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Abstract

Background Big social data analysis is the area of research
focusing on collecting, examining, and processing large
multi-modal and multi-source datasets in order to discover
patterns/correlations and extract information from the
Social Web. This is usually accomplished through the use
of supervised and unsupervised machine learning algo-
rithms that learn from the available data. However, these
are usually highly computationally expensive, either in the
training or in the prediction phase, as they are often not
able to handle current data volumes. Parallel approaches
have been proposed in order to boost processing speeds,
but this clearly requires technologies that support dis-
tributed computations.

Methods Extreme learning machines (ELMs) are an
emerging learning paradigm, presenting an efficient unified
solution to generalized feed-forward neural networks. ELM
offers significant advantages such as fast learning speed,
ease of implementation, and minimal human intervention.
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However, ELM cannot be easily parallelized, due to the
presence of a pseudo-inverse calculation. Therefore, this
paper aims to find a reliable method to realize a parallel
implementation of ELM that can be applied to large
datasets typical of Big Data problems with the employment
of the most recent technology for parallel in-memory
computation, i.e., Spark, designed to efficiently deal with
iterative procedures that recursively perform operations
over the same data. Moreover, this paper shows how to
take advantage of the most recent advances in statistical
learning theory (SLT) in order to address the issue of
selecting ELM hyperparameters that give the best gener-
alization performance. This involves assessing the perfor-
mance of such algorithms (i.e., resampling methods and in-
sample methods) by exploiting the most recent results in
SLT and adapting them to the Big Data framework. The
proposed approach has been tested on two affective ana-
logical reasoning datasets. Affective analogical reasoning
can be defined as the intrinsically human capacity to
interpret the cognitive and affective information associated
with natural language. In particular, we employed two
benchmarks, each one composed by 21,743 common-sense
concepts; each concept is represented according to two
models of a semantic network in which common-sense
concepts are linked to a hierarchy of affective domain
labels.

Results The labeled data have been split into two sets: The
first 20,000 samples have been used for building the model
with the ELM with the different SLT strategies, while the
rest of the labeled samples, numbering 1743, have been
kept apart as reference set in order to test the performance
of the learned model. The splitting process has been
repeated 30 times in order to obtain statistically relevant
results. We ran the experiments through the use of the
Google Cloud Platform, in particular, the Google Compute
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Engine. We employed the Google Compute Engine Plat-
form with NM = 4 machines with two cores and 1.8 GB of
RAM (machine type nl-highcpu-2) and an HDD of 30 GB
equipped with Spark. Results on the affective dataset both
show the effectiveness of the proposed parallel approach
and underline the most suitable SLT strategies for the
specific Big Data problem.

Conclusion In this paper we showed how to build an ELM
model with a novel scalable approach and to carefully
assess the performance, with the use of the most recent
results from SLT, for a sentiment analysis problem. Thanks
to recent technologies and methods, the computational
requirements of these methods have been improved to
allow for the scaling to large datasets, which are typical of
Big Data applications.

Keywords Analogical reasoning - Sentiment analysis -
Semi-supervised learning - Classification - Model
selection - Extreme learning machines - Vapnik—
Chervonenkis theory - Rademacher complexity -
Algorithmic stability

Introduction

The advent of social networks, web communities, blogs,
Wikipedia, and other online collaborative media has deeply
changed the ways people express their opinions and sen-
timents. A growing amount of content and ideas are con-
tinuously expressed by the millions of people connected to
the World Wide Web. As a major consequence, the dis-
tillation of knowledge from this huge quantity of unstruc-
tured information can be a key tool for marketers who want
to create a brand or product image and identity in the minds
of their customers. Such a scenario has led to the emerging
fields of opinion mining and sentiment analysis [1-4],
which deal with information retrieval and knowledge dis-
covery from text using data mining and natural language
processing (NLP) techniques [5-8]. However, mining
opinions and sentiments from natural language is an
extremely difficult task as it involves a deep and broad
understanding of the explicit and implicit, regular and
irregular, syntactical and semantic rules proper of a
language.

Sentic computing [9] tackles these crucial issues by
exploiting affective common-sense reasoning, i.e., the
intrinsically human capacity to interpret cognitive and
affective information associated with natural language,
and thus differs from standard statistical approaches to big
social data analysis. Common-sense computing techniques
are applied in different contexts (including multi-modality
[10], handwriting recognition [11], e-health [12], and
more) to bridge the semantic gap between word-level

natural language data and the concept-level opinions
conveyed by these. To achieve this goal, the sentic
computing framework takes advantage of AffectNet [13],
a semantic network in which common-sense concepts are
linked to a hierarchy of affective domain labels. In par-
ticular, the vector space representation of one such
semantic network, termed AffectiveSpace [14], enables
affective analogical reasoning on natural language
concepts.

Current research shows that the emerging field of big
social data analysis [15-18] can take advantage of induc-
tive learning systems to support emotion recognition in
natural language text. In this context, every common-sense
concept is represented according to AffectiveSpace and
defined by four affective dimensions [19]: Pleasantness,
Attention, Sensitivity, and Aptitude. This representation
leads to a further polarity detection task. The current
emotion recognition problem is complicated by the fact
that labeling all the common-sense concepts of Affec-
tiveSpace is often difficult, expensive, and time-consum-
ing. Therefore, affective dimensions labeling is only
available for a set of concepts. The need to properly tackle
these issues leads to the use of a semi-supervised classifier.
Eventually, a semi-supervised version of the extreme
learning machine (ELM) framework [20-23] is adopted.

The interest in semi-supervised learning [4, 24-26] has
recently increased, especially because application domains
exist (e.g., text mining, natural language processing, image
and video retrieval, bioinformatics). In this context, semi-
supervised learning can be formalized as a supervised
learning problem biased by an unsupervised reference
solution. First, a general biased-regularization scheme that
encompasses the biased version of ELM is introduced.
Then, a semi-supervised learning model based on the
biased-regularization [27] scheme follows a two-step pro-
cedure. In the first step, an unsupervised clustering of the
whole dataset (including both labeled and unlabeled data)
obtains a reference solution. As a result, the eventual semi-
supervised classification framework can derive a reference
function from any clustering algorithm, thus providing
remarkable flexibility. In the second step, the clustering
outcomes drive the learning process in a biased-regular-
ization ELM to acquire the class information provided by
labels. The ultimate result is that the overall learned
function exploits both labeled and unlabeled data. The
integrated framework applies to both linear and nonlinear
data distributions: In the former, one works under a cluster
assumption on data; in the latter, one works under a
manifold hypothesis [28].

In this paper, we want to address the problem of
assessing the performance of a predictive model, i.e., the
semi-supervised version of ELM, and quantify its uncer-
tainty. Similar problems have been addressed in the field of
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statistical inference since the last century [29]. The now
classic approach of parametric statistics identifies a family
of models (e.g., linear functions) and a noise assumption
(e.g., Gaussian). Given some data, it easily provides an
assessment of the performance of the fitted model, along
with a quantification of the uncertainty or, in modern terms,
an estimation of the generalization error and the related
confidence interval'. On the contrary, data-driven models
exploit nonparametric inference, where it is expected that
an effective model would stem out directly from the data,
without any assumption on the model family nor any other
information that is external to the dataset itself [31, 32].

Statistical learning theory (SLT) tries to find necessary
and sufficient conditions for nonparametric inference to
build predictive models from data [33-35] or, using the
language of SLT, learn an optimal model from data. The
main SLT results have been obtained by deriving
nonasymptotic bounds on the generalization error of a
model or, to be more precise, upper bounds on the excess
risk between the optimal predictor and the learned model,
as a function of the possibly infinite family of models and
the number of available samples [36]. For a long time, SLT
has been considered only a theoretical, albeit very sound
and deep, statistical framework, without any real applica-
bility to practical problems [37]. It was only in the last
decade, after important advances in this field [38], that SLT
has been shown to be able to provide practical answers, at
least when targeting the inference of data-driven models
for classification purposes [39, 40].

This paper shows how to exploit unlabeled samples in
the usual semi-supervised learning context so as to tune
and assess the performance of a learning algorithm, with
particular reference to the ELM applied to an affective
analogical reasoning problem. We review all most recent
methodologies of model selection (MS) and error estima-
tion (EE) that can be applied to the ELM, as well as how
these methodologies can take advantage of unlabeled
samples. In brief, among the several methods proposed in
the literature for MS and EE, we identify two main cate-
gories: out-of-sample and in-sample methods [40]. The first
works well in many situations and allows the application of
simple statistical techniques in order to estimate quantities
of interest by splitting data in different sets, each for a
different purpose (training, validation, and test). Some
examples of out-of-sample methods are the well-known
holdout (HO) and k-fold cross-validation (KCV) [41],
leave-one-out (LOQO), and bootstrap [42]. In contrast, the
in-sample methods exploit the whole set of available data

! In this paper, we deal with a frequentist approach, which derives
confidence intervals for quantities of interest, but the credible
intervals of the Bayesian approach can be addressed equally well in
the parametric setting [30].
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for training the model, assessing its performance and
estimating its generalization error, thanks to the application
of rigorous statistical procedures. We describe how in-
sample methods can be further divided into two subgroups:
the hypothesis space-based methods and the algorithm-
based methods [43]. The first subgroup requires knowledge
of the hypothesis space from which the algorithm chooses
the model. Some examples of these methods are the Vap-
nik—Chervonenkis (VC) theory [36, 44], (local) Rade-
macher complexity (RC) theory [38, 45-48], and PAC
Bayes theory [39, 49-52]. The second subgroup of methods
does not require advance knowledge of the hypothesis
space, instead just relying on application of the algorithm
on a series of modified training sets. Some examples are
the compression bound [53, 54] and algorithmic stability
theory (AS) [43, 55, 56]. We also mention the distinctions
between the frequentist and Bayesian approaches, although
some approaches combine aspects from these two [57].

Semi-supervised Binary Classification

Before getting into the discussion proper, let us recall some
common preliminary definitions [36, 55]. Let us consider a
set of labeled samples 2, = {(x1,%1),-.., (Xn,¥u)} =
{z1,...,2,} and another set of unlabeled ones Z,, =
{Xnt1, - Xnin, } drawn ii.d., according to an unknown
probability distribution u over the cartesian product
between the input space 2 C R? and the output space % =
{—1,+1} defined as & = Z x %. Let us also consider a
function f € # where f :  — % = R. The error of f in
approximating p is measured with reference to some [0, 1]-
bounded loss function £ : # x » — [0, 1]. The risk of f can
be then defined as such:

L(f) = E{{(f,2)}- (1)

Since p is unknown, L(f) cannot be computed though we
can compute its empirical estimators. Before defining

them, let us introduce two modified training sets @y and

', where the ith element is respectively removed or
replaced by another sample z; sampled i.i.d. from p:
92’ {2y i1, Zit e e )
ol / (2)
Jn : {Zlv s Zi—15 % ity - - 'azn}-

~\i

It f=Adaus,r [ =955 » ad f =
A (4 g, are chosen form of functions 7, according
to some criteria, or algorithm, .o/, where # is a set of
hyperparameters that must be tuned, and based respectively
on 2,U%,, 2\U%,, and %' UD, (%, can be
exploited or not based on .o/), we can define the empirical
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risk of a function f € # 4 and the LOO risk of the algo-
rithm o7 [55] as:

Lewf) =2 >~ £0/,2),

= n (3)

~ 1
fEF, LA y) = ;Z U g, a2 )
i=1

If the loss function is not specified, all the results hold for
any [0, 1]-bounded loss function. Instead, some results just
hold for particular loss functions; in such cases, we specify

~
which loss function must be adopted as L‘(f), Loy ()
~
Lo (L »), etc.

Semi-supervised Extreme Learning Machines

The biased model adopted as a semi-supervised approach
exploits both unlabeled and labeled data to learn a classi-
fication function empirically. The model is based on the
biased-regularization theory, defined as follows: A refer-
ence solution (e.g., a hyperplane) is used to bias the solu-
tion of a regularization-based learning machine.

Extreme Learning Machines

The ELM model [20, 58-60] implements a single-hidden
layer feed-forward neural network (SLFN) with N, map-
ping neurons. Thus, the hypothesis space can be formalized
as follows

N

F@) = wia(x, (), (4)
=1

where w; € R, and a(x,{) is a nonlinear piecewise con-
tinuous function satisfying ELM universal approximation
capability theorems [20]. In general, the activation function
is characterized by a set of parameters {, and the jth neuron
has its {;. Sigmoid function, RBF, and polynomial func-
tions represent three popular choices for the activation
function.

The peculiar aspect of ELM is that the parameters {; are
set randomly. Accordingly, the hidden layer implements an
explicit mapping of the original input space Z into a new
space R, Hence, training ELMs is equivalent to solving a
regularized least squares (RLS) problem in a linear space
[20]. Let H € R™Mr be an activation matrix such that the
entry H;; is the activation value of the jth hidden neuron for
the ith input pattern. Then, the training problem reduces to
the minimization of the convex cost:

w* = arg min| Hw — y||*. (5)
w

A matrix pseudo-inversion yields the unique L, solution, as
proven in [20]:

w' = H"y. (6)

Furthermore, the theory derived in [61] proves that regu-
larization strategies can further improve the generalization
performance of the model. As a result, the cost function of
Eq. (5) is augmented by a L, regularization factor as
follows:

wh = argminHHw—)’”zwL/lHWHZ. (7)
w

The vector of weights w* is then obtained as follows:
w* = (H'H + 2I)"'"H"y, (8)

where I € RV>Ni is an identity matrix.
A Biased Regularization

The general biased-regularization model works via biasing
the solution of a regularization-based learning machine by
a reference function (e.g., a hyperplane) [62]. The nature of
this reference function is a crucial aspect that concerns the
learning theory in general. In the linear domain one can
define a generic convex loss function /, and a biased-reg-
ularizing term, with the resulting cost function being

€+/11||W—/12W()H2, (9)

where wg is a reference hyperplane, 4; is the classical
regularization parameter that controls smoothness, and 4,
controls the adherence to the reference solution wy. The
expression of Eq. (9) is a convex functional and thus
admits a global solution. From Eq. (9) one obtains:

arg min|[Hw—y||*+21 [ w—Z2wo||*
. 7 ,
= argn}tlynHHw—sz—i—El||w\|2—)vm2ww0. (10)

The role played by parameter/; is indeed critical from both
the theoretical and the practical point of view [62]. This
parameter allows the cost function (10) to exploit a strong
or weak bias on the hypothesis space; i.e., by adjusting 4,
one can modulate the contribution provided by wy to the
cost function. Hence, one can take advantage of biased
regularization even when the reference solution is not
optimal. The crucial aspect is the ability to shrink the space
to be explored in order to get an optimal solution, which in
turn means the ability to reduce the complexity of the
hypothesis space [62].

Note that given a reference hyperplane wy, a regular-
ization constant 4, and a biasing constant A, the problem:
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w' = argmin || Hw — y||>+1[|w — Zawol[’, (11)
w

has solution:
w* = (H'H + 2,.0) " (Hy + 21 70w0). (12)

The proof is trivial [62]. Note, also, that thanks to the
representer theorem [63, 64] it is possible to write w* as:

n

w* = Z ocid)(xi) = HTCX. (]3)

i=1

A Semi-supervised Learning Scheme Based
on Biased Regularization

The biased version of the ELM can support a semi-super-
vised framework for the classification task [62]. Let H de-
note the activation matrix of the whole dataset 2, U Z,,,
H, denote the activation matrix of &,, y, denote the cor-
responding vector of labels, and H,, denote the activation
matrix of Z,,. The semi-supervised learning scheme then
requires one to apply the following four-step procedure:

1. Clustering: Use any clustering algorithm to perform an
unsupervised partition of the dataset ,UZ,, by
discarding the available labels (a bipartition in the
simplest case).

2. Calibration: For every cluster, a majority voting
scheme is adopted to set the cluster label; this is done
by exploiting the labeled samples. Then, for each
cluster, assign to each sample the cluster label. Let y
denote this new set of labels.

3. Mapping: Given 9,U Z,, and Y, train the selected
learning machine and obtain the solution wy.

4. Biasing: Given %, train the biased version of the
learning machine (biased by wy). The solution w carries
information derived from both the labeled data &, and
the unlabeled data &Z,,, .

This procedure, Step 4, Biasing, has similarities to that
adopted in deep learning architectures [65, 66]. In the
latter case, the training algorithm performs a preliminary
unsupervised stage and then uses labels only to adjust the
network for the specific classification task; the eventual
representation still mostly reflects the outcome of the
learning process completed in the pre-training phase.
Likewise, in the proposed framework, a pre-training
phase builds wy and a final adjustment derives the final
w .

The semi-supervised learning scheme possesses some
interesting features:

e Since the proposed method could be applied to both
linear and nonlinear domains, the result is a completely
generalizable learning scheme.

@ Springer

e Clustering and biasing can be tackled independently. If
one wants to adopt a particular solution for biasing or a
new clustering algorithm is designed, then the two
actions can be controlled and adjusted separately.

e If the learning machine is a single-layer learning
machine whose cost is convex then convexity is
preserved and a global solution is granted.

e Every clustering method can be used to build the
reference solution.

Model Selection

The selection of the optimal hyperparameters of a pre-
dictive model is the fundamental problem of SLT and is
still the target of current research
[38, 40, 41, 57, 67, 68]. The approaches can be divided
into two large families: out-of-sample methods, like HO,
cross-validation, and the bootstrap [40-42, 69], and more
recent in-sample methods, like the class of function-
based methods [40] (based on the VC dimension [36],
RC [45-47, 70], PAC Bayes theory [49, 50]), algorithm-
based methods [43] (based on compression bounds [53],
and AS theory [55, 56]).

Out-of-sample methods [40, 71] are favored by prac-
titioners because they work well in many situations and
allow the application of simple statistical techniques for
estimating the quantities of interest. Some examples of
out-of-sample methods are the well-known HO, the
KCV, the LOO, and the bootstrap (BOO) [41, 42, 72].
All these techniques rely on a similar idea: The original
dataset is resampled, with or without replacement, to
build two independent datasets called, respectively, the
training and validation (or estimation) sets. The first one
is used for training a classifier, while the second one is
exploited to estimate its generalization error, so that the
hyperparameters can be tuned to achieve its minimum
value. Note that both error estimates computed through
the training and validation sets are, obviously, opti-
mistically biased; therefore, if a generalization estimate
of the final model is desired, it is necessary to build a
third independent set, called the test set, by nesting two
of the resampling procedures mentioned above. Further-
more, the resampling procedure itself can introduce
artifacts in the estimation process and so must be care-
fully designed.

In-sample methods [40, 71], instead, allow the whole
set of available data for both training the model and
estimating its generalization error to be exploited, thanks
to the application of rigorous statistical procedures
[38, 50, 55]. Despite their unquestionable advantage with
respect to out-of-sample methods, their use is not
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widespread: One of the reasons is the common belief that
though in-sample methods are very useful for gaining
deep theoretical insights on the learning process or for
developing new learning algorithms, they are not suit-
able for practical purposes. However, recent advances and
deeper insights on these methods demonstrate that this is
no longer true [73].

Note that the conventional out-of-sample and in-sample
techniques neither take into account nor take advantages of
the unlabeled samples available in the semi-supervised
learning framework. For more details about the advantages
and disadvantages of the different methods one can refer to
[39, 40, 43].

Out-of-Sample methods

As described earlier, these techniques rely on a similar
idea: The original dataset &, is resampled once or many
(n,) times, with or without replacement, to build two
independent datasets called training and validation sets,
respectively 7, and 77, , with r € {1,...,n,}. Note that
TNy, =@ and T ;, Uy . = Zy. Then, in order to
select the best set of hyperparameters J# from a set of
possible ones $ = {A#y, # 2, ..., #,,} for the algorithm
of 4 or, in other words, to perform the MS, we have to
apply the following procedure:

A" ;. arg min —Z Lemp (o

I 7. 14
Hesn, £ (T UDyy H)s ‘,) ( )

ny

the
idea is that s should be the set of hyperparameters
which result in a small error on a dataset that is inde-
pendent from the training set. This approach is theoreti-
cally grounded by the following reasoning: Since the data
in 7, are iid. from the ones in 77 , we can state,
thanks to the Hoeffding’s inequality [74], that the gen-
eralization error of the function trained using 7, U %,

Since the data in .7 are i.i.d. from the ones in ¥

n ny,°

can be bounded as:

L(A (77 090, 5)) < Lemp (A (7 00 200, ¥ ) +

(15)

and the bound holds with probability (1 — J). Since we are
choosing #* € $ (i.e., we are choosing over n functions
trained with different configurations of the hyperparame-
ters) we have to apply the union bound [36] and we have
that, with probability (1 — 6), the generalization error of
the function chosen between the n functions is:

T r ln(%)
L( (77 0, 2)) < Lemp(A (77 03,00,V ) +

s [l Ty va
R In(4
< Lemp(&/(ﬁ';rUi v)s V:'\) + Zfla)
In(ny)
+ 2n,

In repeating the training/validation split procedure n,
times, then, we choose the set of hyperparameters # €
and obtain the generalization error of the classifier fy
which randomly selects one of the functions .o/ Tt UGy )

with r € {I,...,n,}. Each time a new sample must be
classified, it can be bounded with the probability (1 — J):

n/r
) 2n,

1 &~
Lf#) < — Lemp( (7
(ﬁ/{), nr; p( (T3 VL H
In(ny)
2n,

€9. (17)
Based on the SLT, we have to choose the set of hyperpa-

rameters that minimize the estimated generalization error
and obtain that:

%*: in L(f,
arg min L(for)

, H

~ ar HllIl—E Lem 7’U@ ” b
g#Gﬁl’lr o P ng == ) nv)

lln(l) In(ny) (18)
+ Z—ni + 2nv/

= arg min — Z Lemp (o

,
(T UGy )y Y )
Hesn, = D H0) > nt)

The first approximation is due to the fact that the distri-
bution of the data is unknown and hence the true gener-
alization error of L(f) cannot be computed [36]. Since we
have its rigorous upper bound, we can use it based on SLT
[36]. The last equality holds because the last two terms,

In(
\/T In( :’1” , are constants and do not affect the

choice of #*. Consequently, we have retrieved the criteria
of Eq. (14). Note that after the best set of hyperparameters
is found, one usually replaces the model f,+ with the
model obtained by training the algorithm with the whole
dataset .o7(g, »+) [75]. Moreover, note that this is an
approximation, since for classifying a new sample we use
the function retrained with /" over the whole set of data
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and so, basically, we are not directly optimizing the
hyperparameters for .«/ (4, ») with # € H.

If n, =1, if ¢t and v are aprioristically set such that
n=t+v, and if the resample procedure is performed
without replacement, we obtain the HO method [40]. In
order to implement the KCV method, we have to set

n, < (Z), t=(k—1)% and v=1 and the resampling

must be done without replacement [40, 41, 67]. Finally, for
implementing the BOO method,  =n and 7, must be
sampled with replacement from Z,, while ¥*| = 2,\7 |
and 77 [40, 42]. Note that for the bootstrap procedure

n < <2n -1 ) .
n
It is worthwhile noting that the only hypothesis needed
in order to rigorously apply the out-of-sample technique is

the i.i.d. hypothesis on the data in &, and that all these
techniques work for any deterministic algorithm.

In-Sample Methods

For the in-sample methods, there are two subfamilies of
techniques: the class of function-based ones and the algo-
rithm-based ones [43]. The difference between the two is
that the first requires the knowledge of & , and so cannot
be applied to some algorithms (e.g., the k-nearest neighbor
algorithm) while the second can be applied to any deter-
ministic algorithm without additional knowledge. Both
subfamilies, like the out-of-sample methods, require the
i.i.d. hypothesis.

Vapnik—Chervonenkis Theory

The milestone result from the class of function-based
methods in SLT is the VC theory [36]. In this case, the
analysis holds just for the semi-supervised learning prob-
lems where the hard loss function ¢ is exploited:

Ui yf(x)<0 _1—y signff(x)
tulf2) = {O otherwise 2 '
(19)
In the VC theory the following quantity is defined:
F g, = {{sign[f(xl)], . signlf(x) ] ‘ fe %/}
(20)

which is the set of distinct functions that shatter the dataset.
Then the VC entropy H,(Z 4) and the annealed VC
entropy A,(Z 4 ), together with their empirical counter-

parts I?,I(ﬁ%v) and A\n(ﬁy/) [36], can be recalled:
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B F ) = (| F 4], ) @)
Al F ) =In(Eq,. | Z #lg, ), An(Fa) = HulF ),

(22)

where |-| is the cardinality of a set. Based on previous defi-
nitions, itis possible to define the growth function and the VC
dimension, respectively G,(Z ») and dyc(Z ), as

G.(F ) = max ln(‘/yf\l ‘) (23)

dv(j(?jf) = mrle{n : Gn(fj) = 2"}. (24)

Note that G,(Z ») <dvc(Z »)In(n). Thanks to the Vap-
nik results it is possible to prove that [76]:

: ~y Aon(F
P{ sup |L%(f) — Lﬁmp(f)‘ >t} §4eprMf tz)n}
fe€F n n

§4exp[(L

Consequently, we have that with probability (1 — 9):

L™ (f) <Lemp(f) +

N dve(Z »)In In(4
by ve(F ) (")+ () Ve Ty

Moreover, since % 4 is chosen in a set of possible spaces
§={F»,..+Fw,,}, we have to apply the union
bound [36, 77] so we have that with probability (1 — 20):

~ dvc
L% (f) < Loy (f) +

~ly dvc(F ln ln 4
< Lemp(f) VC( J/ + ())
n
In(n,
+ @ VfeFyeg

The VC theory is basically a more refined form of union
bound that is able to deal with the class of functions which
have an infinite number of functions [36]. In particular, the
entropies and the growth function measure the number of
distinct functions with respect to the distribution of the
data, while the dyc is a measure of dimensionality for a
general nonlinear class of functions [36, 44].

Recently in [78, 79] it has been proved that with prob-
ability (1 — 0):
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AT ) 4AL(F ) +81n (%
—4H,(F 4) +8In (%) . (28)
Consequently, we can state that with probability (1 — J):
IP{ sup |L' (f) — Ziﬁlp(f)‘ zt}
FeF x
<4exp [ (42'1(‘%%)—#8 In;) t2> n] .
n

Based on this last result, we can state that with probability
(1 —29) the following inequality holds:

(29)

L) < Ln () + \/4K o) 813) ()

<E" ()4 \/42,,(3@) +91n(%)

In(4
+\/9 I;(@), Vfe Ty

(30)

Moreover, since # 4 € § by applying the union bound
[36, 77] we have that with probability (1 — 20):

L' (f) < Lemp(f) \/42,,(97%#) N \/9 ln(“”TJ/>

n n
iy 4A(F ) [9n(d) (31)
<
Lemp(f) \/ n + \/ n
%7 VfeFy ey

Based on the results of Eqs. (27) and (31) we can present
the two MS procedures based on the VC theory, noting that
some terms are constants. In particular, the original
approach based on Eq. (27) says that:

j{/* e#* N L/H
Fs argferjnnﬂ (f)
~ly dvc(yy) ln(n)
~ L _
arg min emp () + .
(32)

The second approach, based on Eq. (31), says that:

Y A L
Fyes arg r}nnet§ f)
4AL(F ») (33)
~ly n e97//
N L e ——
arg min _ Loy, (f) + "

In order to extend the analysis to a real-valued loss we have
to exploit a result of [36] which states that:

25
IP{ sup L(f) - zemp(f)‘ Zt}
feF »
_P{ sup |E4(f,2) ——ZE(}‘ z)| > }
fET # (34)
<P sup sup |[E{{(f,2) > f}
fEF # pel0,1]

] n
== {lf,z) > B} =1t}
=
Then, we define:

Fhlg, = {l0.2) > Bl [F2) > B} |f € Zor .

(35)

Based on these definitions, it is possible to define the VC
entropy, the growth function, and the VC dimension for
real-valued functions:

ANT ) = ln([E x, Sup 97%%

Gi(F ) = max sup ln(‘/’f},{;b"

>, 30
X n Be[0,1]

(T ) = max{n : Gl ») =2},

)

and finally state that:

P{ sup
fEF

since GH(7 4) < d€c (Z #)1In(n). By following the same
argument presented before we can state that with proba-
bility (1 — 9):

B (g NI 1
A5 (T w)<4A,(F »)+8In 5 (38)

Consequently, we can state that with probability (1 — 0):

PJ sup
feF »

<4dexp

L) = Lan(f)] 2 r}
(4/35(97 #)+8In(}) _tzH

(39)

By following the same argument presented before, it is
possible to propose the two approaches for MS based on
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the VC theory for real-valued loss functions. The first
approach states that:

db o (F ) In(n)

Fos A Lemp(f) +

arg min
fETF vEF

(40)
The second approach, based on Eq. (31), instead says that:

L ~ 4A (97[)
fpr A argfegllne? Lemp(f) + #

(41)

(Local) Rademacher Complexity

One of the most powerful classes of function-based
methods is based on the RC [40, 70]. In particular, it is
possible to prove that the following bound holds with
probability (1 — o) [80]:

L) < Lenplf) + RalF ) ”WT i)

f f/’ega

(42)

where

R (F 2(F w) =Es sup —Za,ﬁ(ﬂz,

feZ» N

P{o; = +1} = P{o; = -1} :%.

(43)

RC is essentially a more refined form of union bound that is
able to deal with class of functions with infinite number of
functions [80]. Another interpretation of the RC is that it
measures the ability of the class of functions to fit random
labels [38]. More refined interpretations and the advantages
and disadvantages with respect to the VC theory can be
found in [44].

Therefore, based on the same principles described
above, we have that:

Fon A
L(f) = Lem R.(7
arg min L(f) ~arg min  Lemp(f) + Rn(F 7).
(44)

Let us use the following loss function:

1 if yf(x)<0
bs(f2) = 9 1=yf(x) if 0<yf(x)<1 (45)

0 if yf(x) > 1

also called soft loss function. Let us also suppose that the
f € F € § can be expressed as:
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n

flx)=wlx= Z up(x) p(x), aeR, (46)
i=1

where w is constrained such that

|w — Ziwo|* < W2, 41 €]0,00). (47)

In such a case, instead of computing R,(Z ) we can
bound it as [80]:

R (,/ #) = Es sup Za,ﬁs(f,zl)

feF N

<4w Z?:l ¢(:)T¢(xi).

Consequently, we obtain that:

. ~Ls =
arg min L ~arg min L + R, (F 4
ngJ e (f) gfefy/EE‘ emp(f) n( //)

S 60)"9)

fpes K

A arg min §Lemp(f) +4w

fETF »

(49)

Recently, a more refined version of the RC, named the
local Rademacher complexity (LRC), which is able to
discard those functions from the class of functions which
are not useful during the learning process, has been pro-
posed in the literature [46, 47]. The result is the following
bound which holds with probability (1 — 3n,0):

-~ r
L)< —L -, v
F)s min g—7lem 4y, WETreB.
21n(}) r
st. sup o |LR+4{/—=[ <=, r>0
%€[0,1] n K

LR<R ({f feFr, emp(f)§£+LR+

m@})
2n

(50)

2In(})

n

+

Unfortunately, computing the above LRC-based bound is
not a trivial task and can be undertaken only when the
number of samples is limited [45—47]. Furthermore, when
there are a large number of samples, the advantages of
using the LRC with respect to RC are not so evident [45].

PAC Bayes Theory

The PAC Bayes theory is the last major theory in the class of
function-based methods. In the PAC Bayes theory, we do not
bound the errorofaf € % 4 € 9 butinstead bound the error
of the stochastic Gibbs classifier (also called randomized
classifier) and the majority vote classifier (also called Bayes
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classifier) [49-51, 68, 81, 82]. The Gibbs classifier draws an
f € # 4 according to a probability distribution Q. over
7 y eachtimealabel foraninput X € % isrequired. One can

also choose from different distributions Q, € Q =

{0Y,....0Y } [50]. The Bayes classifier is the majority
voting of the different classifiers according to the distribution
Q. [51]. This framework, despite being really powerful, is
not suited for algorithm like the ELM since it is built for
ensemble methods [51] like Bagging [83, 84], Boosting
[85, 86] or Bayesian approaches [87].

Algorithmic Stability Theory

Algorithmic-based methods circumvent the problem of
knowing the class of functions by defining the properties
that an algorithm should satisfy in order to achieve good
generalization performances [43]. The AS theory
[43, 55, 88], in particular, states that it is possible to prove
that the following bounds hold with probability (1 — J)
[55]:

L(&/(J Uy, )) < Lemp (JZ/(J U, J{))
3nylﬁemp
—— Y
Vot
€9, (51)
L(&/EZUQ J/’)<Zoo(=9/}/f)+ n—I)‘FMV%
(S n 7)) = TN TS
€9,
(52)
where
Bemp (L wsn) = Eg, 2 |(H (9,09,,.5): %) (53)
_f(%(@;ug,,u’y/) 2],
:8100(&{#7”) = [E(’ﬁ Z|€( (2yVD A )5 Z)
—é(Q/(J\IUJ ),Z)| (54)

Basically, AS states that if an algorithm selects similar
functions, the training set being slightly changed results in
the algorithm having good generalization performances [56].

It has been proven recently in [43] that 5., (o7 4, n) can
be estimated directly from the data, if (o7 #,n)
decreases with n. We wish to highlight that this property is
a desirable requirement for any learning algorithm, since
we need that in order to be able to prove the learnability in
the AS framework:

nlggo Bemp (- ) =0, (55)
or that, in other words, the impact on the learning procedure

of removing or replacing one sample from &, should
decrease, on average, as n grows. Numerous researchers

have already studied this property in the past. In particular, it
is related to the consistency concept [89]. However, con-
nections can also be identified with the trend of the learning
curves of an algorithm [90]. Such quantity is also strictly
linked to the concept of Smart Rule [89]. It is worth under-
lining that, in many of the above-referenced works, the
required property is proved satisfied by many well-known
algorithms like least squares, regularized least squares, and
kerneled regularized least squares. Consequently, the prop-
erty is also true for ELM, which is itself represented by a
random protection with a regularized least squares.

Therefore in [43] it is proved that with probability
(1 =9):

Vn/2 )
ﬁloo(&iyfan) < m Z |€( \/_/ UL /9”)72]')
ijk=1
(56)
ln( )
_é(‘%( ’i/\i/ ULy )’ j)H_ \/ﬁ )
where
Qli/ﬁ/z : {Z(k—l)\/ﬁJrlv . ~aZ(k71)\/ﬁ+\/ﬁ/2}a (57)
ke {l,...,v/n/2},
2 gy, ke {1, vVn/2}. (58)

By plugging this last result in the bound of Eq. (52) we obtain
the fully empirical-based bound of [43], where every quantity
involved in the bound can be computed from the available

data. Note also that Hioo (o (23t )? D j/>) can be effec-
tively estimated via a Monte Carlo procedure: This enables

computing a subset s,c of the required steps, i.e., syc <K %

The bounds of Egs. (51) and (52) are polynomial bounds
in 7 (so not very tight when 7 is small), while f,, and f,,
are two versions of hypothesis stability (HS) which are able
to take into account both the properties of the algorithm
and the property of the distribution that has generated the
data &, [43, 55]. It is possible to improve the bounds of
Egs. (51) and (52) by exploiting a stronger notion of AS,
known as the uniform stability (US). In particular, the
following bounds hold with probability (1 — 9):

L( 9,09, .#)) < Lemp(Z (0,09, .2)) + B+ (4np’
In(%%)
1 2 (59)
+\ =,
VA €9,
= \i \i In(*#)
L(A (g,09,,.#)) < Lioo (AL 5) + B + (4np* + 1) P
VAH €9,
(60)
where
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B = U 9,09,,2)) = U giug,

TRids

| I (5

BY = |6( @,09,,#)") — UA i,y oo (62)

Note that ' < 2[)’\i.

Unfortunately, the US (f° or ﬁ\i) is not able to take into
account the properties of the distribution that has generated
the data &, and sometimes is not even able to capture the
properties of the algorithm because it deals with a worst-
case learning scenario [43].

All the four AS-based bounds of Egs. (51), (52), (59), and
(60) can be used to select the best set of hyperparameters
A € 9 for the algorithm o7 4. In particular, all the bounds
are in the form: L(.oZ (4, »)) < €(A ¢, Dy, 6, ). In order
to perform the MS procedure we have:

* .
A gy a0y, K

'8}

arg JI/;lé% (AL, Dnyn, 0,ny). (63)

The procedure of Eq. (63) can be exploited with any algo-
rithm for which it is possible to compute one notion of AS.

Compression Bound

The compression bound is the result of the approximation of
the Kolmogorov theory [91] and, in particular, the minimum
description length principle [92]. The compression bound
[53] states that the less data of &, we use for learning the
better generalization performance our model will have.
Unfortunately, this approach is not suited for ELM but just
for algorithms which produce sparse models like SVM [39].

The Use of Unlabeled Samples for Extreme
Learning Machine Model Selection

As we described before, it is not possible (or it does not make
sense) to apply some of the methodologies described above
(e.g., the PAC Bayes theory and the compression bound
theory). In this section, we show how to apply the out-of-
sample methods, the VC theory, the RC theory, and the AS
theory to the ELM and how to take advantage of unlabeled
samples both for training a more accurate model thanks to the
regularization framework depicted in “Semi-supervised
Extreme Learning Machines” section, and during the MS
process. In particular, we show how to perform the MS
effectively with and without exploiting the unlabeled samples
for the three version of ELM presented in this paper:

e ELM-NoR: the easier ELM which does not implement
any regularization strategy [see Eq. (5)],

e ELM-R: the now-standard ELM which implements the
typical Tikhonov regularization schema [93] [see
Eq. (D],
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e ELM-SemiR: the ELM which implements the semi-
supervised regularization schema presented in Eq. (11).

The ELM-NoR has just one hyperparameter: the number
of hidden neurons, so # = {N,}. For ELM-R the
hyperparameters are the number of hidden neurons and
the regularization hyperparameter, so we have that
H = {Ny,}. Finally, for the ELM-SemiR the hyperpa-
rameters are the number of hidden neutrons and the two
regularization hyperparameters, so we have that
H = {Nh,}vh)uz}.

Out-of-Sample Methods

The main problem of the out-of-sample methods, as
described in “Out-of-Sample Methods” section, is that
instead of tuning the hyperparameters for the classifier we
are tuning the performance of an ensemble classifier.
Since we are dealing with binary classification a reason-
able choice is to use the hard loss function ¢y which
counts the number of errors of a classifier trained with
o/ 4 over a dataset. In particular, if we use the ELM we
can define:

/o-:z U, P,UD
Wy = A (G, ) W
2\, (64)
_ ) . /n w .
= ‘M(gnU@nuv#)’ W/{; = <M(9>;U@nu‘_#—>,

where .27 can be the solution of ELM-NoR or ELM-R or

. . T U,
ELM-SemiR trained over 7, U %, for w,"

G 9
over 9,U%2,, for wj,z',’u“z"“, etc. Note that &, can be

exploited or not based on .7, in fact ELM-NoR and ELM-
R do not use it. The procedure of Eq. (18) states that:

, trained

n,

1 ~ty , TH D,
arg mln—g LempyWy" 77

W@nU@nu %* .
s :
HEDH N, o}

(65)

We remember that (see “Out-of-Sample Methods™ section)
we are minimizing the error of the classifier which randomly

TG
nt Uy,

7 . .
chooses one of the w " ™ withr € {1,...,n,} while at the

end of the procedure we classify a new sample with wi}" W
This produces a sub-optimal result [40, 57]. In order to fix this

bias we can employ the unlabeled samples. In particular, we
Ugnu

. . T .
can estimate the difference between the error of w " with
r € {1,...,n,} and the one of w"Z, Ym 1n fact, when the hard

L DD,
loss function is used, the error of w; is bounded by the

T UDy,
average error of w,,/

a

with r € {1,...,n,} plus the

average difference between the prediction of ijfuy
T VD, .

w," withr € {1,...,n,}:

" and
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2 U9 1 T U,
L (7)< =S L w0

(66)

The first term can be bounded as we have done in “Out-of-
Sample Methods” section, while the second term can be
bounded by using the unlabeled patterns. In fact, if we
define the following quantity:

1 n, n+ny ) T
ey 2| (5 )

r=1 i=1

TG T
Lsign [(W}muﬂu) x] s

since the data in ,U2,, are iid,
Eq. (67) is an unbiased estimator of

D, — Z {mgn{ ( J,luzznu) x]
#sign| (7).

Consequently by exploiting the Hoeffing’s inequality we
can state that with probability (1 — 9):

Dy —
(67)

the quantity of

(68)

~ ln(é)
Dy<Dy —
w <Dy + 201+ ny) (69)

Consequently, we have that with probability (1 — 20):

Dy
n E L/H T )+D//
-

r=1

L/”( ‘/Uf -

AZH
s T Uy H

emp

/In(} In(ny)
_5 -
+ 2n, + 2n,
~ In (1) In(ny)
D, 5 t
thx+ \/Z(n +ny) + 2(n+ny,)

Note that, if we have just few unlabeled samples the bound
is very loose, while if we have a lot of unlabeled samples
(in the semi-supervised learning framework usually
n, > n) the bound fast converges to the conventional

)7 )

HESD.

(70)

bound [see Eq. (17)], plus D # which takes into account
the bias discussed above. Based on this last result we can
derive the out-of-sample MS procedure for ELM which
exploits also the unlabeled samples:

wj/*u I S A
| &ty 7 ~ (71)
: _ L n[ ﬂu Vr D .
wemin. D W7 )+ D

where D o 18 defined above.
Vapnik-Chervonenkis Theory

Let us start by considering the ELM-NoR. Let us consider
the VC theory when the hard loss function is employed.
Since the ELM searches a linear separator in the space
defined by the random protection of the original input
space R” into the space defined by the N;, hidden neurons
we have that dyc <N, [36].

Unfortunately, this is a loose upper bound which does
not depend on the distribution of the data [36]. In order to
be able to take into account the distribution of the data we

have to use the VC entropy :4\”(57 ). Note that, from
Eq. (33), in order to perform the MS procedure with the

VC entropy we need to compute A,(Z 4)/n € [0,1n(2))].
The VC entropy is the number of configurations of the
labels that can be shattered by % . Consequently, let ; €
{=1,1}" be one of the possible 2" configurations of the
labels; we have to search how many of them can be shat-
tered by a linear separator in the random projection space,
then we have to check for how many of the following
problems

min 0"w, st Hw=oa;, ic{l,...,2"}, (72)
at least one solution exists. Note that the above problem is
a linear programming (LP) problem [94]. Searching for a
feasible solution of an LP problem is again an LP problem
[94] which can be solved in polynomial time [94]. We have
to solve 2" problems and this represents an NP problem.

The issue can be circumvented by noting that we can

estimate A,(% ,) through a Monte Carlo procedure by
checking just a random subset, and in particular nyc <2"

realizations of the labels [44]. If we indicate with K,,(?" #)
the logarithm number of configurations of the ny¢c that can
be shattered, thanks to the Serfling’s bound [95] (since we
are bounding the expected value of an hypergeometric
distribution), we can state that with probability (1 — J):

2
-~ = MCln(z) nyct?
AT AT nyc—1 nyc 1

P Vl( J/)Z Vl( %)+t ge == <el’ o,

n nyc

(73)
Note that the quality of the estimation does not depend on

n but just on nyc. Consequently, gn(ﬁ #)/nyuc rapidly

converges to its mean :4\,,(9; #)/n. Consequently, let us
suppose that w, is the solution of the ELM-NoR for a
value of its hyperparameters, thanks to the procedure of
Egs. (32) and (33), we have that, based on the VC theory:
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Wy, H arg m1n Lemp(w,#) + ; (74)

Wy, % :  arg min Lemp(w#) +1/4 (75)

HED
We now show that the unlabeled samples can be useful to
improve the quality of the estimation of the VC entropy. In
particular, let us suppose that &, contains more samples
than &,, in particular n, >2n. This is a reasonable
hypothesis since usually the number of unlabeled samples
exceeds by a large amount the number of labeled ones [96].
In particular, let us define m = |n+n,/2n] and let us
consider the original bound of [33]:

P{ sup |L' (f) — Lemp(f)’Zt}
SET

<4exp K@ - t2>n} . (76)

We show that A,,(Z 4 ) can be estimated more effectively
with the use of the unlabeled samples. In particular, let us
define the following quantity:

Am

AT r)

- % I in(|{ {signlf (rn1)) - signlf a2 M| € Zor }]),

i=0

(77)

which is basically the VC entropy for sample size of
2n averaged over m different realizations. Thanks to the
results of [78, 79] we can state that with probability
(1-9):

~m 1 1
Aon(F #) <AL (F #) +—In <—) , (78)

which is a much tighter estimate with respect to the one
presented in Eq. (28). Moreover, g;nn(g’ #) can be esti-
mated from the data since we do not need the labels of the
unlabeled samples; hence, by following the same reasoning
presented above we can define a Monte Carlo estimation of

1/4\;(97 ) through A Zln (Z #), which is VC entropy-based
MS procedure which exploits also the unlabeled samples
[the counterpart of the method of Eq. (75)]:

> ))

:1(9'7#)_

nyc

Wy, A arg min Lemp(Wy/) + (79)

HED
Regarding the ELM-R and the ELM-SemiR the reasoning
is more complex. In fact, in this case we cannot use the
hard loss function £g since we would eliminate the effect of
the regularization hyperparameter [76, 97]. For this reason
we have to employ a smooth loss function like the £g. In
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particular, it is straightforward to see that {5 < /5. So, even
if we use f5 we still have information about ¢y [80]. In
order to apply the procedure for real-valued losses [see
Egs. (40) and (41)] we have to compute the VC entropy
and the VC dimension for real-valued functions which are

dbo(F ) and A (F

the déc(gf’ ) 1s a rather complex phase while estimating

). Unfortunately, upper bounding

Xf(ff ) cannot be transformed to a polynomial problem

as we have done for the Z”(gz # ). Moreover, Kf(% #)
requires the knowledge of the labels so the unlabeled
samples cannot be exploited for improving the MS strat-
egy. Other extensions to real-valued functions of the VC
theory have been proposed in [98, 99], but their applica-
tions in real world are not feasible.

Rademacher Complexity Theory

By exploiting the same notation adopted in “Out-of-Sam-
ple Methods” section and by noting again that /5 < /g we
can state, thanks to the result of “(Local) Rademacher
Complexity” section, that with probability (1 — 0):

L (w7 y < Tt (w27 4R (F )
13 111(%)_~_3 lln(”%)ﬂjf
2n 2n

~/, ~Uls
L0 (i ”7r) SLS W) < Lo (™) + R, (F )

In(% 1
+3\/—n D 3y /I00)
2n 2n
€9
(81)

When the ELM-NOoR is exploited one should use the bound
of Eq. (80) in order to control the generalization perfor-
mance of the ELM, since no regularization is applied,
while for ELM-R and ELM-SemiR the bound of Eq. (81)
should be used. Unfortunately, computing the RC when the
hard loss function is exploited results in an NP-hard
problem [44, 80]. For this reason we can retrieve the
Massart’s Lemma [100] which states that:

and

. 2A,(F, 2dvel
RMF )< (Z )g veIn(n) (82)
n n

By exploiting this result we retrieve the one reported in
“Vapnik—Chervonenkis Theory” section for the VC theory.
For ELM-R and ELM-SemiR, instead, we use the /5. In
this case, we exploit the property of Eq. (48) which is
proven in [80].
For ELM-R we can state that:
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: n AT b (x 2
ﬁiﬁ (37”) <4W Zi:l ¢(:lcl) ¢(x1) L(f) < Lemp(f ZR, /J/ +3 (())

n T
gz | B 6) (83) 24 i m(n,,f) (50)
A + ,
n N 2n
The Tikhonov regularization problem of Eq. (7): VfeFn €D,
(84) where m = |n+n,/n|, 9,U D, = {x1,...,Xu4n, } and
1 & 7
is equivalent to an Ivanov-based one [69, 101, 102] %Z (F ) Z [EafSL}P Z ail(f', 2(j-1ym+i)-
j=1 =1 S A=

w' = argmin||Hw — y|>, st [lw]® < W7, (85) 1)

. 2,07, .
for a suitable value of W ]J_w/ L Note that this

bound can be used also for ELM-NoR by exploiting the
soft loss function instead of the hard one, but since no

D40 Dy

regularization is applied in ELM-NoR W = ||w can

assume any value. In fact, for ELM-R from 1= 0o we
have that W = 0 while for 2 = 0 we retrieve the ELM-
NoR.

For ELM-SemiR we can state that:

lg

n T
R (F 4) <4W M

8
:4HW«” ny
H

L 9) $0)

7/11W0H

The Tikhonov regularization problem of Eq. (11):

w" = argmin ||[Hw — y|[*+21 |w — dawol?, (87)

is equivalent to an Ivanov-based one:

w* = argmin|[Hw — y||*, s.t. [|[w— Jowo|P <W,  (88)
w

for a suitable value of W = Hwi D /hwo’L
Based on these results we can propose the RC-based MS
for ELM-R and ELM-SemiR:

DD, k.

S o) B)

arg min Lemp(w‘fg‘u‘j"“) +4w

He n
(89)
where for ELM-R W = wil'{?u " || while for ELM-SemiR,
which exploits also the  unlabeled  samples,
Ve o]
= )qW()

In order to exploit the unlabeled samples also for the MS
process, we have to exploit a recent result reported in
[103, 104] which states that:

Note that the bound of Eq. (90) is tighter than the one of
Eq. (42) since we have a better estimation of the RC thanks
to the unlabeled samples. Basically, the unlabeled samples
give us the ability of computing the average over m dif-
ferent realizations of the RC. Based on the previous results
we can state that if we use the soft loss function, for the
ELM-R we have that:

%fi(ﬁ,’;(@»))

lzm: J UQ,LU H Zz 1 ¢ X(—-1 m+l) (]5()6(] )m+1)
m :
(92)
while for the ELM-SemiR
1 & ~j Ls
SRz, )
mZ( A(Z o)
j”u
< 4H 7" (93)

:1: ¢X‘—miT¢x‘—mi
_;L1W0|\/Z I (uw;) (XG-1)m+i)

Based on this result we can propose the RC-based MS for
ELM-R and ELM-SemiR which takes into account also the
unlabeled samples:

arg min Lemp(w;/fuj”")
e (94)
lzm: > 9 X(j— lm+l) ¢(x(ifl)m+i)
m = )
where = H adl for  ELM-R and W=

P,U9,
Hw% “ A]WO‘ for ELM-SemiR.

Also for the LRC it has been proved that the unlabeled
samples can improve the reliability of the estimation of the
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generalization error of the model [47] but, unfortunately,
the open question remains how to effectively compute the
LRC in practice.

Algorithmic Stability Theory

In order to apply the AS to ELM we have to exploit some
known results and prove some new ones. We use the same
notation of “Out-of-Sample Methods” section.

Let us start with the US. If we use the hard loss function,
it is straightforward to prove that for any ELM we have
[43, 46, 56]:

(1= )"=1, 95)

which is the only possible, and trivial, result. If instead we
use the soft loss function in [55] it is proved that for a
Tikhonov regularization problem like the ELM-R we have
that:

()" <5 max{¢<x1>T¢<xll,i. ) ) | o)

Note that ELM-R is equal to ELM-NoR if 4 — 0, which

. ¢
results in (ﬁ\’(&/%, n)) — +00. This means that without
H

regularization the ELM is not stable. For the ELM-SemiR
we have that:

(1) <s maX{(b(M)Ttp(xﬁ;;' RO

Consequently, we can use the US just for ELM-R and
ELM-SemiR and by exploiting the results of “Algorithmic
Stability Theory” section we can state that:

DIy, * DI, §
wy M H arg min Lemp( 7o)+ 2<ﬁ\l>

HED
(98)
D IDy, . .~ - \i Ls
w A arg min Lioo (A ) + (ﬁ ) . (99)

Note that ﬁ\i must be computed based on Egs. (96) and
(97), respectively, for ELM-R and ELM-SemiR. Note that
there is no advantage in having unlabeled samples.

With the HS the approach is quite different. In this
case, we can exploit the hard loss function as described
also in [43]. Since By, (o7 #,n) cannot be estimated from
the data [43] we can just use the bound which takes into
the LOO error [see Eq. (52)]. In order to compute the
Bioo(Z 4yn) of Eq. (56) for ELM with the hard loss
function we have to take Eq. (56) and note that with
probability (1 — 9):

@ Springer
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(100)

~
Note that f,.. (.« », \/n/2) can be computed from the data
and so by applying the bound of Eq. (52) we have the HS
MS strategy™:

DDy, X U St
W//* # arg ygg Lloo (‘Q///’) + ﬂloo(y{»f/’ﬁ \/ﬁ/z)

(101)

This approach can be applied to ELM-NoR, ELM-R, or
ELM-SemiR.

It can also be shown that the bound of Eq. (56), as well
as the MS strategy, can be improved, if some unlabeled
data are available. In particular, from Eq. (100) it is pos-
sible to note that, if the hard loss function is exploited,
ﬁlm(&/%, \/n/2) does not require the knowledge of the
labels. In particular, let us suppose to have at least n, = n
unlabeled data, since for the ELM f,, (o7 »,n) decreases
with n we have that:

loo("Q//f7 ) S ﬁfgo(ﬁf,#’y \/ﬁ) (102)
Let us define now the following quantity:
~ly
ﬁloo(&/?fﬁ f)
£ ( -
A (103
ln(L)
H
— (A Giog,, ) N+ .

where

Sk
9\/5 : {Z(k—l)ﬁ+lv e ‘aZ(k—l)\/ﬁ+\/ﬁ}7 ke {la BER) \/ﬁ}a 4

€,
(104)

2 We have exploited the property va2b < ¢+ b in order to remove
all the constant terms which do not depend on Bloﬁ(ﬂ #>/N)2).
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Note that the label in &,,, are unknown but, if the hard loss
function is used, we have that:

B (ot e, /)

b
LSS e
n\/’_li,j,k:l (Z 5D #)

(105)

(106)

which does not require the knowledge of the labels.

Moreover, /[}fgo(,sz{%o,\/ﬁ) is an empirical unbiased esti-
mator of B (/ 4,\/n) (based on the same reasoning
proposed in [43]) and therefore thanks to the Hoeffding’s
inequality we can state that:

In(3)
N

By plugging these results into the bound of Eq. (52) and by
following the procedure adopted for deriving Eq. (101), we
can derive the HS MS strategy which takes advantage also
of the unlabeled samples:

(A g /) < B (A e, /1) + (107)

ZAV

.~y ~,
Wit arg min Ligo(+/ ) + Proo (7 o, V).

(108)

This approach can be applied to ELM-NoR, ELM-R, or
ELM-SemiR.

Affective Analogical Reasoning Dataset
The AffectiveSpace model

AffectNet is a semantic network in which common-sense
concepts (e.g., ‘read book,” ‘payment,” ‘play music’) are
linked to a hierarchy of affective domain labels (e.g., ‘joy,’
‘amazement,” ‘fear,” ‘admiration’). In order to enable
affective analogical reasoning on natural language con-
cepts, AffectiveSpace [13] is obtained as the vector space
representation of such a semantic network. Therefore, in
AffectiveSpace, concepts conveying similar semantic and
affective information, e.g., ‘enjoy conversation’ and ‘chat

with friends,” tend to fall near each other in the multi-
dimensional space.

Both AffectNet and AffectiveSpace are publicly avail-
able at http://sentic.net. AffectiveSpace has been obtained
applying principal component analysis (PCA) on the
matrix representation of AffectNet. Due to computational
cost issues, truncated singular value decomposition
(TSVD) has been preferred to other dimensionality
reduction techniques. TSVD uses an orthogonal transfor-
mation to convert the set of common-sense features asso-
ciated with each concept into a set of uncorrelated
variables (the principal components of the SVD).

Indicating AffectNet as A, a low-rank approximation of
it is obtained: A = Uy Zy V. This approximation is based
on minimizing the Frobenius norm of the difference
between A and A, under the constraint rank(A) = M;
according to the Eckart—Young theorem [105], this repre-
sents the best approximation of A in the least-square sense:

~min  [A—A|= min |Z-UAV|
Alrank(A)=M Alrank(A)=M
= _ min |X-5|, (109)
Alrank(A)=M

assuming that A =USVT, where § is diagonal and has
M nonzero diagonal entries for the rank constraint. The
minimum of the above equation may be obtained as
follows:

min | — S| = min Z(ai—s[)z

Alrank(A)=M i P
M n

. 2
= min (0 — ;)" + E o?

5 =1 =M+ 1

n

= 2.

i=M+1

(110)

In fact, in the Frobenius norm sense the minimum is
obtained when o; =s; (i=1,...,M) and the correspond-
ing singular vectors are the same as those of A. Thus, if
only the first M principal components are kept, common-
sense concepts are represented by vectors of M coordinates.

As already said, concepts with the same affective ori-
entation are likely to have similar features; i.e., concepts
conveying the same emotion tend to fall near each other in
AffectiveSpace. Concept similarity does not depend on
their absolute positions in the vector space, but rather on
the angle they make with the origin, as it can be seen in
Fig. 1.

The number of singular values M, which indicates the
dimensionality of the AffectiveSpace, represents the trade-
off between efficiency and precision: The bigger is M, the
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more precisely AffectiveSpace represents AffectNet’s
knowledge, but generating the vector space is slower, while
the smaller is M, the more efficiently AffectiveSpace can
be obtained.

The hourglass of emotions [9], used in Fig. 2,
employed to reason on the disposition of concepts in
AffectiveSpace. In the model, affective states are repre-
sented by four concomitant but independent dimensions
(Pleasantness, Attention, Sensitivity, and Aptitude), each
one characterized by six levels of activation, which deter-
mine the intensity of the expressed/perceived emotion.

Such levels represent a set of 24 basic emotions (six for
each affective dimension). Therefore, a four-dimensional
vector can potentially synthesize the level of activation of
each affective dimension of a concept. Beyond emotion
detection, the hourglass model is also used for polarity

is

detection tasks. Polarity is defined in terms of the four
affective dimensions, according to the formula:

where ¢; is an input concept, N the total number of con-
cepts, and 3 the normalization factor (as the hourglass
dimensions are defined as float € [—1, +1]).

In the equation, Attention is taken as absolute value
since both its positive and negative intensity values
correspond to positive polarity values (e.g., ‘surprise’ is
negative in the sense of lack of Attention, but positive
from a polarity point of view). Similarly, Sensitivity is
taken as negative absolute value since both its positive
and negative intensity values correspond to negative
polarity values (e.g., ‘anger’ is positive in the sense of
level of activation of Sensitivity, but negative in terms of
polarity).

N . e .
B ZPleasantness(c,-) + |Attention(c;)| — |Sensitivity(c;)| + Aptitude(c;) (111)
i=1 3N
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Fig. 1 A representation of AffectiveSpace: positive concepts (in the bottom-left corner) and negative concepts (in the up-right corner)
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Dataset Description

The proposed MS framework was tested on a benchmark of
23,244 common-sense concepts. Each concept is repre-
sented according to the AffectiveSpace model discussed in
“The AffectiveSpace Model” section, with dimension M
equal to 50 and 100.

The publicly available Sentic API (on http://sentic.net/
api) was used to obtain for each concept the level of acti-
vation for each affective dimension. According to the
hourglass model presented in “The AffectiveSpace Model”
section, the Sentic API expresses the levels of activation as
an analog number in the range [—1, 1], which are eventu-
ally mapped into the associated polarity according to
equation Eq. (111). Only 6813 concepts of the benchmark
are labeled, while the others are left unlabeled.

Experimental Results

In this section, we compare the performance of different
ELMs (ELM-noR, ELM-R, and ELM-SemiR) over the
dataset described in “Dataset Description” section, tuned
with the different MS strategies described in “Model
Selection” section. In particular, for the ELMs we have
that:

e ELM-noR: The set of possible configurations of
Fig. 2 The 3D model of the hourglass of emotions. Since affective hyperparameters is every possible combination of the
states go from strongly positive to null to strongly negative, the model hyperparameters such that $ = {N,: N, € {100;
assumes a hourglass shape 250; 500; 750; 1000}}

Table 1 MS methods and ELM: the ‘x’ indicates if the MS method can be applied to the particular ELM

MS method Sections Equations Suitable for
ELM-noR ELM-R ELM-SemiR

HO Out-of-Sample Methods (65) X X X
HO-SEMI Out-of-Sample Methods (71) X X X
KCV Out-of-Sample Methods (65) X X X
KCV-SEMI Out-of-Sample Methods (71) X X X
BOO Out-of-Sample Methods (65) X X X
BOO-SEMI Out-of-Sample Methods (71) X X X
VC-DIMENSION Vapnik—Chervonenkis Theory (74) X - -
VC-ENTROPY Vapnik—Chervonenkis Theory (75) X - -
VC-ENTROPY-SEMI Vapnik—Chervonenkis Theory (79) X - -
RC Rademacher Complexity Theory (89) - X X
RC-SEMI Rademacher Complexity Theory (94) - X X
USEmp Algorithmic Stability Theory (98) - X X
USiLoo Algorithmic Stability Theory 99) - X X
HS Algorithmic Stability Theory (101) X X X
HS-SEMI Algorithmic Stability Theory (108) X X X
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e ELM-R: The set of possible configurations of hyper-
parameters is every possible combination of the
hyperparameters such that $ = {N,: N, € {100;
250; 500; 750; 1000}, € 10{=6:73--2.53}1

e ELM-SemiR: The set of possible configurations of
hyperparameters is every possible combination of the
hyperparameters such that $ = {N,: N, € {100;
250; 500; 750; 1000}, A; € 1017673523311 1), ¢
10{—6,—55,“.,2.5,3}}}

For the MS strategies, the possible options are several but
some of them cannot be applied to every version of ELM
exploited in this paper. Therefore, Table 1 reports on the
match between MS methods and the type of ELM in which
the method can be adopted. In Table 1 we refer to the
methods with the following acronyms:

e HO: indicates the usual HO procedure where no
unlabeled samples are exploited (see Eq. (65) in
“Out-of-Sample Methods” section). Note that r = 1,
v =0.1n] and the resample procedure is performed
without replacement;

e HO-SEMI: indicates the usual HO procedure where
also the unlabeled samples are exploited (see Eq. (71)
in “Out-of-Sample Methods” section). Note that we
employed the same parameters of HO;

e KCV: indicates the k-fold cross-validation procedure
where no unlabeled samples are exploited (see Eq. (65)
in “Out-of-Sample Methods” section). Note that
n, =10, v = |0.1n] (k = 10) and the resample proce-
dure is performed without replacement;

e KCV-SEMI: indicates the k-fold cross-validation pro-
cedure where also the unlabeled samples are exploited
(see Eq. (71) in “Out-of-Sample Methods” section).
Note that we employed the same parameters of KCV;

e BOO: indicates the bootstrap procedure where no
unlabeled samples are exploited (see Eq. (65) in
“Out-of-Sample  Methods”  section). Note that
n, =30, t = n (k = 10) and the resample procedure is
performed with replacement;

e BOO-SEMI: indicates the bootstrap procedure where
also the unlabeled samples are exploited (see Eq. (71)
in “Out-of-Sample Methods” section). Note that we
employed the same parameters of BOO;

e VC-DIMENSION: exploits the VC dimension without
employing the unlabeled samples (see Eq. (74) in
“Vapnik—Chervonenkis Theory” section)

e VC-ENTROPY: exploits the VC entropy without
employing the unlabeled samples (see Eq. (75) in
“Vapnik—Chervonenkis Theory” section)

e VC-ENTROPY-SEMI: exploits the VC entropy with
the employment of the unlabeled samples (see Eq. (79)
in “Vapnik—Chervonenkis Theory” section)
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e RC: exploits the Rademacher complexity without
employing the unlabeled samples (see Eq. (89) in
“Rademacher Complexity Theory” section)

e RC-SEMI: exploits the Rademacher complexity with
the employment of the unlabeled samples (see Eq. (94)
in “Rademacher Complexity Theory” section)

e USgnp: exploits the US and the empirical error
without employing the unlabeled samples (see Eq. (98)
in “Algorithmic Stability Theory” section)

* US| o@: exploits the US and the LOO error without
employing the unlabeled samples (see Eq. (99) in
“Algorithmic Stability Theory” section)

e HS: exploits the hypothesis stability without employing
the unlabeled samples (see Eq. (101) in “Algorithmic
Stability Theory” section)

e HS-SEMI: exploits the hypothesis stability with the
employment of the unlabeled samples (see Eq. (108) in
“Algorithmic Stability Theory” section)

The labeled data have been split into two sets: The first
5000 samples have been used for building the model with
the different ELMs (ELM-noR, ELM-R, and ELM-SemiR)
and with the different MS strategies (HO, HO-SEMI, KCV,
KCV-SEMI, BOO, BOO-SEMI, VC-DIMENSION, VC-
ENTROPY, VC-ENTROPY-SEMI, RC, RC-SEMI,
USemp, USpoo, HS, HS-SEMI) as reported in Table 1,
while the rest of the labeled samples, which are 1813, have
been kept apart as reference set in order to test the per-
formance of the learned model. The splitting process has
been repeated 30 times in order to obtain statistically rel-
evant results.

The experiments have been performed on a Workstation
equipped with one Solid Stata Drive disk of 100 GB, one
Hard Disk Drive of 1 TB, 128 GB of RAM, 4 Intel Xeon
CPU E5-4620 @2.20 GHz, and Windows Server 2012 R2.
The code has been written in Fortran 90 and compiled with
the Intel Parallel Studio XE 2016 Composer Edition.

In Tables 2 and 3 we reported the error on the reference
set and the time needed to build the model for the different
combination of ELM and MS strategies (see Table 1), for
M = 50 in Table 2 and M = 100 in Table 3, for the five
binary classification tasks (Polarity, Pleasantness, Atten-
tion, Sensitivity, and Aptitude).

From the results reported in Tables 2 and 3 it is possible
to derive three main conclusions:

e With M =100 we retrieve models with generally
higher accuracy with respect to M = 50. This is
reasonable since the more information we feed the
learning machine the more accurate results the final
model.

e ELM-SemiR produces models with higher accuracy
with respect to ELM-noR and ELM-R. This means that
the algorithm is able to exploit and take advantage of



Cogn Comput (2017) 9:18—42

39

the hidden information given by the unlabeled samples.
Anyway, note that ELM-SemiR requires more time to
build the model because of the unsupervised pre-
training phase.

e The MS strategies which exploit also the unlabeled
samples (HO-SEMI, KCV-SEMI, BOO-SEMI, VC-
ENTROPY-SEMI, RC-SEMI, HS-SEMI) select models
with higher accuracy with respect to their counterparts
where the unlabeled samples are not taken into account
(HO, KCV, BOO, VC-DIMENSION, VC-ENTROPY,
RC, USgmp- USLOO’ HS). As expected from theory,
the information hidden in the unlabeled samples helps
to improve the performance of the MS strategy.
Generally, the difference in terms of time to build the
model between the MS methods which exploit the
unlabeled samples and the ones which do not is not
noticeable.

Besides these general considerations it is possible to derive
some other interesting insights from the results of Tables 2
and 3 about the characteristics of each ELM and MS
strategy.

e The in-sample methods (VC-DIMENSION, VC-
ENTROPY, RC, USgpp, USp o) usually perform
worse, in terms of accuracy of the selected models, with
respect to the out-of-sample ones (HO, KCV, BOO),
when the unlabeled samples are not exploited. Anyway,
the in-sample methods require less computational
effort. The only exception is the HS method which
generally produces models with higher accuracy than
the in-sample methods.

e When the unlabeled data are exploited for MS
purposes, the in-sample methods (RC-SEMI, HS-
SEMI) produce models with higher accuracy compared
to the out-of-sample ones (HO-SEMI, KCV-SEMI,
BOO-SEMI), even if the models selected by the latter
methods possess higher accuracy with respect to their
counterparts when the unlabeled samples are not
exploited (HO, KCV, BOO). The only exception is
the VC-ENTROPY-SEMI, which selects more accurate
models compared to the VC-ENTROPY but less
accurate models than the ones selected with the out-
of-sample methods.

e The out-of-sample method which selects the most
accurate models is the bootstrap (BOO and BOO-
SEMI), while the less accurate models are selected by
the HO method (HO and HO-SEMI). This is due to the
fact that the bootstrap represents the statistical method
which extracts more information from data (as
described in “Out-of-Sample Methods” section). In
fact, the bootstrap is also the out-of-sample method
which requires more time to build the model, while the

HO method is the most computational inexpensive out-
of-sample method.

e The in-sample method which selects the most accurate
models is the hypothesis stability (HS and HS-SEMI),
while the less accurate models are selected by the US-
based methods (USgpp and USy o) together with
the VC-based methods (VC-ENTROPY and VC-
ENTROPY-SEMI). This is due to the fact that the
VC dimension and the US techniques are not able to
properly take into account the properties of the
algorithms and the probability distributions that have
generated the data (as described in “In-Sample Meth-
ods” section). Again, the in-sample method which
selects the most accurate models is the also the one
with the higher computational requirements.

e QOverall, the HS-SEMI method is the one which selects
the most accurate model while requiring less computa-
tional effort with respect to the out-of-sample methods.

Finally, we would like to stress that the proposed approach
is quite general and can be applied in other applications
and other learning algorithms.

Conclusion

In this work, we have addressed the problem of exploiting
unlabeled samples to perform an emotion recognition task. In
particular, we have shown that the unlabeled samples can be
exploited during the formulation of the learning algorithm with
particular reference to the ELM. More in details, we proposed a
different regularization procedure which is able to incapsulate
an unsupervised pre-training hint in a form of a reference
hyperplane into the ELM formulation. Moreover, we have
shown that unlabeled samples can be extremely useful during
another key phase of the learning process, the model selection
phase, where the hyperparameters which influence the gener-
alization performances of the learned model must be tuned
based on the available data. In particular, we have reviewed all
the most important state-of-the-art theoretical approaches to
model selection and we have shown how to modify the theo-
retical framework in order to explicitly take advantage of the
available information hidden in the unlabeled samples. The
results performed on an affective analogical reasoning prob-
lem show that our method is indeed able to exploit the infor-
mation given by unlabeled samples in order to build models
with higher generalization performances with respect to the
models built without exploiting them.
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