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sample of Dn  that has not been sampled in L l
r  [30], [74]. 

Note that for the Non-parametric Bootstrap procedure 
.n

nn 2 1
r #

-` j
It is worthwhile noting that the only hypothesis needed in 

order to rigorously apply the resampling technique is the i.i.d. 
hypothesis on the data in Dn  and that all these techniques 
work for any deterministic algorithm.

B. In-Sample Methods
For the In-Sample methods, two subfamilies of techniques are 
identified: the class of function-based ones and algorithm-based 
ones [26]. The difference between the two classes is that the 
function-based techniques require the knowledge of FH  and 
thus, cannot be applied to some algorithms (e.g., the kNN 
algorithm), while the algorithm-based techniques can be 
applied to any deterministic algorithm without any additional 
knowledge. Both subfamilies, like the resampling methods, 
require the i.i.d. hypothesis.

One of the most powerful techniques in the class of func-
tion-based techniques is based on the Rademacher Complexi-
ty [23], [30]. In particular, for any bounded loss function 
( , ) [ , ]zf 0 1b, !  it is possible to prove that the following bound 

holds with probability ( )e1 2 x- -  [85]:
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Therefore, based on the Structural Risk Minimization princi-
ple [22], one can design a series of function classes of increas-
ing size, { , , }F FF H H1 2 f=  with ,F F 2H H1 g3 3  so to 
compute at the same time both the MS and the uncertainty 
quantification:
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Unfortunately, the quantity of Eq. (16) cannot be computed 
if we do not know .FH  Moreover, for many algorithms it is 
impossible to define FH  [26]. Algorithm-based techniques cir-
cumvent this problem through the concept of Algorithmic Sta-
bility [25], [26], [86]. In particular, for any bounded loss 
function b,  it is possible to prove that the following bounds 
hold with probability ( )1 d-  [25]:
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The bounds of Eqns. (18) and (19) are polynomial bounds in n 
(not very tight indeed when n is small) while empb  and loob  are 
two versions of Hypothesis Stability which are able to take into 
account both the properties of the algorithm and the property 
of the distribution that has generated the data Dn  [25], [26]. It 
is possible to improve the bounds of Eqns. (18) and (19) by 
exploiting a stronger notion of algorithmic stability, known as 
the Uniform Stability. In particular, the following bounds hold 
with probability ( ):1 d-
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where :  f A( , )D Hn  and
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Unfortunately, the Uniform Stability ( i
b  or )ib  is not able to take 

into account the properties of the distribution that has generated 
the data Dn  and is sometimes unable to capture the properties of 
the algorithm because it deals with a worst-case learning scenario 
[26]. Nevertheless, all the four stability-based bounds of Eqns. (18), 
(19), (20), and (21) can be used to select the best set of hyperpa-
rameters H  in a set of possible one { , , }H HH 1 2 f=  for the 
algorithm .AH  In particular, all the bounds are expressed in the 
form: ( ) ( , , , ).AL n pA D( , ) nD H H Hn # de  Thus, in order to per-
form the MS procedure and uncertainty quantification, we have to 
aprioristically assign to each set of hyperparameters a probability 
pH  (where )p 1

i 1 Hi =
g

=
/  of being chosen during the MS pro-

cedure. The algorithmic stability-based MS and uncertainty quan-
tification procedure can then be summarized as follows:

	 )
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The procedure of Eq. (24) can be exploited with any algorithm for 
which it is possible to compute one of the notions of stability.

VII. Computational Issues for Big Data Analytics
Both naive resampling and In-Sample methods are computa-
tionally expensive when the number of samples is large [30], 
[72]. For this reason, we will focus on adapting these tech-
niques to the Big Data context.

A. Bag of Little Bootstraps
The standard Non-parametric Bootstrap procedure requires, 

{ , , },H H H1 26 f!  to train many (nr) models, and is compu-
tationally very expensive if n is large. For this reason the Bag of 
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Little Bootstraps approach [87]–[90] represents an alternative to 
standard Non-parametric Bootstrap; it considers only b n= c  data, 
with [ / , ],1 2 1!c  in place of the whole dataset during the cre-
ation of the train, validation and test sets. Note that [ / , ]1 2 1!c  
is necessary to maintain the statistical property of the procedure. 
In particular, the Bag of Little Bootstraps [87] consists in sampling 
nrno-rep  times from Dn  without replacement, several datasets Bb

i  
with { , , }i n1 r

no-repf! , consisting of [ , ]b n n!  samples. Then, 
each Bb

i  is sampled with replacement nryes-rep  times, in order to 
derive L ,

n
i j  datasets with { , , }j n1 r

yes-repf! , each consisting of n 
samples. All the samples of Dn , or parts of them, that have not 
been sampled in L ,

n
i j  are used as validation set and test set 

,V D L T D L, , , ,
v
i j

n n
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t
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n n
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t
i j+ 8=  Finally, 

the models are trained on the sets L ,
n
i j  and tested on the corre-

sponding V ,
v
i j ; thus we define the following MS procedure:
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Note that in order to find )H  with the procedure of Eq. (25), 
we have to train a series of models over sets composed by a 
maximum of nc  distinct samples. This means that the MS strat-
egy, if n is large with respect to ,n nr r

no-rep yes-rep  scales with .nc  
Therefore, the procedure scales sub-linearly with respect to n, 
and in the best case scenario, scales with ( ) .O n  Analogous to 
the usual Non-parametric Bootstrap procedure, the uncertainty 
quantification is performed as follows:
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where the best model is obtained by training the algorithm 
with the whole dataset [83]: ))  f A( , )D Hn= .

Finally, we would like to underline that c  balances the 
tradeoff between accuracy and computational requirements of 
the statistical procedure [88], [90]. The more ,1"c  the better 
the MS strategy will perform. Since we deal with Big Data in 
this paper, we set / .1 2c =  The application of this approach to 
ELM is straightforward by noting that the hyperparameters of 
ELM are [ , )0 3!m  and { , , }h 1 2 f! .

B. Simplified Rademacher Complexity
Now, we show that the Rademacher Complexity of ELM 
(which employs the general regularization schema of Eq. (12)) 
can be easily upper bounded. In particular, let us truncate the 
loss functions such that ( , ) [ , ( , ( ), )] .z w xminf C y1T i i, z=  It is 
easy to see that ( , ) ( , ) .z zf fH T, ,#  Consequently, the general-
ization error computed with ( , )zfH,  is equal to or less than 
the one computed with ( , )zfT, . By exploiting the bound of 
Eq. (15) for ( , )zfT,  the computation of the empirical error is 
straightforward and it is possible to prove that the Rademacher 
Complexity can be upper bounded as follows [85]:
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where L is the Lipschitz constant characterizing ( , )zfT,  and 
( )w ,h
)
m  is the solution to the ELM problem of Eq. (10) (or more 

generally Eq. (12)) for a given h and .m  ( , ( ), )w xC yi iz  and 
( )wR  can be any of the ones reported in Table 1. Note that h 

and m  define the size of the class of functions in ELM [30] and 
thus, we can plug this result in the procedure of Eq. (17) and 
obtain a computationally efficient way of assessing the perfor-
mance and quantifying the uncertainty of ELM. In fact, in 
order to exploit the procedure of Eq. (17), it is only necessary 
to train, for each values of h and ,m  the ELM model and to 
compute the quantity of Eq. (27) which is computationally 
inexpensive once the ELM has been trained.

C. Simplified Uniform Stability
In this section, we show how to apply the bound based on the 
Uniform Stability in the Big Data scenario. The bound of Eq. 
(21), which takes into account the leave-one-out error, is too 
computationally expensive to compute. Instead, we employ that of 
Eq. (20). As in Section (VII-B), we use the truncated loss function 
since for the hard loss function we have trivially that 
( , ) .n 1Ai Hb =  Consequently, once the ELM has been trained 

we can compute the empirical error with the truncated loss. 
Computing ( , )nAi Hb  is not easy but, thanks to the result of [25], 
it is possible to upper bound it in the case of ELM as follows:
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where L is the Lipschitz constant characterizing ( , ) .zfT,  In 
this case, ( )wR  must be w 2  since the bound does not hold 
for all the ( )wR  reported in Table 1. Then the application of 
the procedure of Eq. (24) to ELM becomes straightforward and 
computationally inexpensive. From Eq. (28) it seems that the 
Uniform Stability takes into account only the property of ELM 
through m  and h through ,z  and not the distribution of the 
data. In other words, the Uniform Stability upper bound of Eq. 
(28) is not able to capture the effect of changing the loss.

D. Bag of Little Hypothesis Stabilities
In order to overcome the issues of the Uniform Stability, we 
exploit the proposal of [26] to estimate the Hypothesis Stability 
instead. As we will see, this proposal is also well suited for Big 
Data applications. As for the Uniform Stability, we do not con-
sider the bound of Eq. (19) since it is too computationally 
expensive. Consequently, we take into account the bound of 
Eq. (18). In this case, we do not need to exploit the truncated 
loss function, but can use the hard loss function directly once 
the ELM model has been trained with a fixed value of .m  In 
order to compute the bound of Eq. (18) and perform the pro-
cedure of Eq. (28), we need to compute ( , ).nAemp Hb  We start 
by making an assumption on the learning algorithm AH . In 
particular, we suppose that the Hypothesis Stability does not 
increase with the cardinality of the training set:

	 ( , ) ( , ) .n n 1A Aemp empH H#b b - � (29)
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We point out that this property is a desirable requirement for 
any learning algorithm, because in order to be able to prove 
the learnability in the stability framework, we need that:

	 ( , ) ,lim n 0An emp Hb ="3 � (30)

or, in other words, that the impact on the learning procedure of 
removing or replacing one sample from Dn  should decrease, on 
average, as n grows. Numerous researchers have already studied 
this property in the past. In particular, it is related to the consisten-
cy concept [46]. However, connections can also be identified with 
the trend of the learning curves of an algorithm [91]. Moreover, 
such quantity is also strictly linked to the concept of Smart Rule 
[46]. It is worth underlining that, in many of the above-referenced 
works, the property of Eq. (29) is proved to be satisfied by many 
well known algorithms (SVM, Regularized Least Squares and 
consequently ELM, k-Local Rule with k > 1, etc.).

Let us define ( , , )n DA nemp Hbt  which is an unbiased esti-
mator of ( , ):nAemp Hb

(

( , ) ( , ) ,

, , )

z z

n

n
1

1

A A

A D

( )

n

k k
k

n

1

emp

D D

H

n
k

n
k i

1 1
˘ ˘, ,

b =

-

-

= - -

t

{ {/ � (31)

where , , .i n1 1f! -" ,  Moreover:
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By construction we have that ( , , )n 1 DA nemp Hb -t  is an 
unbiased estimator of ( , ):n 1Aemp Hb -

	 ( , , ) ( , ) .n n1 1E DA Anemp empD H Hn bb - = -t � (34)

Since all the quantities in the summations of Eq. (31) are { }1!  
valued i.i.d. random variables (since they are computed over 
different sets of data) extracted from a Bernoulli distribution of 
mean ( , ),n 1Aemp Hb -  we have that the following bound 
holds [84] with probability ( ):e1 x- -

 ( , ) ( , , ) .n n
n
x1 1

2
DA A nemp empH H#b b- - +t � (35)

Note that plugging Eq. (35) into the bound of Eq. (18) gives a 
fully empirical bound where all the quantities can be comput-
ed from the data [26]. In particular, once the ELM has been 
trained for a given h and ,m  the empirical error, computed 

with the hard loss function, is trivially com-
putable, while ( , , )n 1 DA nemp Hb -t  requires 
the training of many ELMs on a small subset 
of the data ,n^ h  which is computationally 
inexpensive. Moreover, all these ELMs can be 
trained in parallel (see Eq. (31)). The applica-
tion of the procedure of Eq. (24) to ELM 
then becomes straightforward. Note that, 

from Eq. (31), the hypothesis stability is able to capture both 
the property of the algorithm and the property of the distribu-
tion that has generated the data [26].

VIII. Affective Analogical Reasoning Dataset
The proposed approach has been tested on two affective ana-
logical reasoning datasets. Affective analogical reasoning can 
be defined as the intrinsically human capacity to interpret the 
cognitive and affective information associated with natural 
language [92]. In particular, we employed two benchmarks, 
each one composed by 21743 common-sense concepts; each 
concept is represented according to the AffectiveSpace model 
[93] and the AffectiveSpace 2 model [94]. Both models are 
obtained as a vector space representation of the AffectNet net-
work, a semantic network in which common-sense concepts 
(e.g., ‘read book’, ‘payment’, ‘play music’) are linked to a hier-
archy of affective domain labels (e.g., ‘joy’, ‘amazement’, ‘fear’, 
‘admiration’). In this way, concepts conveying similar semantic 
and affective information, e.g., ‘enjoy conversation’ and ‘chat 
with friends’, tend to fall near each other in the multi-dimen-
sional space. Both AffectNet and AffectiveSpace are publicly 
available at http://sentic.net. The difference between the two 
models is the following:

❏❏ AffectiveSpace is obtained applying principal component 
analysis (PCA) on the matrix representation of AffectNet 
[93].

❏❏ AffectiveSpace 2 is obtained applying a refined projection 
on the matrix representation of AffectNet [94].
In both cases, common-sense concepts are eventually 

represented by vectors of M coordinates. This number indi-
cates the dimensionality of the AffectiveSpace and represents 
the trade-off between efficiency and precision: the bigger is 
M, the more precisely AffectiveSpace represents AffectNet’s 
knowledge, but generating the vector space is slower, while 
the smaller is M, the more efficiently AffectiveSpace can be 
obtained. As already mentioned, concepts with the same 
affective orientation are likely to have similar features; i.e., 
concepts conveying the same emotion tend to fall near each 
other in AffectiveSpace. Concept similarity does not depend 
on their absolute positions in the vector space, but rather on 
the angle they make with the origin [95].

The Hourglass of Emotions [95] is employed to reason on 
the disposition of concepts in AffectiveSpace. In the model, affec-
tive states are represented by four concomitant but independent 
dimensions (Pleasantness, Attention, Sensitivity and Aptitude), 
which determine the intensity of the expressed/perceived emo-
tion. Therefore, a four-dimensional vector can potentially 

Affective analogical reasoning can be defined as  
the intrinsically human capacity to interpret the 
cognitive and affective information associated  
with natural language.
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synthesize the level of activation of each affective 
dimension of a concept. Beyond emotion detection, 
the Hourglass model is also used for polarity detec-
tion tasks. Polarity is defined in terms of the four 
affective dimensions, according to the formula:

	
( ) | ( )| | ( )| ( )
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3
i i i i

i
N

1
=

+ - +
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where P is the pleasantness, At the attention, S 
the sensitivity, Ap the aptitude, ci an input con-
cept, N the total number of concepts, and 3 the 
normalization factor (as the Hourglass dimen-
sions are defined as f loats [ , ]1 1! - ). In the equa-
tion, Attention is taken as absolute value since 
both its positive and negative intensity values 
correspond to positive polarity values (e.g., ‘sur-
prise’ is negative in the sense of lack of Attention, 
but positive from a polarity point of view). Simi-
larly, Sensitivity is taken as negative absolute 
value since both its positive and negative intensity 
values correspond to negative polarity values 
(e.g., ‘anger’ is positive in the sense of level of 
activation of Sensitivity, but negative in terms of 
polarity). The publicly available Sentic API (on 
http://sentic.net/api) was used to obtain for each 
concept the level of each affective dimension.

According to the Hourglass model, the Sentic 
API expresses the levels as numbers [ , ],1 1! -  
which are eventually mapped into the associated 
polarity according to Eq. (36). In order to perform 
a binary classification task for each affective dimen-
sion and polarity, the values are then discretized: +1 
for positive values and –1 for negative ones.

The experiments eventually involve two tasks:
❏❏ Classification of each affective dimension level 
and polarity detection for concepts expressed 
according to AffectiveSpace 1 [93];

❏❏ Classification of each affective dimension level 
and polarity detection for concepts expressed 
according to AffectiveSpace 2 [94];
In both cases, the dimension of the space M has been set 

equal to 100.

IX. Experimental Results
In this section1, we show the results of applying the ELMs 
models described in Section V to the Affective Analogical 
Reasoning datasets described in Section VIII, where the per-
formance of the models has been assessed by using the MS 
strategies described in Section VII.

In Tables 2 and 3 we have reported, respectively for Affec-
tiveSpace 1 and AffectiveSpace 2 and for the Pleasantness, the 

error on the reference set of the ELMs model selected by 
exploiting regularizer w 2 , different losses (L1,  ,f  L5 in 
Table 1), and different MS strategies (Bag of Little Boot-
straps-BLB, Simplified Rademacher Complexity-SRC, Sim-
plified Uniform Stability-SUS, and Bag of Little Hypothesis 
Stabilities-BLHS). In Table 4, for AffectiveSpace 1, we have 
reported the time required to build the ELMs model selected 
by exploiting different losses and different MS strategies. In 
particular, we reported only the time required for the Pleas-
antness task.

From Tables 2, 3, and 4 we can state that:
❏❏ AffectiveSpace 2 is able to better predict the affective 
dimensions and polarity with respect to AffectiveSpace 1.

❏❏ BLHS is the best method to perform MS since it is the one 
that more often selects the most accurate model according 

1We do not report all the details and experiments because of space constraints, all the 
details can be found in the technical report available at http://sentic.net/slt-based-
elm-for-big-social-data-analysis.pdf.

Table 2 Error (in percentage) on the reference set exploiting different 
losses and different MS strategies on AffectiveSpace 1.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .5 32 0 16! . .5 95 0 18! . .5 96 0 19! 4.76 !  0.14

L2 . .5 85 0 18! . .6 59 0 21! . .6 57 0 21! 5.30 !  0.17

L3 . .4 75 0 14! . .5 21 0 17! . .5 31 0 16! 4.16 !  0.13

L4 . .5 28 0 16! . .5 92 0 18! . .5 92 0 19! 4.75 !  0.15

L5 . .5 36 0 17! . .5 88 0 19! . .5 89 0 19! 4.77 !  0.14

Table 4 Training time (in minutes) when different losses and different 
MS strategies are exploited on AffectiveSpace 1.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .15 08 1 09! 10.01 ! 0.76 . .10 04 0 71! . .18 03 1 27!

L2 . .15 10 1 10! 10.01 ! 0.77 . .10 07 0 73! . .18 10 1 22!

L3 . .15 04 1 09! 10.06 ! 0.77 10.05 ! 0.70 . .18 10 1 31!

L4 . .15 07 1 08! 10.05 ! 0.73 10.05 ! 0.71 . .18 08 1 20!

L5 . .15 03 1 00! 10.01 ! 0.76 . .10 05 0 72! . .18 11 1 20!

Table 3 Error (in percentage) on the reference set exploiting different 
losses and different MS strategies on AffectiveSpace 2.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .3 53 0 11! . .3 93 0 12! . .3 89 0 12! 3.14 !  0.10

L2 . .3 82 0 12! . .4 33 0 14! . .4 32 0 13! 3.48 !  0.10

L3 . .3 11 0 10! . .3 46 0 11! . .3 47 0 11! 2.74 !  0.09

L4 . .3 45 0 11! . .3 90 0 12! . .3 93 0 13! 3.13 !  0.10

L5 . .3 54 0 11! . .3 83 0 12! . .3 92 0 12! 3.14 !  0.09
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to the reference set. BLB performs well, while SRC and 
SUS offer the poorest performance.

❏❏ SRC and SUS are the most computationally saving meth-
ods, while the method that is more computational demand-
ing is BLB (which in return, however, is also the most 
accurate one).

❏❏ The L3 loss function results to be the best loss for this task.
Note that all the methods perform quite well in practice and 
reach similar performance when n is large and, at the same 
time, are almost equally computationally expensive.

Finally, we compare the execution time between Algorithm 
2 and 3. In particular, for ELMs with regularizer w 2 , loss L2 
and :1m =

❏❏ Figure 1(a) reports for h 100=  and for Algorithms 2 and 3 
on the time needed to execute the first iteration (similarly to 
what has been done in [17], [18]) and the time of the next 
iterations (results are averaged over 30 different realizations).

❏❏ Figure 1(b) reports on the same information for , .h 1 000=

❏❏ Figure 1(c) reports on the same information for 
, .h 10 000=

From Figures 1(a), 1(b) and 1(c) it is possible to state that:
❏❏ As expected, when h is smaller or comparable to d, we have 
that Algorithm 2 is the one with the best performance.

❏❏ When h becomes larger than d, the data stop to fit into 
memory; this increases the number of accesses to the disk 
for Algorithm 2 and consequently, the time needed to exe-
cute each iteration. Subsequently, Algorithm 3 becomes 
more efficient.

X. Conclusion
In this paper, we proposed an efficient implementation of the 
ELMs on Spark, in order to exploit the benefits of the Spark 
framework, in the context of big social data analysis. In particular, 
an approach to support emotion recognition and polarity detec-
tion in natural language text has been proposed and evaluated.

We also showed how to carefully assess the performance with 
the use of the most recent results from SLT. Unlike other statisti-
cal inference frameworks, SLT implements a worst-case approach 
to these problems, which allows for the obtaining of rigorous and 
consistent generalization bounds that can be exploited 

for assessing the performance of the ELMs. Thanks to recent 
advances, as presented in this paper, the computational require-
ments of these methods have been improved to allow for the scal-
ing to large datasets, which are typical of Big Data applications.

Additional work in this direction is needed. In particular, 
other big data architectures are available with higher efficiency 
but lower fault tolerance (e.g., the one based on MPI and 
OpenMP [18]). It will also be interesting to extend these 
approaches to a semi-supervised setting since in Big Social 
Data Analysis more and more data are becoming available but 
just a small amount is supervised [96].
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