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Abstract

Text representation in Chinese sentiment analysis is usu-
ally working at word or character level. In this paper, we
prove that radical-level processing could greatly improve sen-
timent classification performance. In particular, we propose
two types of Chinese radical-based hierarchical embeddings.
The embeddings incorporate not only semantics at radical and
character level, but also sentiment information. In the evalua-
tion of our embeddings, we conduct Chinese sentiment anal-
ysis at sentence level on four different datasets. Experimen-
tal results validate our assumption that radical-level seman-
tics and sentiments can contribute to sentence-level sentiment
classification and demonstrate the superiority of our embed-
dings over classic textual features and popular word and char-
acter embeddings.

Introduction
For every natural language processing (NLP) task, text rep-
resentation is always the first step. In English, words are seg-
mented by spaces and they are naturally taken as basic mor-
phemes in text representation. Then, word embeddings were
born based on distributed hypothesis.

Unlike English, whose fundamental morpheme is a com-
bination of characters, such as prefixes, words etc., the
fundamental morpheme of Chinese is radical, which is a
(graphic) component of Chinese characters. Each Chinese
character can contain up to five radicals. The radicals within
character have various relative positions. For instance, it
could be left-right (‘ 蛤 (toad) ’,‘ 秒 (second) ’), up-down
(‘岗 (hill) ’, ‘孬 (not good) ’), inside-out (‘国 (country) ’,
‘问 (ask) ’) etc.

The point of their existence is not only decorative but also
functional. Radicals have two main functions: pronunciation
and meaning. As the aim of this work is sentiment predic-
tion, we are more interested in the latter function. For exam-
ple, the radical ‘ 疒 ’ carries the meaning of disease. Any
Chinese character containing this radical is related with dis-
ease and, hence, tends to express negative sentiment, such
as ‘ 病 (illness) ’, ‘ 疯 (madness) ’, ‘ 瘫 (paralyzed) ’, etc.
In order to utilize this semantic and sentiment information
among radicals, we decide to map radicals to embeddings
(numeric representation at lower dimension).
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The reason why we chose embeddings rather than clas-
sic textual feature like ngram, POS, etc. is because the
embedding method is based on the distributed hypothesis,
which greatly explores the semantics and relies on token
sequences. Correspondingly, radicals alone may not carry
enough semantic and sentiment information. It is only when
they are placed in a certain order that their connection with
sentiment begins to reveal (Poria et al. 2017).

To the best of our knowledge, no sentiment-specific rad-
ical embeddings have ever been proposed before this work.
We firstly train a pure radical embedding named Rsemantic,
hoping to capture semantics between radicals. Then, we
train a sentiment-specific radical embedding and integrate
it with the Rsemantic to form a radical embedding termed
Rsentic, which encodes both semantic and sentiment informa-
tion (Cambria et al. 2016; Poria et al. 2016). With the above,
we integrate the two obtained radical embeddings with Chi-
nese character embedding to form the radical-based hierar-
chical embedding, termed Hsemantic and Hsentic, respectively.

The rest of the paper is organized as follows: the first sec-
tion illustrates general word embedding methods and Chi-
nese radical embedding; the second section presents a de-
tailed analysis of Chinese characters and radicals via de-
composition; the third section introduces our hierarchical
embedding models; the fourth section demonstrates experi-
mental evaluations of the proposed methods; finally, the fifth
section concludes the paper and suggests a few future im-
provements.

Related Works
General Embedding Methods
One-hot representation is the initial numeric word represen-
tation method in NLP. However, it usually leads to a prob-
lem of high dimensionality and sparsity. To solve this prob-
lem, distributed representation or word embedding was pro-
posed (Turian, Ratinov, and Bengio 2010). Word embedding
is a representation which maps words into low dimensional
vectors of real numbers by using neural networks. The key
idea is based on distributional hypothesis so as to model how
to represent context words and the relation between context
words and target word. Thus, language model is a natural so-
lution. Bengio et al. (Bengio et al. 2003) introduced neural
network language model (NNLM) in 2001.
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Instead of using counts to model ngram language model,
they built a neural network. Word embeddings are the
byproducts of building the language model. I n 2007, Mnih
and Hinton proposed a log-bilinear language model (LBL)
(Mnih and Hinton 2007) which is built upon NNLM and
later upgraded to hierarchical LBL (HLBL) (Mnih and
Hinton 2009) and inverse vector LBL (ivLBL) (Mnih and
Kavukcuoglu 2013). Instead of modeling ngram model like
the above, Mikolov et al. (Mikolov et al. 2010) proposed a
model based on recurrent neural networks to directly esti-
mate the probability of target words given contexts.

Since the introduction of the C&W model (Collobert and
Weston 2008) in 2008, people started to design models
whose objectives are no longer the language model but the
word embedding itself. C&W places the target word in the
input layer, and output only one node which denotes the like-
lihood of the input words’ sequence. Later in 2013, Mikolov
et al. (Mikolov et al. 2013a) introduced the continuous bag-
of-words model (CBOW), which places context words in the
input layer and target word in the output layer, and Skip-
gram model, which swaps the input and output in CBOW.
They also proposed negative sampling which greatly speeds
up training.

Chinese Radical Embedding
(Chen et al. 2015) started to decompose Chinese words
into characters and proposed a character-enhanced word em-
bedding model (CWE). (Sun et al. 2014) started decom-
pose Chinese characters to radicals and developed a radical-
enhanced Chinese character embedding. However, they only
selected one radical from each character to enhance the em-
bedding. (Shi et al. 2015) began to train pure radical-based
embedding for short-text categorization, Chinese word seg-
mentation and web search ranking. Yin et al. extend the pure
radical embedding in (Mikolov et al. 2013b) by introducing
multi-granularity Chinese word embeddings. However, none
of the above embeddings have considered incorporating sen-
timent information and apply the radical embeddings to the
task of sentiment classification (Cambria 2016). To bridge
such a gap, in this paper we develop radical-based hierarchi-
cal Chinese embeddings specifically for sentiment analysis.

Decomposition of Chinese Characters
Chinese written language dates back to 1200-1050 BC from
the Shang dynasty. It originates from an Oracle bone script,
which was iconic symbols engraved on ‘dragon bones’.
From this time on was the first stage of Chinese written
language development, Chinese written language was com-
pletely pictogram. However, different areas within China
maintained different set of writing systems.

The second stage started from the unification in Qin dy-
nasty. Seal script, which was an abstraction of the pictogram,
became dominating over the empire from then on. Another
apparent characteristic during this time was new Chinese
characters were invented by combinations of existing and
evolved characters. Under the mixed influence of foreign
culture, development of science and technology and the evo-
lution of social life, a great deal of Chinese characters were
created during this time.

One feature of these characters is that they are no longer
pictograms, but they are decomposable. Each of the decom-
posed elements (or radicals) carries a certain function. For
instance, ‘声旁 (phoneme) ’ labels the pronunciation of this
character and ‘ 形旁 (morpheme) ’ symbolizes the mean-
ing of this character. Further details will be discussed in the
following section.

The third stage occurred in the middle of the last cen-
tury when the central government started advocating simpli-
fied Chinese. The old characters were simplified by reducing
certain strokes within the character. The simplified Chinese
characters dominate over mainland China ever since. Only
Hong Kong, Taiwan and Macau retain the traditional Chi-
nese characters.

Chinese Radicals
Due to the second stage of the above discussion, all modern
Chinese character can be decomposed to radicals. Radicals
are graphical components of characters. Some of the radicals
in the character acts like phonemes. For example, the radical
‘ 丙 ’ appears in the right half of character ‘ 柄 (handle) ’
and symbolizes the pronunciation of this character. People
even sometimes can correctly predict the pronunciation of a
Chinese character which he or she does not know by recog-
nizing certain radicals inside.

Some other radicals in the character act like morphemes
that carry the semantic meaning of the character. For exam-
ple, ‘ 木 (wood) ’ itself is both a character and a radical. It
means wood. A character ‘ 林 (jungle) ’ which is made up
of two ‘木 ’ means jungle. A character ‘森 (forest) ’ which
is made up of three ‘木 ’ means forest. In another example,
radical ‘父 ’ is a formal form of word ‘father’. It appears
on top of character ‘ 爸 ’ and this character means father
exactly, but less formal, like ‘dad’ in English.

Moreover, the meaning of a character could be concluded
from a integration of its radicals. A good example given by
(Shi et al. 2015) is character ‘ 朝 ’. This character is made
up of ‘十 ’, ‘日 ’, ‘十 ’ and ‘月 ’ four radicals. These four
radicals are evolved from pictograms. ‘十 ’ stands for grass.
‘ 日 ’ stands for the sun. ‘ 月 ’ stands for the moon. The
integration of these four means the sun replaces the moon on
the grass land, which is essentially the word ‘morning’. Not
surprisingly, the meaning of this character ‘ 朝 ’ is indeed
morning. This could continue. If the radical ‘ 氵 ’ which
means water was attached to the left of character ‘朝 ’, then
it is another character ‘潮 ’. Literally, this character means
the water coming up in the morning. In fact, this ‘潮 ’ means
tide, which matches its literal meaning.

To conclude, radicals entail more information than char-
acters alone. Character-level research can only study the se-
mantics expressed by characters. However, deeper semantic
information and clues could be found at radical-level anal-
ysis (Peng, Cambria, and Hussain 2017). This motivates us
to apply deep learning techniques to extract this informa-
tion. Prior to that, as we discussed in the related works, most
works are in English language. Since English is very differ-
ent from Chinese in many aspects, especially in decomposi-
tion, we conduct a comparison in Table 1.
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English Chinese
Hierarchy Example Hierarchy Example
Character a, b, ... , y, z Radical 艹,宀,彳...

Word sometimes, Naı̈ve Character
(Single-character word) 资,词,不

Phrase pay debt, good luck Multi-character word
(Phrase) 蛤蟆,一颗赛艇

Sentence Today is a good day. Sentence 很惭愧,只做了一点微小的工作。

Table 1: Comparison between English and Chinese in composition

As we could see from Table 1, character level is the mini-
mum composition level in English. However, the equivalent
level in Chinese is one level down than character, which is
radical level. Unlike English, semantics are hidden within
each character in Chinese. Secondly, Chinese word can be
made up of single character or multi-character. Moreover,
there is no space between words in Chinese sentence. All
the above observations indicate that normal English word
embedding can not be directly applied to Chinese. Extra pro-
cessing like word segmentation, which will introduce errors,
need to be conducted first.

Furthermore, if a new word or even a new character is out-
of-vocabulary (OOV), normal word-level or character-level
have no reasonable solution except giving a random vector.
In order to address the above issues and also to extract the
semantics within Chinese characters, a radical-based hierar-
chical Chinese embedding method is proposed in this paper.

Hierarchical Chinese Embedding
In this section, we firstly introduce the deep neural network
used in training our hierarchical embeddings. Then, we dis-
cuss our radical embedding. Finally, we present the hierar-
chical embedding model.

Skip-Gram Model
We employ the Skip-gram neural embedding model pro-
posed by (Mikolov et al. 2013a) together with the negative
sampling optimization technique in (Yin et al. 2016). In this
section, we briefly summarize the training objective and the
model. Skip-gram model can be understood as a one-word
context version CBOW model (Mikolov et al. 2013a) work-
ing over C panels, where C is the number of context words of
target word. Opposite to CBOW model, the target word is at
input layer whereas context words are at the output layer. By
generating the most probable context words, the weight ma-
trix can be trained and embedding vectors can be extracted.

Specifically, it is a one hidden layer neural network (Rong
2014). For each input word, it was denoted with an input
vector Vwi. The hidden layer is defined as:

h = V wi
T

where h is the hidden layer, wi is the ith row of input-hidden
weight matrix W. At the output layer, C multinomial distri-
butions were output, given each of the output is computed
with the hidden-output matrix as:

p(wc,j = wO,c|wi) = yc,j =
exp(uc,j)∑V
j′=1 exp(uj′)

where wc,j is the jth word on the cth panel of the output
layer; wO,c is the cth word in the output context words; wi
is the input word vector; yc,j is the output of the jth unit on
the cth panel of the output layer; uc,j is the net input of the
jth unit on the cth panel of the output layer. Furthermore the
objective function is to maximize the formula below:

∑

(w,c)∈D

∑

wj∈c

logP(w|wj)

where wj is the jth word in contexts c, given the target
word w.

Radical-Based Embedding
Traditional radical researches like (Sun et al. 2014) only take
out one radical from each character to improve the Chinese
character embedding. Moreover, to the best of our knowl-
edge, no sentiment-specific Chinese radical embedding has
ever been proposed yet. Thus, we propose the following two
radical embeddings for Chinese sentiment analysis.

Inspired by the facts that Chinese characters can be de-
composed to radicals and these radicals carry semantic
meanings, we directly break characters into radicals and
concatenate them in the order from left to right. We treat
the radicals as the fundamental units in texts. Specifically,
for any sentence we decompose each character into its radi-
cals and concatenate these radicals from different characters
as a new radical string. Then we did the above preprocessing
to all sentences in the corpus. Finally, a radical-level embed-
ding model is built on this radical corpus using skip-gram
model. We call this type of radical embedding as semantic
radical embedding (Rsemantic), because the major information
extracted from this type of corpus is semantic between rad-
icals. In order to extract the sentiment information between
radicals, we developed the second type radical embedding
which is sentic radical embedding (Rsentic).

After studying the radicals, we have found that radi-
cals themselves do not convey much sentiment information.
What carries the sentiment information is the sequence or
combination of different radicals. Thus, we take advantages
of existing sentiment lexicons as our resource to study the
sequence. Like we did before, we collect all the sentiment
words from two different popular Chinese sentiment lex-
icons, Hownet (Dong and Dong 2006) and NTUSD (Ku,
Liang, and Chen 2006) and break them into radicals. Then
we employ skip-gram model to learn the sentiment related
radical embedding (Rsentiment).

349



Figure 1: Performance on four datasets at different fusion
parameter

Since we want the radical embedding have both semantic
information and sentiment information, we therefore con-
duct a fusion process of the previous two embeddings. The
fusion formula is given as:

Rsentic = (1− ω) · Rsemantic + ω · Rsentiment

where Rsentic is the resulting radical embedding that inte-
grates both semantic and sentiment information; Rsemantic is
the semantic embedding and Rsentiment is the sentiment em-
bedding; w is the weight of the fusion. If w equals to 0, then
the Rsentic is pure semantic embedding. If w equals to 1, then
the Rsentic is pure sentiment embedding.

In order to find the best fusion parameter, we conduct tests
on separated development subsets of four real Chinese sen-
timent datasets, namely: Chn2000, It168, Chinese Treebank
(Li et al. 2014) and Weibo dataset (details in next section).
We train a convolutional neural network (CNN) to classify
the sentiment polarity of sentences in the datasets. The fea-
tures we use are the sentic radical embedding, but we apply
the features at different fusion parameter value. The classifi-
cation accuracies of different fusion values on four datasets
are shown in Fig. 1. As the heuristics from Fig. 1 suggest,
we take the fusion parameter of value 0.7 which performs
best.

Hierarchical Embedding
Hierarchical embedding is based on the assumption that dif-
ferent level of embeddings will capture different level of se-
mantics. According to the hierarchy of Chinese in Table 1,
we have already explored the semantics as well as sentiment
at radical level. The next higher level is character level, fol-
lowed by word level (multi-character word). However, we
only select character-level embedding (Csemantic) to be inte-
grated in our hierarchical model because characters are natu-
rally segmented by Unicode (no pre-processing or segmen-
tation needed). Although existing Chinese word segmenter
could achieve certain accuracy, it can still introduce segmen-
tation errors and thus affect the performance of word em-
bedding. In the hierarchical model, we also use skip-gram
model to train independent Chinese character embeddings.
Then we fuse the character embeddings with either the se-
mantic radical embedding (Rsemantic) and the sentic radical

embedding (Rsentic) to form two types of hierarchical embed-
dings: Hsemantic and Hsentic, respectively. The fusion formula
is the same with that in radical embeddings, except that with
a different fusion parameter value of 0.5 based on our de-
velopment tests. A graphical illustration of the hierarchical
model is depicted in Fig. 2.

Experimental Evaluation
We evaluate our proposed method on Chinese sentence-level
sentiment classification task in this section. Firstly, we intro-
duce the datasets used for evaluations. Then, we demonstrate
the experimental settings. Lastly, we present the experimen-
tal results and provide an interpretation for them.

Dataset
There are four sentence-level Chinese sentiment datasets
used in our experiments. The first is Weibo dataset
(Weibo) which is a collection of Chinese micro blogs from
NLP&CC, with about 2000 blogs for either positive or
negative category. The second dataset is a Chinese Tree
Bank (CTB) introduced by (Li et al. 2014). For each senti-
ment category, we have obtained over 19000 sentences af-
ter mapping their sentiment values to polarity. The third
dataset Chn2000, contains about 2000 hotel reviews from
customers1. The last dataset IT168, have around 1000 dig-
ital product reviews2. All the above datasets are labeled as
positive or negative at sentence level. In order to prevent
overfitting, we conduct 5-fold cross validations on all our
experiments.

Experimental Setting
As embedding vectors are usually used as features in clas-
sification tasks, we compare our proposed embeddings with
three baseline features: character-bigram, word embeddings
and character embeddings. In choosing the classification
model, we take advantage of state-of-the-art machine learn-
ing toolbox scikit-learn (Pedregosa, Varoquaux, and et al.
2011).

Figure 2: Framework of hierarchical embedding model

1http://searchforum.org.cn/tansongbo/corpus
2http://product.it168.com
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Bigram(%) Rsemantic(%) Rsentic(%) Hsemantic(%) Hsentic(%)
P R F1 P R F1 P R F1 P R F1 P R F1

Weibo

LSVC 71.65 71.60 71.58 66.77 66.64 66.57 67.46 67.35 67.30 71.02 70.94 70.91 72.74 72.66 72.63
LR 74.38 74.32 74.30 65.51 65.28 65.15 65.29 65.12 65.02 70.39 70.31 70.27 72.47 72.37 72.33
NB 63.84 63.01 62.15 57.60 55.74 52.90 58.67 56.73 54.21 59.16 55.97 51.74 60.42 57.63 54.58

MLP 72.54 72.50 72.48 67.02 66.93 66.89 67.31 67.25 67.22 70.53 70.49 70.47 73.03 73.00 72.99
CNN - - - 75.27 73.71 73.19 75.44 75.41 75.38 73.88 72.91 72.55 75.82 75.60 75.58

CTB

LSVC 76.45 76.32 76.29 67.22 67.19 67.17 66.34 66.28 66.25 68.57 68.55 68.54 69.15 69.11 69.10
LR 78.12 77.99 77.97 65.29 65.25 65.22 64.91 64.85 64.81 68.25 68.22 68.21 69.24 69.20 69.19
NB 66.60 62.80 60.46 60.99 60.43 59.86 60.41 59.59 58.64 61.24 60.04 58.90 63.52 62.50 61.74

MLP 76.13 76.01 75.98 67.71 67.68 67.66 66.92 66.79 66.72 70.98 70.96 70.95 70.01 69.78 69.69
CNN - - - 77.68 77.67 77.65 79.59 79.42 79.42 80.77 80.77 80.76 80.79 80.69 80.65

Chn2000

LSVC 82.43 82.21 82.22 70.64 67.32 67.12 66.00 61.26 59.70 73.73 72.74 72.87 74.57 73.61 73.71
LR 83.22 82.68 82.76 69.99 55.50 48.04 68.50 51.34 39.51 70.62 67.65 67.50 72.38 68.24 67.86
NB 67.06 66.68 65.68 67.23 66.93 66.54 63.34 63.36 62.95 64.93 64.44 64.33 67.92 67.75 67.59

MLP 80.71 80.42 80.47 69.00 68.57 68.59 67.47 66.85 66.83 74.00 73.63 73.62 73.23 73.06 73.05
CNN - - - 79.96 81.83 80.14 82.01 83.50 82.47 87.45 86.71 87.02 86.06 87.07 86.12

IT168

LSVC 81.95 82.06 81.93 72.53 70.23 70.18 72.72 69.85 69.71 79.55 79.00 79.11 80.77 80.30 80.44
LR 83.86 83.72 83.74 71.40 60.82 57.32 73.58 56.10 48.47 77.58 75.46 75.71 79.46 76.80 77.09
NB 63.84 63.01 62.15 64.73 63.62 63.45 63.50 62.62 62.46 67.75 66.21 66.12 71.90 70.09 70.16

MLP 83.35 83.35 83.29 71.83 71.04 71.08 73.86 72.71 72.80 78.10 77.70 77.68 79.48 79.31 79.27
CNN - - - 84.38 84.33 84.33 83.95 83.87 83.83 85.39 84.50 84.07 83.75 83.43 83.15

Table 2: Comparison with traditional feature on four datasets

W2V(%) C2V(%) Rsemantic(%) Rsentic(%) Hsemantic(%) Hsentic(%)
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Weibo

LSVC 74.46 74.38 74.35 74.12 73.98 73.94 66.77 66.64 66.57 67.46 67.35 67.30 71.02 70.94 70.91 72.74 72.66 72.63
LR 73.91 73.72 73.66 73.60 73.43 73.37 65.51 65.28 65.15 65.29 65.12 65.02 70.39 70.31 70.27 72.47 72.37 72.33
NB 60.63 57.97 55.15 61.04 58.08 55.02 57.60 55.74 52.90 58.67 56.73 54.21 59.16 55.97 51.74 60.42 57.63 54.58

MLP 73.68 73.58 73.55 74.49 74.43 74.41 67.02 66.93 66.89 67.31 67.25 67.22 70.53 70.49 70.47 73.03 73.00 72.99
CNN 72.57 72.55 72.52 75.15 75.11 75.11 75.27 73.71 73.19 75.44 75.41 75.38 73.88 72.91 72.55 75.82 75.60 75.58

CTB

LSVC 71.15 71.12 71.11 68.92 68.90 68.90 67.22 67.19 67.17 66.34 66.28 66.25 68.57 68.55 68.54 69.15 69.11 69.10
LR 70.87 70.84 70.83 68.50 68.48 68.47 65.29 65.25 65.22 64.91 64.85 64.81 68.25 68.22 68.21 69.24 69.20 69.19
NB 67.56 67.51 67.49 63.49 62.61 61.96 60.99 60.43 59.86 60.41 59.59 58.64 61.24 60.04 58.90 63.52 62.50 61.74

MLP 71.17 71.16 71.15 69.78 69.54 69.44 67.71 67.68 67.66 66.92 66.79 66.72 70.98 70.96 70.95 70.01 69.78 69.69
CNN 78.56 78.56 78.56 78.56 77.93 77.75 77.68 77.67 77.65 79.59 79.42 79.42 80.77 80.77 80.76 80.79 80.69 80.65

Chn2000

LSVC 81.05 79.77 80.05 72.04 70.73 70.85 70.64 67.32 67.12 66.00 61.26 59.70 73.73 72.74 72.87 74.57 73.61 73.71
LR 78.87 74.74 74.96 70.32 64.29 63.00 69.99 55.50 48.04 68.50 51.34 39.51 70.62 67.65 67.50 72.38 68.24 67.86
NB 72.25 71.25 71.34 69.62 69.55 69.44 67.23 66.93 66.54 63.34 63.36 62.95 64.93 64.44 64.33 67.92 67.75 67.59

MLP 79.53 79.18 79.24 70.84 70.65 70.67 69.00 68.57 68.59 67.47 66.85 66.83 74.00 73.63 73.62 73.23 73.06 73.05
CNN 82.50 82.50 82.50 85.77 86.21 85.95 79.96 81.83 80.14 82.01 83.50 82.47 87.45 86.71 87.02 86.06 87.07 86.12

IT168

LSVC 82.43 81.15 81.46 78.68 77.80 78.00 72.53 70.23 70.18 72.72 69.85 69.71 79.55 79.00 79.11 80.77 80.30 80.44
LR 82.11 77.73 78.11 77.79 72.69 72.67 71.40 60.82 57.32 73.58 56.10 48.47 77.58 75.46 75.71 79.46 76.80 77.09
NB 60.63 57.97 55.15 71.12 69.78 69.89 64.73 63.62 63.45 63.50 62.62 62.46 67.75 66.21 66.12 71.90 70.09 70.16

MLP 79.93 79.65 79.70 78.52 78.36 78.35 71.83 71.04 71.08 73.86 72.71 72.80 78.10 77.70 77.68 79.48 79.31 79.27
CNN 82.23 81.50 81.40 82.69 82.63 82.65 84.38 84.33 84.33 83.95 83.87 83.83 85.39 84.50 84.07 83.75 83.43 83.15

Table 3: Comparison with embedding features on four datasets

Four classic machine learning classifiers were applied in
our experiments: LinearSVC (LSVC), logistic regression
(LR), Naı̈ve Bayes classifier with a gaussian kernel (NB)
and multi-layer perceptron (MLP) classifier. In evaluating
the embedding features on these classic machine learning
classifiers, an average embedding vector is computed to rep-
resent each sentence, given certain granularity of the sen-
tence cells. For instance, if a sentence is broken into a string
of radicals, then the radical embedding vector of this sen-
tence is the arithmetic mean (average) of its component rad-
ical embeddings. Furthermore, we also apply CNN in the
same way proposed in (Kim 2014), except that we reduce
the embedding vector dimension to 128.

Results and Discussion
Table 2 compared bigram feature with semantic radical em-
bedding, sentic radical embedding, semantic hierarchical
embedding and sentic hierarchical embedding using five

classification models on four different datasets. Similarly,
Table 3 also compared the proposed embedding features
with word2vec and character2vec features. In all of the four
datasets, our proposed features working with CNN classi-
fier achieved the best performance. In Weibo dataset, sentic
hierarchical embedding performed slightly better than char-
acter2vec, with less than 1% improvement. However in CTB
and Chn2000 datasets, semantic hierarchical beat three base-
line features by 2∼6%. In the IT168 dataset, the sentic hier-
archical embedding was second to bigram feature in MLP
model.

This result was not surprising because bigram feature can
be understood as a sliding window with size of 2. Using the
multi-layer perceptron classifier, the performance could be
parallel to that of a CNN classifier. Even though, the other
three proposed features working with CNN classifier beat all
baseline features with any classifier. In addition to the above
observations, we also obtained the following analysis.
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Firstly, deep learning classifiers worked best on embed-
ding features. The performance of all embedding features
reduced sharply when applying on classic classifiers. Nev-
ertheless, even if the performance of our proposed features
in classic machine learning classifiers dropped greatly com-
pared with CNN, they still paralleled or beat other baseline
features. Moreover, the performance of the proposed fea-
tures were never fine-tuned. Better performance can be ex-
pected after future fine tuning.

Secondly, the proposed embedding features do unveil cer-
tain information that can promote sentence-level sentiment
analysis. Although we were not certain where exactly the
extra information located, because the performance of our
four proposed embedding features were not robust (no sin-
gle one feature achieved the best performance over all four
datasets), we proved radical-level embedding contribute to
Chinese sentiment analysis.

Conclusion
In this paper, we proposed Chinese radical-based hierarchi-
cal embeddings particularly designed for sentiment analysis.
Four types of radical-based embeddings were introduced:
radical semantic embedding, radical sentic embedding, hier-
archical semantic embedding and hierarchical sentic embed-
ding. By conducting sentence-level sentiment classification
experiments on four Chinese datasets, we proved the pro-
posed embeddings outperform state-of-the-art textual and
embedding features. Most importantly, our study presents
the first piece of evidence that Chinese radical-level and
hierarchical-level embeddings can improve the Chinese sen-
timent analysis.

Meanwhile, this paper also suggests a few directions of
future work. Firstly, as we only fused different embeddings
at feature level in the paper: one possible improvement could
be fusions at model level, where we will integrate the clas-
sification results from different embeddings. Secondly, we
would like to make a deeper analysis of Chinese radicals. In
this paper, we treat each radical in a character with equal im-
portance which is not ideal. As radicals in a same character
have different functions, which results to different contribu-
tions to sentiment, a weighted radical analysis within each
character is expected to further improve performance.
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