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Abstract. ChatGPT has stunned the world with its ability to gen-
erate detailed, original, and accurate responses to prompts. While it
unlocked solutions to problems that were previously considered unsolv-
able, however, it also introduced new ones. One of such problems is the
phenomenon known as hallucination, the generation of content that is
nonsensical or unfaithful to the provided source content. In this work, we
propose SenticNet 8, a neurosymbolic AI framework leveraging an ensem-
ble of commonsense knowledge representation and hierarchical attention
networks, which aims to mitigate some of these issues in the context of
affective computing. In particular, we focus on the tasks of sentiment
analysis, personality prediction, and suicidal ideation detection. Results
show that SenticNet 8 presents superior accuracy with respect to all four
baselines, namely: bag-of-words, word2vec, RoBERTa, and ChatGPT.
Unlike these baselines, moreover, SenticNet 8 is also fully interpretable,
trustworthy, and explainable.

Keywords: Explainable AI · Affective Computing · Sentiment
Analysis

1 Introduction

Generative pretrained transformer (GPT) models enabled humanity to finally 
design an algorithm able to pass the famous machine intelligence test devised by
Alan Turing some seventy years ago [6]. With approximately 1 trillion param-
eters, ChatGPT has revolutionized the world of natural language processing 
(NLP) thanks to the high accuracy it can obtain on several information retrieval 
tasks [38,43]. However, it still presents several issues that limit its widespread
adoption, especially in contexts such as medical, ethical, or fail-safe applica-
tions [2,48].
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Some researchers defined large language models (LLMs) like ChatGPT as
‘stochastic parrots’ [4], i.e., systems that haphazardly stitch together sequences of
linguistic forms it has observed in its vast training data, according to probabilis-
tic information about how they combine, but without any reference to meaning.
LLMs, in fact, are trained (mostly in a self-supervised manner) on ‘broad’ data,
which leads to homogenization (i.e., using same model for fine-tuning and train-
ing for different downstream tasks) and emergence (i.e., LLMs can solve tasks
they were not originally trained upon). This poses several risks [10], including
‘hallucination’ [28], which can lead to several ChatGPT failures, including rea-
soning, factual errors, math, coding, and bias [11]. ChatGPT, moreover, is not
interpretable (because we do not get to see its true inner workings, e.g., how
cause and effect are associated); it is not trustworthy (because it is only as good
as its training data and it often lacks the commonsense knowledge required for
disambiguation); and it is not explainable (because we do not get any explana-
tion about the decision-making processes that produce its final results).

In this work, we aim to mitigate these issues in the context of affective com-
puting. We propose SenticNet 8, a neurosymbolic AI framework leveraging an
ensemble of commonsense knowledge representation and hierarchical attention
networks, which automatically extracts important affective information (such as
sentiment polarity, emotion labels, opinion targets, emotion-cause pairs, polar-
ity intensity, personality traits, etc.) from both formal and informal natural
language text with state-of-the-art accuracy. This is enabled by an approach to
NLP that is both top-down and bottom-up: top-down for the fact that Sentic-
Net 8 leverages symbolic models (namely, conceptual dependency theory and
a semantic network of affective commonsense knowledge) to encode meaning;
bottom-up because we use sub-symbolic paradigms (namely, hierarchical atten-
tion networks and LLMs) to infer syntactic patterns from data. We compare
SenticNet 8 with ChatGPT, a robust language model (RoBERTa), pretrained
embeddings (word2vec), and the bag-of-words (BoW) model. Results show that
SenticNet 8 generally presents superior accuracy with respect to all four models.
Unlike these baselines, moreover, SenticNet 8 is also interpretable, trustworthy,
and explainable. The remainder of the paper is organized as follows: Sect. 2 lists
recent related works; Sect. 3 describes the proposed framework; Sect. 4 presents
experimental results; Sect. 5 discusses insights gained; finally, Sect. 6 provides
concluding remarks.

2 Related Work

Since Ancient Greece, it has been widely acknowledged that humans seek expla-
nations in an attempt to understand the world [33]. This ubiquitous search
for answers and explanations is inherent to human nature and fundamental to
integrate technology into everyday lives. As technology advances and human-
computer interaction (HCI) becomes more prevalent, in fact, the need for under-
standing and explaining the decision-making processes of affective computing
models has become paramount [18,32].
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Various studies have focused on developing machine learning models for emo-
tion recognition from different modalities, such as facial expressions, speech,
text, and physiological signals [22]. Traditional approaches include feature engi-
neering and classical machine learning techniques. More recently, deep learning
methods, especially transformers, have demonstrated remarkable performance
in this domain [56]. However, the black-box nature of deep learning models has
raised concerns about their interpretability, motivating researchers to delve into
explainable machine learning techniques. Explainable artificial intelligence (XAI)
offers methodologies to ‘open the black box’ of machine learning models and
make their decision-making processes understandable to humans [7,12,14,25].
Interpretability techniques, such as saliency maps, feature visualization, and
activation maximization, have been applied to emotion recognition systems to
highlight the regions in input data that are influential in driving the model’s
predictions [20,34].

Explainable affective computing represents an ongoing and significant area
of research that seeks to bridge the gap between the powerful predictive capa-
bilities of AI systems and the need for human-understandable decision-making
processes [3,24,29]. By drawing from various fields, including XAI, HCI, and
ethics, researchers aim to create emotionally intelligent systems that are trans-
parent, trustworthy, and capable of enhancing human-computer interfaces in
a more natural and empathetic manner [21,37]. Many recent works are using
neurosymbolic AI to leverage both the robust pattern recognition capabilities
of neural networks and the structured reasoning strengths of symbolic AI [52–
54,57,58,60]. As the field continues to evolve, it is expected that advances in
explainability will lead to more responsible and ethically-aware affective com-
puting applications in various domains, including healthcare, education, and
human-robot interaction [15,30].

3 Proposed Framework

SenticNet 8 aims to mitigate one important issue with current AI models: the
symbol grounding problem. Solving this problem is crucial for achieving XAI
because it addresses the foundational challenge of connecting abstract symbols
or representations to concrete real-world entities and experiences. By establish-
ing a clear and meaningful connection between symbols and their referents, XAI
systems can provide more understandable and interpretable explanations for
their actions and decisions. This is done through a three-step normalization pro-
cess (Fig. 1). Firstly, a “syntactic normalization” step leverages a graph-based
approach [16] to replace inflections like bought, purchasing, and pays for with
their lemmas, e.g., buy, purchase, and pay for, respectively. Secondly, “seman-
tic normalization” (explained in detail later) leverages conceptual dependency
theory [27,41,46,47,51] and a commonsense knowledge graph [49] to replace
resulting lemmas like purchase and pay for, with their corresponding concep-
tual primitive, e.g., BUY(x), where x is the direct object indicating the thing
acted upon by the primitive.

Finally, the “pragmatic normalization” step draws lessons from the field of
semiotics to ground the meaning of resulting conceptual primitives into language-
agnostic representations that can better explain the current state of affairs of
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Fig. 1. SenticNet’s three-step normalization process

an operating environment. For example, the word buy is nothing more than a
three-letter word with some statistical properties for a LLM but in SenticNet
BUY(x) is represented as a double transfer of ownership where, at time t−1,
agent A owns $ (a certain amount of money) and agent B owns x while, at
time t0, agent A owns x and agent B owns $. This sort of universal symbolism is
useful for several reasons. Firstly, it represents an interesting attempt to recreate
language-agnostic representations to refer to concepts in a universal way, the
same way as mathematical symbols or musical notes allow anyone to perform
mathematical operations or read and write music, no matter what language
they speak. Secondly, it uses more grounded representations that, unlike words
or word embeddings, can better replicate or visualize the current state of affairs
of an operating environment on the fly, as narratives unfold (this is currently
done in terms of 2D symbols but, in the future, it could be implemented by
generating 3D representations in a virtual world).

Fig. 2. A universal symbolism can aid generalization and disambiguation tasks.
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Fig. 3. A universal symbolism can aid machine translation and multimodal tasks.

Additionally, this symbolism can help handle both richness and ambiguity of 
natural language by having a unique simplified representation for the potentially 
infinite ways one can express the same concept in natural language (Fig. 2). Sim-
ilarly, it can aid machine translation efforts by having a common or shared rep-
resentation for the same concept, which is then referred to by different languages 
using their own encodings, e.g., sequence of letters versus sequence of charac-
ters, left to right versus right to left, text versus speech, etc. (Fig. 3). Lastly, an 
important novelty introduced by this symbolism is the use of the time dimension 
for knowledge representation, which is mostly absent from past frameworks but 
which is very important to better model cause and effect [59], especially in the 
context of affective computing. Although most emotions only take place in the
present (t0), in fact, many also involve the past (t 1), e.g., regret, nostalgia, 
remorse, and resignation. Some other involve the futu

−
re (t+1), e.g., anticipation,

hope, anxiety, and relief. Finally, there are also emotions like gratitude, which 
can span across past (appreciation for past favors), present (current kindnesses), 
and future (hopeful expectations for future support or kindness).

Another key novelty introduced by this paper is the design of the second step 
in the above-mentioned normalization process, i.e., the semantic normalization 
component (Fig. 4). Such component comprises of two main modules, namely 
polarity detection and lexical substitution (explained later). Given an input sen-
tence w = (w1, w2, . . . , wL), we first aim to identify the target word t that should 
be replaced by a primitive for the downstream prediction from w. We extract 
K primitives from SenticNet 7 [13] as candidates c = (c1, . . . , cK ), forming the 
input (s) as

s =< s >,w1, w2, . . . , t, . . . , wL, < /s >,

c1, < /s >, c2, < /s >, . . . , cK , < /s > .
(1)

< s > and < /s > are special tokens that were defined by the employed pre-
trained language model. The lexical substitution module identifies the best can-
didate from c as the substitute ĉ which retains the original meaning of t in the
context by using contrast learning.
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Thus, ĉ is the symbolic representation of t in context w. Then, the substitute
input wf = (w1, . . . , ĉ, . . . , wL) is fed into a neural network classifier to predict
a sentiment label. The objective is that the substitute input wf increases the
probability of correct sentiment prediction. First, through steps (1) and (2) in
Fig. 4, the original input is fed into the encoder and the interpretable attention
module to obtain the top I tokens with the highest attention weights, which
contribute the most to sentiment prediction. In step (3), the sense diversity
of each token is computed as the average distance of the token’s hidden state
to those of its substitution candidates, i.e., the most relevant primitive. Then,
through step (4), the top J tokens that are most likely to be replaced by a
primitive are selected as targets, because these target tokens may be associated
to different primitives in different contexts.

Subsequently, the pre-trained lexical substitution module provides the best
substitution to replace each target token, as shown in steps (5) and (6)a. The new
input sentence is passed onto the polarity detection module for final prediction
through steps (7)a and (8)a, which is used for the sentiment module backprop-
agation in step (9)a. In order to fine-tune the lexical substitution module and,
hence, provide better primitive substitutions that improve the accuracy of senti-
ment analysis, we implement a dynamic rewarding mechanism (explained later).
As shown in steps (5) and (6)b, for each target word, the top N candidates are
selected. Each of them is seen as a substitute candidate to calculate the probabil-
ity of correct sentiment prediction after the replacement in steps (7)b and (8)b.
Then, each probability is used to dynamically compute the loss weight when the
corresponding primitive candidate is learned by the lexical substitution module
as a ground truth as shown in (9)b and (10)b.

Fig. 4. Semantic normalization component. Dotted lines represent backpropagation.
Green blocks indicate the original word being replaced by a word provided by the
lexical substitution module. The darker the green, the higher probability it is assigned
to by the model. (Color figure online)
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If the replacement by a candidate leads to a higher chance of predicting the
right sentiment, the candidate is more likely given a higher rank assigned by the
lexical substitution module. Otherwise, the module would be less likely to select
the candidate as the best replacement. The detailed training process can be seen
in Algorithm 1.

Algorithm 1: Semantic normalization.
1 Initialize polarity detection module as Φ, pre-trained lexical substitution

module as Ψ;
2 Initialize hyperparameters β, I,J , N ;
3 while not done do
4 Sample a sentence w = w1, w2, . . . , wL;
5 for l=1:L do
6 Compute the attention weight al of token wl;
7 end
8 watt ← Top I of w ordered by attention weights a = a1, a2, . . . , aL;
9 for i=1:I do

10 c ← all possible primitive candidates with the same part-of-speech type
as watt

i from SenticNet 7;
11 Compute the average Eulidean distance di between the hidden states of

watt
i and c, produced by the encoder in Φ;

12 end
13 t = (t1, t2, . . . , tJ) ← Top J of watt ordered by d = d1, d2, . . . , dI ;

14 wf ← w ;
15 for j=1:J do
16 Input tj into Ψ to produce top N candidates ĉ = (ĉ1, . . . , ĉN ), ordered

by probability;

17 Replace tj in wf with ĉ1;
18 s ← (< s >,w1, . . . , ti, . . . , wL, < /s >,
19 ĉ1, < /s >, . . . , ĉN , < /s >);
20 for n=1:N do
21 ws ← Replace tj in w with ĉn;
22 Input ws into Φ to obtain the probability of correct sentiment

prediction P (ŷ = ỹ) ;
23 θj,n ← βP (ŷ = ỹ)2 ;

24 Compute L(ls)
j,n by feeding s with ĉn labeled as true substitute into Ψ

;

25 L(ls)
j,n ← θj,nL(ls)

j,n ;

26 end

27 end

28 L(ls) ← L(ls)
1,1 + · · ·+ L(ls)

1,N + L(ls)
J,1 + · · ·+ L(ls)

J,N ;

29 Compute sentiment analysis loss L(sa) using wf as input;

30 L ← L(sa) + L(ls) ;

31 end



204 E. Cambria et al.

3.1 Sentiment Analysis with Interpretability

Given input sentence w = (w1, . . . , wL), the goal is to predict the correct senti-
ment label ỹ. The input is first fed into a pre-trained encoder:

V = Encoder(w), (2)

where V is hidden states.
Next, we aim to find the tokens that contribute the most to sentiment infer-

ence. We adopt an interpretable attention module called hierarchical attention
network (HAN), which effectively encodes hidden states with multiple non-linear
projections and ranks the most influential tokens based on attention [55]. We
stack two blocks of HAN to form our attention module.

q, a = HAN(HAN(V )), (3)

where vector q is the yielded hidden state and a is the attention weights, indicat-
ing the contribution of each token to the final sentiment prediction. To obtain
the sentiment prediction, q is passed on to two layers of feedforward neural net-
works (FNN) to obtain the probability distribution of sentiment prediction, with
the first one being activated by ReLU [1], and the second by softmax.

h = ReLU(FNN1(q)) (4)
ŷ = softmax(FNN2(h)) (5)

We denote the prediction of the sentiment analysis module as ŷf when the input
is wf , which denotes a substitute w where all selected target tokens are replaced
by relevant primitives. Thus, the sentiment analysis loss is computed as:

L(sa) = CrossEntropy(ŷf , ỹ) (6)

3.2 Generalization by Lexical Substitution

For the lexical substitution module, we employ a novel pre-training paradigm,
termed anomalous language modeling (ALM), which was pre-trained to detect
anomalous substituted words from a sequence and retrieve the original words
from a set of candidates that contains a positive sample (appropriate primitive
of the original word according to the context) and multiple hard negative samples
(other primitives associated with the original word) via contrastive learning.

We use the candidates from SenticNet 7 to formulate our input s as in For-
mula 1. The candidate with the highest score is set as the ground truth substi-
tution c̃. Given the input s, the model encodes it as:

U,R = ALM(s), (7)

where U = [u1, . . . , uL] is the hidden states of the input sentence, and R =
[r1, . . . , rK ] is the hidden states of the candidates. We denote the representation
of the target word as ut (t ∈ {1, . . . , L}).
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Our training objective is to a) close the distance between the representation
of the ground truth candidate rk, (k ∈ {1, . . . ,K}) with ut, and b) push away
incorrect candidates representations rj (j ∈ {1, . . . ,K|j "= k}) from ut. Namely,
(rk, ut) will be regarded as a positive pair, while (rj , ut) will be regarded as a
negative pair. We follow the InfoNCE loss [42] to achieve these goals, which can
be formulated as :

L(tune) = −
∑

i

log
exp(d(ut, rk)/τ)∑
j exp(d(ut, ri)/τ)

, (8)

where i ∈ {1, . . . ,K}, τ is a temperature hyper-parameter, and d(·) is Euclidean
distance. During the inference stage, we choose the candidate ĉ whose corre-
sponding hidden state rk is the most similar to ut, measured by Euclidean dis-
tance:

ĉ = argmin(d(ut, rk)) (9)

We then use the resulting lexical substitution module to find primitive
replacements for the selected target words in sentiment analysis input. To deter-
mine which words are selected as primitive targets, we select the top I words in
the input with the highest a produced by Eq. 3, forming the set watt. We denote
their corresponding representations as V att = {vatt1 , . . . , vattI }. For each vatti , we
compute its average Euclidean distance to all of its candidates’ hidden states.
The candidates consist of relevant primitives from SenticNet 7 under the same
part-of-speech type, which are transformed into hidden states G = {g1, . . . , gM}
using Eq. 2. M represents the number of primitive candidates from SenticNet 7.
The top J words in watt with the largest corresponding average distance are
considered to be the ones with the most diverse word meanings, and thus are
more likely to be replaced. Hence, target words t = (t1, . . . , tJ ) are selected by
finding each corresponding vattj :

vattj = argmaxi(
1
M

∑

M

d(vatti , gm)). (10)

3.3 Dynamic Rewarding Mechanism

To fine-tune the lexical substitution module on the downstream task of sentiment
analysis, we utilize the top N candidates ĉj = {ĉj,1, . . . , ĉj,n, . . . , ĉj,N} produced
by the lexical substitution module, for each target word tj .

The new input resulting from tj being replaced by candidate ĉj,n is denoted
as wj,n. Same with Eq. 5, the probability distribution of a sentiment prediction
from wj,n is:

P (ŷ)j,n = softmax(FNN2(hj,n)), (11)

where hj,n are the hidden states of wj,n produced by Eq. 4 in the sentiment
analysis module.
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To adjust the model in such a way that a more accurate sentiment prediction
results in a higher reward for the corresponding substitution output, we compute
the loss weight for ĉj,n being the correct substitution prediction as:

θj,n = βP (ŷ = ỹ)2j,n, (12)

where β is a hyperparameter for balancing the sentiment analysis and lexical
substitution losses, ỹ is the ground truth sentiment label as defined above. We
formulate the input sj to lexical substitution module with sentence w and can-
didates ĉj , using Formula 1.

Similar to Eq. 8, the loss (L(ls)
j,n ) of the lexical substitution module when ĉj,n

is considered as gold standard is computed as follows:

L(ls)
j,n = −

∑

i

log
exp(d(ut, ĉj,n)/τ)∑
j exp(d(ut, ĉj)/τ)

. (13)

Finally, the total loss is computed as:

L = L(sa) + θ1,1L(ls)
1,1 + · · ·+ θJ,NL(ls)

J,N . (14)

The algorithm also works well with emoticons and emojis, which are very
important sentiment indicators in social media text. These are aptly replaced
with their corresponding primitive, which in most cases is an emotion primitive.
In particular, we use the Hourglass of Emotions [50] as emotion categorization
model for both verbal and nonverbal content (Fig. 5).

Fig. 5. The Hourglass of Emotions. Unlike other emotion categorization models, the
Hourglass represents antithetic emotions very efficiently. Its mirroring capability, in
fact, enables the easy handling of negations and other variations of language that can
change the sentiment of words otherwise taken in isolation.
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4 Evaluation

We test SenticNet 8 against ChatGPT and three more NLP models on three
different affective computing datasets. In the following three sections, we describe
in detail baselines adopted, datasets used, and results obtained, respectively.

4.1 Baselines

In order to compare the performance of SenticNet 8 on the different tasks, we
need to use baselines and train them on the Train portion (while validating on
the Dev portion). Besides ChatGPT, we employ three more baselines, which
serve as the specialized models specifically tailored for the corresponding down-
stream task: a robust language model (RoBERTa) trained on a large amount
of text; a baseline which uses a word model by employing pretrained word2vec
(W2V) embeddings; and a simple Bag-of-Words (BoW) model that utilizes a lin-
ear classifier. The hyperparameters of all models are optimized by selecting the
hyperparameters yielding the best performance on the Dev portion. Such hyper-
parameters are tuned using the SMAC toolkit [35], which is based on Bayesian
Optimization. The selected hyperparameters are listed in Table 1. Figure 6 illus-
trates the pipelines of all methods.

Bag of Words. BoW is a simple model that uses only in-domain data for train-
ing and no other data for either up- or downstreaming. We utilize the classical
technique term frequency – inverse document frequency (TF-IDF), which tok-
enizes the sentences into words, then, a sentence is represented by a vector of
the counts of the words it contains. The vector is then normalized by the term
frequency across the entire Train set of the corresponding dataset. We tune the
learning rate η of SGD using SMAC.

Word2vec Embeddings. The baseline word2vec [39,40] makes use of pre-
trained word embeddings, which are trained on a large amounts of text from
Google News. The model operates by tokenizing a given text into words, each
word is assigned an embedding from the pretrained embeddings. The embed-
dings are then averaged for all words to give a static feature vector of size 300
for the entire string. An SVM model [8] is then used to predict the given task.

RoBERTa Language Model. The baseline RoBERTa [36] is a pretrained
BERT model, which has a transformer architecture. [36] trained two instances
of RoBERTa; we use the smaller one, namely RoBERTa-base, consisting of 110
million parameters. The model starts by tokenizing a text using subword encod-
ing, which is a hybrid representation between character-based and word-based
encodings. The tokens are then fed to RoBERTa to obtain a sequence of embed-
dings.
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Fig. 6. Evaluation pipelines of SenticNet 8, ChatGPT, RoBERTa, word2vec, and BoW
(from top to bottom).

ChatGPT. We introduce the stages of querying ChatGPT as shown in Fig. 6.
The general mechanism for collecting answers for each NLP task is as follows:

1. Reformat all the texts of the Test portion of the dataset, by using a format
that asks ChatGPT what is their guess about the label of the text.

2. Chunk the examples into 25 examples per chunk.
3. For each chunk, open a new ChatGPT Conversation.
4. Ask ChatGPT (manually) the reformatted question for each example, one-

by-one, and collect the answers.
5. Repeat the steps 3–4 until the predictions for the whole Test set are finished.
6. Postprocess the results in case they need some cleanup.

Table 1. Hyperparameters of the different baselines. N is the number of hidden layers,
U is the number of neurons in the first hidden layer (which is halved for each subsequent
layers), and α is the learning rate. Adam optimizer always yields the best results as
compared to SGD. C is the SVM parameter for word2vec. η is the learning rate of the
SGD in the BoW model.

RoBERTa W2V BoW

N U α C η

Polarity 3 420 2.97 × 10−5 0.0144 5.25 × 10−6

O 2 498 5.66 × 10−4 0.0378 2.47 × 10−3

C 0.0472 3.09 × 10−6

E 0.0069 1.09 × 10−5

A 0.0218 4.65 × 10−4

N 0.0657 2.21 × 10−6

Suicide 3 497 8.04 × 10−4 10.00 4.71 × 10−6
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The formats used for the three NLP tasks are shown in the following snip-
pets. The {text} part needs to be replaced with the sample text. Please note
that quotation marks need to be kept since it specifies to ChatGPT that this
a placeholder used by the question being asked. The formulations for the three
NLP tasks are as follows:

1. For sentiment analysis, we formulated the question:
“What is your guess for the sentiment of the text “{text}”, answer
positive, neutral, or negative? it does not have to be correct. Do not
show any warning after.”

2. For the Big-five personality traits, we asked:
“What is your guess for the big-five personality traits of someone who
said “{text}”, answer low or high with bullet points for the five traits?
It does not have to be fully correct. You do not need to explain the
traits. Do not show any warning after.”

3. For the suicidal ideation detection, we asked:
“What is your guess if a person is saying “{text}” has a suicide
tendency or not, answer yes or no? it does not have to be correct. Do
not show any warning after.”

The formulation of the question is of crucial importance to the answers Chat-
GPT generates. For anyone who would like to carry out similar investigations in
the future, we report four important lessons learnt:

1. Asking the question directly without requesting ChatGPT to guess made it
often answer that there is little information provided to answer the question,
and it cannot answer it exactly.

2. It is important to ask what the guess is and not “Can you guess”, because
this can generate a response similar to 1., where ChatGPT responds with an
answer that starts with “No, I cannot accurately answer whether...”. There-
fore, the question needs to be assertive and specific.

3. The questions for the suicide assessment task may trigger warnings in the
responses of ChatGPT due to its sensitive content.

4. We need to specify the exact output format, because ChatGPT can get cre-
ative about the formatting of the answer, which can make it hard to collect
answers for our experiment.

The responses of ChatGPT need to be parsed, since ChatGPT can give
arbitrary formats for a given answer, even when the content is the same. This
is predominant in the personality traits, since there are five traits. Sometimes
the answers are listed as bullet points, other times they are all in one comma-
separated line. Also, it used different delimiters or order, e.g., “Openness: Low”,
or “Low in Openness”, and “Low: Openness”. Additionally, in all problems,
it sometimes gives an introduction for the answer, for example, “Here is my
guess for ..”, or “Based on the statement”. We solve this issue by using regular
expressions to find and edit such responses.
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Table 2. Statistics of the three datasets used for evaluation.

Dataset Train Dev Test PosNeg

Polarity 1,440,144 159,856 359 182 177

O 6,000 2,000 509 333 176

C 286 223

E 214 295

A 340 169

N 274 235

Suicide 138,479 6,270 496 165 331

4.2 Datasets

In this section, we briefly introduce the three datasets we used. A summary of their 
statistics is presented in Table 2. We utilize publicly available datasets for 
reproducibility.

Polarity Dataset. We adopt the Sentiment140 dataset [23] for  the  sentiment 
analysis task. The dataset is collected from Twitter, which makes the text very 
noisy and can pose a challenge against many models (especially word models). 
The dataset consists of tweets and the corresponding sentiment labels (positive 
or negative).

Personality Dataset. We utilize the First Impressions dataset [44] for  the 
personality task. Personality is represented by the Big-five personality traits 
(OCEAN), namely, Openness (to experience), Conscientiousness, Extraversion, 
Agreeableness, and Neuroticism. The  dataset consists of 15 s videos with 
one  speaker, whose personality was manually labelled.

Suicide and Depression Dataset. The Suicide and Depression dataset [19] is 
collected from the Reddit platform, under different subreddits categories, namely 
“SuicideWatch”, “depression”, and “teenagers”. The texts of the posts from the 
“teenagers” category are labelled as negative, while the texts from the other two 
categories are labelled as positive.

4.3 Results

In this section, we review the results of our experiments. In summary, we 
evaluated the performance of SenticNet 8 (our commonsense knowledge base 
of 400,000 concepts, available for download at https://sentic.net/downloads) 
against four baselines (namely, ChatGPT, RoBERTa, word2vec, and BoW) on 
three downstream tasks (namely, sentiment analysis,  personality recognition,  and
suicidal ideation detection). Results are shown in Table 3. We use classification accuracy 
and unweighted average recall (UAR) as performance measures.

https://sentic.net/downloads
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UAR has an advantage of exposing if a model is performing very well on a 
class on the expense of the other class, especially in imbalanced datasets. As also 
demonstrated by other recent works [26,45], ChatGPT turned out to be jack of all 
trades but master of none [31] also  in the  context  of affective computing: 
while the performance of ChatGPT is acceptable on many different NLP tasks, 
specialized models like SenticNet 8 (and even RoBERTa in most cases) still 
outperform it on specific tasks. Unlike all baselines used in this work, moreover, 
SenticNet 8 is also interpretable (because the process that generalizes input words 
and multiword expressions into their corresponding primitives is fully 
transparent), trustworthy (because classification outputs always come with a 
confidence score), and explainable (because classification outputs are explicitly 
linked to emotions and the input concepts that convey these).

Table 3. Classification accuracy and unweighted average recall (in %) of SenticNet 8 
against four baselines (CGPT: ChatGPT; rBERT: RoBERTa; W2V: word2vec; BoW: 
Bag of Words) on three different NLP tasks (Polarity: sentiment analysis; OCEAN: 
personality prediction; Suicide: suicidal ideation detection). Bold values show the best 
method for a combination of specific performance metric and prediction target.

Accuracy Unweighted Average Recall

[%] SenticNetCGPT rBERTW2VBoW SenticNetCGPT rBERTW2VBoW

Polarity 88.80 85.51 85.07 79.41 82.5488.67 85.57 85.02 79.40 82.41

O 67.91 46.62 66.03 65.28 59.7178.27 50.12 50.94 50.72 55.61

C 65.97 57.40 63.72 62.70 55.6079.92 57.70 60.81 60.09 56.30

E 63.19 55.23 66.09 59.92 55.2472.76 54.09 62.30 55.56 53.74

A 67.86 44.86 67.42 67.21 58.5379.93 48.45 51.93 51.02 55.75

N 64.53 47.29 62.17 56.84 56.0977.54 49.16 61.25 54.64 55.88

Suicide 99.34 92.71 97.43 92.16 92.7899.35 91.26 97.40 91.23 90.97

5 Discussion

Intuitively, even if real parrots or stochastic ones (LLMs) produce the appro-
priate linguistic response relative to the task-related prompts for the three
above-mentioned datasets, we would not deem their linguistic behavior trust-
worthy unless they possess the relevant natural language understanding. Mean-
ing involves a relation between the linguistic form of data and an extralinguistic
reality that is distinct from language. Where M denotes meaning, E denotes
the form of natural language expressions, and I denotes communicative intent,
this relation may be formally represented as M ⊆ E × I [5]. M contains ordered
pairs (e, i) of natural language expressions (e) and communicative intents (i).
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     Understanding may be interpreted as the process of retrieving i, given  e. 
Since LLMs are pretrained on large datasets and meaning cannot be learnt from 
lin-guistic form (e) alone, however impressive their transformer and artificial 
neural network architecture might be, LLMs will necessarily lack the relevant 
inten-tionality. We do not claim that SenticNet 8 possesses either human-level or 
the req-uisite level of natural language understanding. However, as SenticNet 8 
relies on commonsense knowledge representation as part of its ensemble, it is 
better able than ChatGPT to track the extralinguistic reality that is distinct from 
language. For affective computing tasks, SenticNet 8 is ahead of ChatGPT, as its 
responses are more firmly grounded in an extralinguistic reality through its 
reliance on commonsense knowledge representation. SenticNet 8 leverages sym-
bolic models (namely, conceptual dependency theory and a semantic network of 
commonsense knowledge) to encode meaning in a top-down fashion. Finally, this 
work does not aim to disdain ChatGPT: we hope future versions of ChatGPT will 
overcome some of the reported limitations. Given the non-interpretability of its 
constitutive models, however, it may not happen so soon. As shown in a recent 
study [17], in fact, ChatGPT seems prone to the “short blanket dilemma”: while 
trying to improve its accuracy on some tasks, OpenAI researchers inadvertently 
made ChatGPT worse for tasks which it previously excelled at.

6 Conclusion

In this paper, we presented SenticNet 8, a neurosymbolic AI framework lever-
aging an ensemble of commonsense knowledge representation and hierarchical 
attention networks, which aims to mitigate the symbol grounding problem. We 
compared SenticNet 8 against ChatGPT and three more baselines on three down-
stream tasks. Results show that SenticNet 8’s performance is generally superior to 
all baselines on all tasks. Unlike the other baselines, moreover, SenticNet 8 is 
interpretable, trustworthy, and explainable. We also propose the idea of a uni-
versal symbolism that leverages language-agnostic representations, which can 
better emulate the current state of affairs of an operating environment on the fly, 
as narratives unfold.

7 Limitations

A crucial limitation of the presented results is the small amount of data for 
evaluation (497, 362, and 509 examples for the three tasks), since ChatGPT is 
only available for manual entries by the consumers and not for automated large-
scale testing. Additionally, it only responds to approximately 25–35 requests 
per hour, in order to reduce the computational cost and avoid brute forcing. 
Another issue that may limit future experiments is parsing the responses. In our 
experiments, ChatGPT responded with arbitrary formatting despite specifying 
the desired format explicitly in the question prompt.



SenticNet 8 213

One final limitation of the proposed approach is that pragmatic represen-
tations are currently defined manually. However, this is not an issue for our
current investigation considering that: (a) these representations need to be cre-
ated only for conceptual primitives (which are automatically discovered using
deep learning); (b) these representations only need to be created once (as con-
ceptual primitives are not subject to concept drift); and (c) in this work we
merely consider polar conceptual primitives, i.e., only primitives that can be
associated with certain emotions and a positive or negative polarity. In order
to apply this approach to more general NLP tasks, a generative AI mechanism
for automatically creating such representations should be implemented. Alterna-
tively, this could be done by first establishing a universal set of natural language
symbols, e.g., emojis, ISO icons, or blissymbolics [9], and then devising methods
for automatically translating different languages into such symbols, similar to
how music notation rendering transforms audio into written music scores. We
leave this to future work.
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