them, and
their)

Model Masculine Feminine Gender-neutral Total

Coref-MTL 88 75 81 244
Coref-STL 86 117 84 287

D. Error Analysis

To understand better the behavior of our Coref-MTL model,
we analyze and compare the errors made by Coref-MTL and
Coref-STL on the Winogender dataset. In what follows, we
describe our observations.

First, we counted the errors that are related to masculine
(i.e., ‘he’, ‘his’ and ‘him’), feminine (i.e., ‘she’ and ‘her’), and
gender-natural (i.e., ‘they’, ‘them’ and ‘their’) pronouns made
by each model. The counts are reported in Table V. Consistent
with our evaluation experiments (see Section V-A) and the
ablation study (see Section V-B), compared to Coref-STL, the
contribution of MTL to the overall performance is that it makes
much less error on feminine pronouns. The errors made by
our Coref-MTL are almost uniformly distributed over the three
types.

Second, it has been pointed out that the use of gender-
neutral pronouns (e.g, they, for reducing gender bias) would
cause agreement mismatch problems [34]. For example, in
Winogender, there are many cases like the following:

(2) The clerk provided someone with paperwork to return
to them upon completion.

in which, the plural pronoun ‘them’ refers to a definite plural
noun phrase. Nonetheless, as we can see from Table V, it
appears that both Coref-MTL and Coref-STL work fine in these
mismatch cases. This embodies that neural CR models might
not resolve co-references by learning semantic constraints.

Third, the data in GTM-CR dataset is a form, where each
text is judged by a model twice: once for the link between the
pronoun and the first candidate antecedent and once for the
link with another antecedent. By looking into the distribution
of the incorrect predictions of the two models, we found that
Coref-STL is more inclined to predict incorrectly on both
two judges than Coref-MTL. Additionally, we also observed
that, among all incorrect predictions, Coref-STL is likely to
predict that there is no co-reference relation while the incorrect
predictions of Coref-MTL are rather uniformly distributed.
This said, maybe, for some inputs, Coref-STL gets stuck and
predicts randomly.

Last, regarding indefinite antecedents (i.e., ‘someone’), Coref-
MTL and Coref-STL have very similar behaviors, which
suggests MTL does not help in this respect.



VI. CONCLUSION

GTM-CR is an essential type of CR. Existing models only
focus on a mention-linking sub-task in GTM-CR exploiting the
fact that mentions are provided. In this paper, we demonstrated
that mention identification is still helpful for building a GTM
co-reference resolver and proposed a multi-task learning model
that jointly trains the mention identification and mention linking
tasks. This is achieved by assuming the mentions are not
known during mention identification and forcing the model to
identify them. Meanwhile, the learning of two different but
related tasks may share complementary dependent information.
The weights of the two tasks are adjusted dynamically during
the training process. This setting has achieved new SOTA
performance on two GTM style datasets (GAP and Winogender)
and comparative results on another dataset (DPR) without fine-
tuning on additional large corpora. As future work, we plan to
develop linguistics-inspired models [35], since CR is a field
with a solid theoretical foundation in linguistics. Incorporating
linguistic theories, such as donkey sentences [36], and pronoun-
dropping [37], may enhance the explainability and effectiveness
of neural network models.
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