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Abstract—Nowadays, videos are an integral modality for information sharing on the World Wide
Web. However, systems able to automatically understand the content and sentiment of a video
are still in their infancy. Linguistic information transported in spoken parts of a video is known to
convey valuable properties in regards to context and emotions. In this work, we explore a lexical
knowledge-base extraction approach to obtain such understanding from the video transcriptions
of a large-scale multimodal dataset (MuSe-CAR). To this end, we use SenticNet to extract natural
language concepts and fine-tune several feature types on a subset of MuSe-CAR. With these
features we explore the content of a video as well as learning to predict emotional valence,
arousal and speaker topic classes. Our best model improves the linguistic baseline from the
MuSe-Topic 2020 sub-challenge by almost 3 % (absolute) for the prediction of valence on the
predefined challenge metric and outperforms a variety of baseline systems which require much
higher computational power than the one proposed herein.

THE IMPORTANCE OF VIDEO in social media
and pure video-based platforms is rapidly grow-
ing. In 2018, the numbers of users on video-based
platforms such as YouTube (+27%) and TikTok
(+109%), has grown faster than the biggest social
media platform Facebook (+11%) [1]. Due to the

increasing availability of computing power and
machine learning techniques, new ways to explore
video content are sought. Multimodal Sentiment
Analysis (MSA) in-the-wild is one research area
in which structure of these massive amounts of
data can begin to be obtained [2], [3], [4].
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At its core, the MSA research field aims to un-
derstand (within a video) the schematic structure
of sentiments including the sentiment holder, the
emotional disposition and the reference object [5].
The emotion is directed towards the reference
objects. They occur in various granularity, for
instance, a video might cover multiple topics
and aspects. A topic can be interpreted as the
announcement of a discourse, thus, the utterance
of semantics beyond individual scenes and sen-
tences. A video signal yields three modalities: the
visual (e.g., facial expressions), the audio (e.g.,
vocal characteristics), and the textual information
(transcription of the spoken word). It has been
found, however, that the textual modality has the
greatest impact in understanding the context (e.g.,
topic) [6].

We present a sentiment analysis study focus-
ing on topics and emotions in video car reviews
from YouTube within our contribution. Thereby,
we aim at a more in-depth exploration of the spo-
ken word, hence, the use of transcriptions. There
are two common ways to utilize text computa-
tionally: a) understand the meaning of words from
their symbolic representation through knowledge-
base and statistical approaches b) learning a
continuous vector space (embeddings) from the
symbolic space of words. Where the first often
focuses on the construction of a taxonomy and
the second is based on neural learning. Instead,
we extract high-level natural language concepts
as features and apply them in a specific domain
without constructing a new taxonomy. The there-
fore necessary vectorial representations can be
obtained by sub-symbolic AI frameworks based
on commonsense computing [7].

A very popular theoretic grounding is the
Hourglass of Emotions [8], a biologically inspired
and psychologically motivated emotion catego-
rization model for sentiment analysis. Building
on the categorization provided by this model,
SenticNet [9] is a commonsense knowledge
based that provides a set of semantics, sentics,
and polarity associated with natural language
concepts. We utilize SenticNet to extract the
above-mentioned attributes and transform them
into domain-specific features. Overall, within the
study, we provide the following two key contri-
butions:

• Gain a better understanding of the usefulness
of high-contextual features to analyze tran-
scriptions – an audio co-depending modality
– as groundwork for the addition to raw
signals (visual, audio and text) normally
used for MSA since others do not contain
any bottom-up and top-top understanding of
our world. One exploratory way of doing
so, is the comparison of these to human
annotations.

• We experiment with topic and emotion
recognition from extracted features based
on a sub-symbolic framework. To do this,
we use the transcriptions of MuSe-CaR, the
largest English speaking MSA dataset.

RELATED WORK
Video is a versatile source of information for

sentiment prediction. Utilizing the transcription
of video utterances in combination with other
modalities, [10], [11], [12] classified the gen-
eral sentiment. However, these approaches ne-
glect that human communication is symbolic,
naturally ordered in a hierarchical structure. In
this respect, knowledge-base frameworks use re-
lational multiword expressions to analyze text
from other sources (excluding video transcrip-
tions). Computational, dictionary-based analysis
of content was first proposed by [13]. WordNet-
Affect contains almost 3,000 synsets, e.g., labels
that indicate emotion and mood categories. Based
on the Russell circumplex model of emotions,
Affective Norms from English Words examines
the dimensions of valence, arousal, and domi-
nance [14]. To date, SenticNet is the largest of
these frameworks, containing 200,000 concepts
which maps a word to sentic and moodtag di-
mensions of the Hourglass of Emotions.

To truly understand the meaning of a sen-
timent directed at an aspect or topic, we need
to contextualize it within the overarching un-
derlying elements of our world, such as so-
cial norms. Manual aspect specification often
comes along with intensive domain knowledge
and expensive/time-consuming extraction. There-
fore, automated sentiment and aspect extraction
has been thoroughly studied using supervised
and unsupervised algorithms for the past two
decades [15], [16], [17], [18], [19].
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Figure 1. An overview of our processing pipeline from the raw video to predicting arousal, valence, and speech
topics.

First efforts towards extracting topics and
aspects came up in the supervised context of
analyzing customer reviews and social media
data using rule mining [20] and lexicons [21].
Aspect and topic extraction on closed captions
from YouTube videos, containing customer re-
views, has been previously implemented using
an attention-based network [22]. However, the
authors’ approach only used a small dataset of
7 videos and did not consider high-level natural
language concept features in predicting sentiment
or for aspect extraction. Besides this, caption
mining was previously used in the context of
scene segmentation [23], video activity recogni-
tion [24], and movie genre classification [25]. Tar-
geting the automotive domain, [26] demonstrated
that emotional and factual knowledge, such as a
sentiment of a product feature, can be extracted
from text using a combination of lexical methods
including SenticNet.

Concerning our current contribution, it is evi-
dent that work applying commonsense knowledge
base or focusing on topics, compromising several
sentences, in video transcriptions are clearly in
the minority, and there have been minimal efforts
in applying these features explicitly.

METHODOLOGY
A pipeline of the entire process is depicted

in Figure 1. Beginning with the automatic tran-
scription from spoken language, natural world
concepts are obtained using SenticNet. The con-
cepts are summarized to sentence- or segment-
level features and then utilized for descriptive
analysis or by machine learning methods to train
models predicting the targets (topic, arousal, va-
lence). As mentioned previously with SenticNet,
we can extract various features, including, sentics,
moodtags and semantics.

In this contribution, we utilize versions 5
and 6 of SenticNet. From version 5, we extract
four sentics: pleasantness, attention, sensitivity,
and aptitude. From version 6, the sentics are
different, and so we extract: introversion, temper,
attitude, and sensitivity. Primary and secondary
moodtags can also be extracted. When observing
the Hourglass model, the moodtags, are below
the sentics and include labels such as; bliss,
ecstasy, and delight. Semantics are also extracted,
and these can be described as concept clusters
that are semantically related to the segment and
share a similar lexical function (cf. Figure 5 for
examples).

Extraction of SenticNet Features. Sentic
API1 serves as our core feature extractor, to ob-
tain the semantics, sentics, moodtags, and polarity
for each n-gram of our corpus. We apply a very
simplistic data cleaning, removing stopwords,
such as personal pronouns (e.g., I, me, you, him),
articles (the, a, an) and conjunctions (e.g., and,
or). To utilize these in sentence or segment con-
text, they have to be aggregated. Formally, given
a sequence n of words w̄s = [w1, ..., wn] for a
segment s, we receive a sequence m of concepts,
which can vary in length to w̄s, c̄s = [c1, ..., cm],
which are embedded to a vector hs. For the
discrete concepts of semantics and sentics, hs is a
concatenation which forms an n-hot encoded vec-
tor. For the concepts that come with a continuous-
valued intensity, such as moodtags and polarity,
the changing length n of the respective context s
has to be considered. We do this by applying a
normalized average over the measurements across
the context.

Modeling. In machine learning, a straight-
forward method to evaluate features’ predictive
power is through the usage of support vector

1https://sentic.net/api
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Figure 2. Relative distribution of the segments re-
garding speaker topics.

machines (SVMs). The robustness against high
dimensional feature data is also an advantageous
property when dealing with n-hot encoded vec-
tors. In the past, SVMs showed results close to
or better than other state-of-the-art algorithms in
similar settings, such as neural networks [27],
particularly when there is not a massive amount
of data available [28]. For our experiments, we
employ a linear SVM classifier implementation
from the python package SCIKIT-LEARN. We
predict our targets ys from our concept vector
c̄s or feature hs without applying normalization.
The C value is tuned from 10−5 to 1 on the
development set using 10,000 iterations and the
best used for the prediction on the test set.

In contrast to our SVM approach, we also
intend to fine-tune the extracted semantic con-
cepts c̄s to domain-specific embeddings hs using
neural learning. Similarly to the word embeddings
training concept, we assign every semantic a fixed
position in a one-hot encoded vector. These sparse
input vectors are then compressed to a 100 dimen-
sional embedding space: hs = σ(c̄s), where the σ
layer has a sigmoid activation function. Based on
the embedding vectors, additional layers can build
upon this which condense the information into a
single meaningful vector, representing an entire
sentence or segment. The summary vector either
predicts the target directly or is used as a feature
vector for an SVM. To improve generalization
and promote independence between feature maps,
we utilize embedding dropout to drop single
features in the embedding space and time-step
dropout to drop entire embeddings instead of
individual features.

DATASET: THE MUSE-TOPIC
SUB-CHALLENGE

In this section, we describe the dataset and
the prediction task environment. The MuSe-CaR
dataset [29] is a large, multimodal dataset fo-
cused on sentiment modeling in automotive video
reviews supporting various research directions
with predefined data subsets holding unique,
task-specific properties and labels. In this work,
we utilize the MuSe-Topic subset2. This sub-
challenge was released as part of the MuSe 2020
challenge [27], [30] and provides 10-classes of
domain-specific speaker topics as the target of
three classes (low, medium, and high) of valence
and arousal emotions.

Although the subset provides multiple modal-
ities, in this work we only focus on the lan-
guage modality, disregarding audio-visual signals.
In recent years, speech-to-text services improved
drastically, reaching almost human-level quality
in the English language. In order to receive tran-
scriptions even capturing domain-specific vocab-
ulary (e.g., “eDrive”), the authors of [29] created
a customized dictionary of typical automotive
terms. The Amazon Transcribe3 service enables
the use of such dictionaries. The transcribed audio
signals include full punctuation, resulting in a
total of 28,295 sentences.

The content can be divided into several seg-
ments. A segment always comprises of only one
topic. A topic is defined as the vocalization
made by the reviewer about a group of homoge-
neous conversation subjects. For example, interior
features include diverse information of entities,
functions, and aspects inside a vehicle, such as
the infotainment system and device connectivity.
One speaker topic segment often consists of one
or multiple sentences. However, as in the sub-
challenge, we excluded around 20% of sentences
which belong to multiple segment topic labels.
An overview of the topics and distribution are
depicted in Figure 2. In addition, for each topic
segment, one valence and one arousal class are
given. The classes represent the mean value of
the temporally aggregated continuous annotations
divided into three equally sized classes (33%) for
each label.

2Download available at https://zenodo.org/record/4134733
3https://aws.amazon.com/transcribe/
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Figure 3. Number of occurrences (on sentence-level) of the top 10 semantics of five exemplary topics extracted
from SenticNet 5 (green) and 6 (red), excluding the most common 100 semantics occurring also in other topics.
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Figure 4. Density estimation of the continuously-
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lence (blue) on the left and the SenticNet polarity
intensities of SenticNet 5 (cyan) and SenticNet 6
(magenta) on the right.

As in this sub-challenge, we report the
weighted score combining Unweighted Average
Recall (UAR) and F1 (micro) measures indepen-
dently for each prediction (valence, arousal, and
topic). In addition, we use the same training,
development and test partitions to enable a fair
comparison to the text-based baseline models
from [27].

EXPLORATORY ANALYSIS
Speaker topics. First, we make use of the

concepts of semantics to obtain a contextual de-
scription of the videos. Figure 3 exemplary com-
pares the semantics for some topic extracted by
the two versions. We exclude concepts which fre-
quently reappear across all classes (one-against-
all) to focus on the most distinctive concepts for
each class which do not occur in most others.
Although the found semantics differ between
versions, they describe seemingly natural aspects
of the topics. For our entire corpus, SenticNet
version 5 provides 14,685 and version 6 8,577

semantics. These extractions serve as a first indi-
cator of the characteristic properties of the video
content.

Emotions. Second, we explore the emotional
information as a target of the topics, which also
can be obtained by SenticNet in an unsuper-
vised fashion. Figure 4 compares the distribution
of the real, hence manually labelled by human
raters, continuous arousal and valence annota-
tions, before the label aggregation to classes,
to the SenticNet polarity extraction. While the
Gaussian-shaped distribution of arousal values
is almost entirely centering around 0, valence
and the SenticNet output are skewed toward the
spectrum’s positive end. The version 6 extractions
appear to be even more similar to the original
valence annotations, due to broader and flatter
distribution. This observed similarity of valence
and sentiment polarity is well in line with pre-
vious research [27]. Overall, when it comes to
interpreting videos regarding valence, SenticNet
poses a strong indicator to harvest sentiment
information from video transcripts without any
additional annotations.

PREDICTION RESULTS
After applying SenticNet for the video tran-

scriptions’ explorative analysis, we also want to
use the extracted features for the prediction tasks.

Speaker topics. Table 2 shows the results
of the task of topic prediction. The naive n-
hot encoded features combined with an SVM
yields the best performance of all evaluated sys-
tems achieving a combined challenge metric of
56.18% on the development and 66.16% on the
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Table 1. MuSe-Topic: Reporting UAR, F1, and Combined (0.66 · F1 + 0.34 · UAR) for the prediction of valence and
arousal using sentics, moodtags (mood), and polarity (pol) as well as FastText as feature sets, which are feed into an
SVM.

System Feature(s) Valence Arousal
F1 UAR Combined F1 UAR Combined

Ours based on
SenticNet 5

sentics 35.66 / 35.16 34.65 / 35.17 35.32 / 35.16 33.56 / 33.73 34.51 / 33.69 33.88 / 33.72
mood 33.78 / 37.86 33.53 / 38.04 33.70 / 37.92 36.78 / 35.79 36.30 / 33.50 36.62 / 35.01
sentics + mood 34.38 / 37.78 34.22 / 37.89 34.33 / 37.82 35.96 / 35.63 35.49 / 33.60 35.80 / 34.94
sentics + mood + pol 34.53 / 38.41 34.40 / 38.55 34.49 / 38.46 35.51 / 36.51 35.15 / 34.54 35.39 / 35.84

Ours based on
SenticNet 6

sentics 35.51 / 36.59 34.77 / 36.72 35.26 / 36.63 32.43 / 35.16 33.45 / 35.91 32.78 / 35.42
mood 38.65 / 36.83 38.28 / 37.57 38.52 / 37.08 35.66 / 38.02 35.33 / 35.86 35.55 / 37.29
sentics + mood 38.13 / 38.57 37.89 / 38.90 38.05 / 38.68 36.18 / 38.02 35.68 / 35.90 36.01 / 37.30
sentics + mood + pol 37.68 / 38.65 37.54 / 38.88 37.63 / 38.73 35.96 / 38.33 35.50 / 36.12 35.80 / 37.58

baseline [27] FastText 37.90 / 36.43 36.00 / 35.37 37.26 / 36.07 45.17 / 38.25 44.53 / 39.67 44.95 / 38.74

Table 2. MuSe-Topic: Reporting the combined score
(0.66 ·F1+ 0.34 ·UAR) for the prediction of topics using
semantics on the devel(opment) and test set. The baselines
use FastText (FT), eGemaps (eG), and Facial Action Units
(AU) as feature sets.

System devel test
Ours based on

SenticNet 5
SVM: n-hot encoded 56.18 66.15
SVM: NN embeddings 47.08 56.71

Ours based on
SenticNet 6

SVM: n-hot encoded 46.22 57.09
SVM: NN embeddings 40.67 49.01

baselines [27]
LSTM + Self-ATT: FT 21.44 36.20
MMT: FT + eG + AU 44.33 52.98
Albert: text 70.62 76.78

test set. As illustrated in Figure 5, the prediction
errors are equally spread, with slightly more con-
fusion between the interior and aesthetics classes
as well as the cost and general information. Our
domain-specific encoding falls slightly behind
with 56.71% on the test set. We also evaluated a
pure neural network architecture, further tempo-
rally encoding the embeddings using an LSTM,
however, achieved slightly worse results.

Compared to the baseline, the results ap-
pear very competitive. They outperform the
LSTM with self-attention by more than 30%,
even outperforming the Multimodal Transformer
from [27] by almost 15%. Only Albert, to date
the most robust end-2-end NLP Transformer for
supervised NLP tasks, exceeds our performance.
This result was to be expected, given the con-
siderable number of model parameters and the
extensive pretraining on downstream NLP tasks
with masses of text data available.

Emotions. Generally, Table 1 shows a clear
advantage of SenticNet 6 over 5 for the predicting
the emotion classes. The best results improve the
baseline by almost 3% (combined score) absolute
using sentics, moodtags, and polarity for valence.
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Figure 5. Relative confusion matrix over all 10
speaker topics using our trained model based on
SenticNet 5 n-hot encoded embeddings on the test
partition.

While the moodtags features seem slightly supe-
rior to the conceptual sentics, all are profiting
from fusion. However, the picture is different
when predicting arousal, where all configuration
performs worse than the text-embedding, low-
level baseline.

These results are conclusive considering the
exploratory observations of the emotions. In com-
bination, they lead us to assume that the high-
level contextual SenticNet features might be valu-
able, mainly, as emotional valence can be a
challenge for uni-modal audio based approaches.
It could also be fused with low-level text em-
beddings. Nevertheless, since the categories were
derived from continuous signals and not directly
labelled, further research should be conducted.
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CONCLUSION
In this article, we explored sub-symbolic rep-

resentations gained from sentic concepts to gain
insights into the emotional and contextual infor-
mation provided by video transcriptions. Further-
more, we have successfully leveraged the derived
features, to automatically classify video segments
regarding arousal and valence as well as ten
domain-specific speaker topics. In the future, one
should build upon these promising results, using
the semantics in a more unsupervised way to
explore the content of videos by clustering and
in combination with high-level feature sets of
other modalities (e.g., face and voice features) for
multimodal modeling.
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