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Abstract
Emotion recognition in conversation (ERC) has received in-
creasing attention from the research community. However,
the ERC task is challenging, largely due to the complex and
unstructured properties of multi-party conversations. Besides,
the majority of daily dialogues take place in a specific con-
text or circumstance, which requires rich external knowl-
edge to understand the background of a certain dialogue. In
this paper, we address these challenges by explicitly mod-
eling the discourse relations between utterances and incor-
porating symbolic knowledge into multi-party conversations.
We first introduce a dialogue parsing algorithm into ERC
and further improve the algorithm through a transfer learning
method. Moreover, we leverage different symbolic knowl-
edge graph relations to learn knowledge-enhanced features
for the ERC task. Extensive experiments on three benchmarks
demonstrate that both dialogue structure graphs and symbolic
knowledge are beneficial to the model performance on the
task. Additionally, experimental results indicate that the pro-
posed model surpasses baseline models on several indices.

Introduction
Emotion recognition in conversation (ERC) is a task that
is beneficial to a wide range of natural language process-
ing (NLP) research domains, such as dialogue systems (Ma
et al. 2020) and sentiment analysis (Zhang et al. 2021). ERC
is featured by the fact that the emotion classification task
depends on both current and historical utterances from dif-
ferent speakers. Thus, unlike phrase-level (Ge, Mao, and
Cambria 2022), aspect-level (Liang et al. 2022; Mao and
Li 2021), sentence-level (Chen et al. 2017) and document-
level (Zhao, Rao, and Feng 2017) affective computing tasks
modeling dependency relationships within a context given
by a single presenter, utterance-level ERC requires model-
ing the various dependencies across multiple speakers.

Previous ERC studies have formulated two main trends,
e.g., sequence-based methods and graph-based methods (Li
et al. 2020a). The former trend (Song et al. 2022) encoded
concatenated historical and current utterances, and predicted
an emotion class for the current utterance, based on contex-
tualized encoders, e.g., LSTM (Hochreiter and Schmidhu-
ber 1997), GRU (Cho et al. 2014) and pre-trained language
models (Devlin et al. 2019; Liu et al. 2019).
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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A0: Warriors wins! Anyone want to celebrate? (HAPPINESS)

B1: Yeah, let’s hit the bars! (HAPPINESS)

C2: Not for me. I am with Celtics tonight. (SADNESS)

B3: What will you do alone later? (NEUTRAL)

A5: Do it in your own room, bro! (DISGUST)

QAP

C4: Chop all onions we have and cry. (SADNESS)

B6: Don’t leave the door open, please. (DISGUST)

IsA lacrimator

HasContext music

Figure 1: Discourse with symbolic dependency representa-
tions. A, B, and C are three different speakers. QAP is a
question-answer pair. Q-Elab is a question-elaboration.

The later trend (Ghosal et al. 2020b) used graph convolu-
tional networks (GCNs) (Kipf and Welling 2017) to model
historical and current utterance context, and utterance-
speaker relationships. The dependencies were represented as
nodes and edges in a graph. The cross utterance dependency
modeling of the above-mentioned technical trends was nor-
mally achieved by contextualizers and attention mechanisms
in vector space. Despite the fact that contextualizer-based
methods have significantly improved ERC by incorporat-
ing more contextual information represented in sequential or
graphic forms, using attention mechanisms and undirected
edges in a graph cannot model the diversity of dialogue de-
pendencies (Xu et al. 2019).

We argue that explicitly learning different types of depen-
dencies can deliver extra accuracy gains in learning ERC
and dependency explainability in ERC results. Given the hy-
potheses that (1) symbolic dependency representations can
represent different types of dependency relationships be-
tween utterances (Shi and Huang 2019); (2) commonsense
knowledge can help to infer the emotion class of an utter-
ance from its context (Zhong, Wang, and Miao 2019), the
motivation of this work is to effectively use and fuse these
different kinds of symbolic knowledge in an ERC model.
For example, as seen in Fig. 1, B1 and C2 depend on A0 in
a QAP (question-answer pair) relationship, respectively.
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Thus, the HAPPINESS emotion of B1 can inherit from that
of A0 via his agreement response, although there is no emo-
tional word in B1. Similarly, the SADNESS emotion of C2

can be inferred from his disagreement to the question of A0.
The agreement (B1) and disagreement (C2) utterances to the
parent utterance (A0) in a QAP relationship are likely help-
ful for predicting their emotion classes. The emotional inher-
itance is not identical in all dependency relationships, e.g.,
(C2, B3) and (B3, C4). Thus, it is important to differentiate
dependency types between utterances by context. Besides,
without commonsense knowledge, e.g., an onion is a type
of lacrimator (<onion, IsA, lacrimator>), and the depen-
dency, e.g., Comment in (C4, A5) and (C4, B6), a classifier
can hardly infer the emotions of A5 and B6 are DISGUST,
because there is no such information, indicating chopping
onions are disgusting for people in the context.

In this work, we develop a neurosymbolic model for ERC
that leverages the strengths of both deep neural networks and
symbolic representations. In particular, our ERC model inte-
grates symbolic dependency knowledge, concept-level com-
monsense, and sentiment knowledge. The symbolic depen-
dency representations (a discourse graph) are given by a de-
pendency parser proposed by Shi and Huang (2019). To fur-
ther improve the parser performance in a different conver-
sation domain, we conduct transfer learning (TL) by manu-
ally labeling randomly selected seed conversations in ERC
datasets and fine-tuning the parser with the seed data. The
commonsense knowledge comes from ConceptNet (Speer,
Chin, and Havasi 2017) and SenticNet (Cambria et al. 2022).
To leverage the multi-level symbolic-based knowledge, we
propose a novel graph fusion method. The method integrates
concept-level knowledge with a novel attention mechanism
and utterance-level knowledge with relational graph convo-
lutional networks (Schlichtkrull et al. 2018).

We employ a RoBERTa (Liu et al. 2019) to enhance con-
textual and speaker dependency learning. Finally, we use
a convolutional self-attention (Dai et al. 2021) to fuse the
multi-level symbolic knowledge. We test our model on Dai-
lyDialog (Li et al. 2017), Emory (Zahiri and Choi 2018),
and MELD (Poria et al. 2019). We focus on ERC from
texts, because this is the most fundamental modality in af-
fective computing. We benchmark with state-of-the-art base-
lines, showing that our method outperforms these baselines
by 1.74% on average. We also experimentally demonstrate
that both the structured graph-based dependency represen-
tations and commonsense knowledge are beneficial to the
model performance on the task. The contribution of this
work can be summarized as follows: (1) We propose a sym-
bolic knowledge integrated model for the ERC task, named
SKIER1, which effectively leverages symbolic-based depen-
dency knowledge at the utterance level, and commonsense
knowledge at the concept level; (2) We introduce a dialogue
relation graph-based contextualizer for SKIER to function-
ally fuse utterance dependencies. Meanwhile, we propose
a relation-aware concept representation mechanism to in-
tegrate the concepts in different relations; (3) Our method
achieves state-of-the-art performance on the ERC task.

1https://github.com/senticnet/SKIER

Related Work
There are two technical trends in ERC, namely sequence-
based, and graph-based methods (Li et al. 2020a).
Sequence-Based Methods used encoders and attention to
learn local and global dependencies (Majumder et al. 2019;
Sap et al. 2019; Vaswani et al. 2017; Zhang et al. 2020;
Ghosal et al. 2020a; Shen et al. 2021a; Song et al. 2022).
Majumder et al. (2019) proposed a GRU-based model, mod-
eling the interactions between speakers, historical context,
and historical emotions. Attention was employed to learn
the contextual dependency for the speaker states. Li et al.
(2020a) proposed a Transformer (Vaswani et al. 2017)-
based model. The local utterance representations were given
by BERT. A higher level Transformer was employed to
learn the global context. Since Transformer is a multi-head
attention-based encoder, the dependency of utterances was
also modeled by attention. Shen et al. (2021a) fitted utter-
ances into XLNet (Yang et al. 2019) with improved memory
efficiency. They also proposed dialog-aware self-attention to
learn the intra- and inter-speaker dependencies.
Graph-Based Methods used GCNs to model the relation
between utterances and speakers or fuse external knowl-
edge (Zhang et al. 2019; Zhong, Wang, and Miao 2019;
Ghosal et al. 2020b). Zhang et al. (2019) introduced a
GCN model to leverage both context- and speaker-sensitive
dependencies. The utterances and speakers were repre-
sented as nodes. The edges represented the dependencies be-
tween utterances and the dependencies between utterances
and nodes. GCN was used to learn the undirected graph.
Zhong, Wang, and Miao (2019) proposed a model that inte-
grates commonsense (ConceptNet) and sentiment (valence,
arousal, and dominance, given by NRC VAD (Mohammad
2018)) knowledge. The dependency learning and common-
sense fusion were achieved with multiple attention mech-
anisms, e.g., dynamic context-aware affective graph atten-
tion, hierarchical self-attention, and context-response cross-
attention. Ghosal et al. (2020b) proposed a DialogueGCN
model to learn the intra- and inter-speaker dependencies.
The dependency relationship is represented by an edge, con-
necting past and future utterances within a window to a cur-
rent utterance.

Although the above contextualizers have significantly im-
proved ERC, they did not explicitly distinguish different de-
pendency types in discourse. For example, the sequence-
based methods learn dependencies as the similarity weights
between vectors via attention; The graph-based methods
represent the dependencies as nodes and edges, and learn
the graph via GCNs. We argue that explicitly learning differ-
ent types of dependencies can deliver extra accuracy gains in
learning ERC and dependency explainability in ERC results.

Methodology
Problem Definition
Given a multi-turn multi-party (or dyadic) dialogue D =
{u1, u2, ..., u|D|}, ERC aims to identify emotion labels Y =
{y1, y2, ..., y|D|} for utterance-speaker pairs {(u1, sp1),
(u2, sp2), ..., (u|D|, sp|D|)}. |D| is the number of dialogues.
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Figure 2: SKIER framework. It contains four main components, i.e., context-aware utterance representation module (CUR),
knowledge integration (KI) module, dialogue relation graph (DRG) module and symbolic knowledge fusion module (CoAtt).

Note that the speakers of the ith utterance spi and jth ut-
terance spj (i ̸= j) can be the same speaker k and share the
same special token [pk]. Here, an utterance in a conversa-
tion consists of M tokens, i.e., ui = {ui,1, ui,2, ..., ui,M}.
Emotion labels are defined by an employed dataset. Tak-
ing the MELD dataset as an example, the emotion labels
include ANGER, DISGUST, SADNESS, JOY, SURPRISE and
FEAR from Ekman’s six basic emotions (Ekman 1992), and
an additional NEUTRAL class.

Model Overview

Fig. 2 shows the structure of our proposed SKIER. It
consists of four technical components. First, a RoBERTa-
based context-aware utterance-level representation (CUR)
module is used to integrate the speaker dependency and
utterance interactions into a single sequence embedding.
The generated utterance-level embedding is fed to the later
three fusion modules. The second module is DRG con-
struction. DRG utilizes a discourse parser to discover the
inter-dependencies (Wang et al. 2021) between utterances
and regards the dependency-based dialogue structure as
utterance-level symbolic knowledge. We exploit relational
graph convolutional networks (RGCN) (Schlichtkrull et al.
2018) to embed the utterance-level symbolic knowledge.
The third module is knowledge integration (KI) that lever-
ages a concept-level commonsense knowledge base, Con-
ceptNet (Speer, Chin, and Havasi 2017), and a sentiment
lexicon knowledge base, SenticNet (Cambria et al. 2022) to
generate the relation-aware concept representation (RACR)
of an utterance from the concept-level symbolic knowledge.
Finally, a 3-channel convolutional self-attention mechanism
(CoAtt) (Dai et al. 2021; Shaw, Uszkoreit, and Vaswani
2018) is applied for fusing the symbolic knowledge. The
output is used for affective classification.

Context-Aware Utterance-Level Representation
We integrate speaker information and utterances into a sin-
gle sequence, and employ a RoBERTa to capture the inter-
actions among utterances and speaker dependencies, simul-
taneously. Specifically, we first add several special tokens to
represent different speakers in a conversation, e.g., [p1] and
[p2] for a dyadic conversation. Next, all the utterances along
with the corresponding speaker tokens are concatenated in a
sequence. For instance, a 3-turn dialogue can be represented
as x = {[cls], [p1], u1, [sep], [p2], u2, [sep], [p1], u3}, where
special tokens are in between square brackets. The out-
put of RoBERTa-encoded x is h = RoBERTa(x), where
h ∈ Rd×N and d is the output dimension of the RoBERTa.
We obtain the contextual embedding of utterance ui through
hb
i := hj , where j : xj+1 = ui,1. This means we first find

the index (j) of the last speaker special token before ui, and
then regard the jth vector of h as the utterance-level repre-
sentation of ui. Here, hb

i is the RoBERTa embedding incor-
porated with context and speaker dependencies.

Dialogue Relation Graph Construction
Previous studies show that dialogue structures are beneficial
for several downstream NLP tasks, including dialogue sum-
marization (Chen and Yang 2021) and dialogue comprehen-
sion (He, Zhang, and Zhao 2021). Thus, deep learning-based
affective classifiers would benefit from integrating DRGs
(utterance-level symbolic knowledge).

Following the definition of discourse relations from Asher
et al. (2016), we pre-train a dialogue parsing model Deep
Sequential (Shi and Huang 2019) on a multi-party dia-
logue corpus STAC (Asher et al. 2016). We then utilize the
pre-trained dialogue parser to parse dialogues in MELD,
EmoryNLP and DailyDialog. However, STAC was collected
from the game board of an online game The Settlers of Catan
whose conversation domain and language style are differ-
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ent from our ERC datasets (MELD and EmoryNLP sourced
from TV shows; DailyDialog sourced from English learn-
ing websites). Besides, Liu and Chen (2021) argued that the
model trained on the STAC dataset had a very limited gen-
eralization ability over the Molweni dataset (Li et al. 2020b)
from another domain and vice versa. With TL (Zhuang
et al. 2020), a small amount of annotated data from Mol-
weni can improve the generalization ability of the model
trained on STAC by a large margin and vice versa (see ex-
periments later). Hence, we invited two expert annotators to
manually label discourse graphs of 50 dialogues in MELD,
EmoryNLP and DailyDialog, respectively. With these an-
notated dialogues, we can transfer the knowledge from the
pre-trained Deep Sequential model to a new domain, and
mitigate its prediction biases (Mao et al. 2022b). Since sym-
bolic knowledge is mostly represented as graphs /knowledge
bases (Li, Wang, and Zhu 2020; Narasimhan, Lazebnik, and
Schwing 2018), we construct a DRG G = (V , E , T ) for a
given parsed conversation, where V is the set of nodes rep-
resenting utterances in a conversation; E is the set of edges
between each parent-child node pair; T is the set of edge
types that corresponds to the edges in E . For instance, ui

and uj are two nodes in a conversation (i < j), where ei,j
is the edge between parent node i and child node j, and ti,j
represents a certain relation type such as Comment in Fig 1.

We employ RGCN as the base graph network to encode
the DRG, because RGCN naturally supports the calculation
of different edge types, e.g., Comment is learned differently
from QAP. RGCN may have multi-layers, where each layer
corresponds to a pre-defined directed acyclic graph G. The
lth layer of RGCN is given by:

g
(l+1)
i = σ(

∑
t∈T

∑
j∈N t

i

1

ci,t
W

(l)
t g

(l)
j +W

(l)
0 g

(l)
i ), (1)

where g
(l)
i is the hidden state of a child node hb

i in the lth
layer, g(l)j is that of a parent node hb

j , and g
(0)
i = hb

i . N t
i

is the set of parent node indices of child node hb
i in rela-

tion t ∈ T . ci,t is a normalization constant set as default
ci,t = |N t

i | (Schlichtkrull et al. 2018). σ(·) is ReLU (Glo-
rot, Bordes, and Bengio 2011) activation function. Here, we
define hb

i and hb
j are the inputs of the RGCN model; hp

i is
the output, which represents a dialogue structure-aware em-
bedding of utterance ui.

Integrating Knowledge Bases in ERC
The aforementioned utterance-level symbolic knowledge
depends on discourse. It cannot provide knowledge beyond
context. Meanwhile, recent studies showed the effectiveness
of external knowledge bases in many NLP tasks (Mao, Lin,
and Guerin 2018; Zhong, Wang, and Miao 2019; Ghosal
et al. 2020a; Mao et al. 2022a). Hence, we propose to utilize
a commonsense knowledge base ConceptNet (Speer, Chin,
and Havasi 2017) and a sentiment lexicon knowledge base
SenticNet (Cambria et al. 2022) for the ERC task. Concept-
Net is a large-scale knowledge graph of concepts. It contains
varieties of concepts recorded in triplets, e.g., <concept1,
relation, concept2>.

We define concept1 as the source node and concept2 as
the destination node. The triplet is an assertion with a confi-
dent score2 (s), e.g., <alcohol, Causes, drunkenness> with
s = 2, <alcohol, Causes, amnesia> with s = 1, <alcohol,
IsA, addictive> with s = 1. Our goal is to learn the concept
representation of alcohol under each relation by integrating
its different destination nodes, e.g. drunkenness and amne-
sia with various s; Then, we generate the RACR by merging
the concept representations among different relations. The
current version of ConceptNet has around 5.9M assertions,
3.1M concepts and 38 relations. SenticNet contains a large
number of words with sentiment intensity scores, ranging
from -1 to 1, which measures the sentiment intensities of
both positive and negative words.

Concept Representation Three main relations, e.g., IsA,
HasContext, and Causes are used out of 38 ConceptNet re-
lations. This is because we assume the concepts under the
three relations are prone to containing sentiment. For each
source node ui,m in ui and each relation rj in the three
ConceptNet relations (j ∈ {1, 2, 3}), we retrieve all their
destination nodes with confidence scores more than 1. As
a result, we have three sets of triplets for the source node
ui,m: {(ui,m, rj , oj,k)}j , where oj,k denotes the kth des-
tination node of the source node ui,m in relation type rj ,
k ∈ {1, 2, ..., Nd}, and Nd is the total number of destination
nodes. In addition, we also have confidence scores for each
triplet. GloVe (Pennington, Socher, and Manning 2014) is
used to generate word embeddings for concept tokens. To
enrich utterance embeddings with symbolic concept knowl-
edge, we compute the concept representation for each source
node ui,m in ui by taking triplet relations into account. The
concept representation cm,j ∈ Rd×1 for ui,m is given by:

cm,j =

Nd∑
k=1

αk · oj,k, (2)

where oj,k ∈ Rd×1 is the embedding of token oj,k. αk de-
notes the corresponding attention weight which is given by:

αk = softmax(ωk), (3)

where ωk is the calculated weight for oj,k. The calculation
of weight ωk is of vital importance, as it measures the con-
tribution of the destination node oj,k towards ui,m in terms
of enriching the concept representation of ui,m. Motivated
by the assumption that important concepts are semantically
relevant to dialogue context and have strong sentiment in-
tensities (Zhong, Wang, and Miao 2019), we compute ωk

by measuring the context relatedness (ωc
k) and the affective

intensity (ωa
k) of the destination node oj,k:

ωc
k = min−max(sk) · | cos(hb

i ,oj,k)|, (4)

where sk is the confidence score; min-max(·) is a min-max
scaling function; cos(·) is a cosine similarity function; hb

i ∈

2The confident scores range from 0.1 to 22 (Chen et al. 2019).
Confidence larger than 1 is considered a confident fact, according
to (Zhong, Wang, and Miao 2019).
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Rd is the context-aware party-dependent representation of
the ith utterance given by the RoBERTa. ωa

k is given by:

ωa
k = min−max(sentic(oj,k)), (5)

where sentic(oj,k) is the sentiment intensity score of the des-
tination node oj,k from SenticNet. Then, ωk is given by:

ωk = λk · ωc
k + (1− λk) · ωa

k , (6)

where λk is a hyperparameter.

Relation-Aware Concept Representation With the
aforementioned equations, we obtain three concept repre-
sentations of ui,m, namely cm,1, cm,2, cm,3. Motivated by
the contextualized entity learning of Qiao et al. (2020), we
calculate the RACR of ui,m by:

wr
m = wm +

∑
(rj ,oj,k)∈Cm

βj,k · (rj ⊙ cm,j), (7)

where wm is the GloVe embedding of ui,m; rj is the
randomly initialized relation embedding of rj ; βj,k =

exp(qj,k)∑
(r

j′ ,oj′,k′ ) exp(qj′,k′ )
represents the importance of each

concept representation to ui,m; ⊙ is an element-wise mul-
tiplication. The concept context Cm of ui,m is defined as a
set of (rj , oj,k) pairs. The qj,k represents the score for each
possible triplet (ui,m, rj , oj,k), which is calculated via the
score function with DistMult (Yang et al. 2014):

qj,k = w⊤
m(rj ⊙ oj,k). (8)

We then apply a dot-product attention (Vaswani et al. 2017)
to convert the word-level concept representations wr

m into an
utterance-level RACR hr

i . The attention weight γi,m is ob-
tained by measuring the relevance between contextual em-
bedding hb

i and wr
m.

Symbolic Knowledge Fusion
We have obtained structure-aware knowledge hp

i , relation-
aware concept knowledge hr

i , and context-aware represen-
tation hb

i , incorporated with speaker-dependency. Next, we
introduce CoAtt to fuse the symbolic knowledge hp

i and hr
i

into the contextual embedding hb
i for emotion recognition.

Convolutional Self-Attention Fusion CoAtt was origi-
nally proposed for computer vision (Dai et al. 2021), while
we are the first to apply it in NLP. CoAtt is supposed to com-
bine the advantages of both convolution and self-attention.
We feed the aforementioned symbolic knowledge features
hr
i , hp

i , and context feature hb
i , into a multi-head CoAtt. We

firstly obtain hf ∈ Rd×3 via the concatenation operation
in Eq. (9) Then we use a CoAtt to capture the interactions
among the features and generate x(k) ∈ Rd×dh in each head.
The jth element of x(k) (x(k)

j ∈ R1×dh ) is computed as
Eq. (11).

hf = [hb
i ⊕ hr

i ⊕ hp
i ] (9)

(Q,K, V ) = (hfWQ, h
fWK , hfWV ) (10)

x
(k)
j =

∑
l∈I

exp(QjK
⊤
l + vj−l)∑

l′∈I exp(QjK⊤
l′ + vj−l′)

Vj (11)

Dataset Train Dev Test Label Metrics

MELD u 9989 1109 2610 7/3 Weighted
Avg F1d 1038 114 280

EmoryNLP u 9934 1344 1328 7/3 Weighted
Avg F1d 713 99 85

DailyDialog u 87170 8069 7740 7(6) Macro &
Micro F1d 11118 1000 1000

Table 1: Statistical information for the datasets (u and d re-
fer to utterance and dialogue). MELD and EmoryNLP both
have 7 emotion and 3 sentiment labels, and we use weighted
avg F1 as the evaluation metric. For DailyDialog dataset, we
use 7 emotion labels in training and measure Micro-F1 for
only 6 emotion labels excluding NEUTRAL.

⊕ is a concatenation operation; WQ,WK ,WV ∈ R3×dh ;
dh is the dimension of head; vj−l is a scalar bias between Qj

and Kl; I ∈ [0, d) ∩ N. Next, the outputs from n heads are
concatenated and projected into the final output x ∈ Rd×1

through a linear layer WO ∈ Rndh×1 as Eq. (12). Finally, x
is connected with a fully connected layer for classification.

x = [x(1) ⊕ x(2) ⊕ · · · ⊕ x(n)]WO (12)

We choose cross entropy as the loss function and utilize
L2-regularization to alleviate overfitting. The loss (L) is:

L = − 1∑|D|
j=1 Nj

|D|∑
j=1

Nj∑
i=1

logPi,j [yi,j ] + ρ∥θ∥2, (13)

where Nj is the number of utterances in the jth con-
versation; Pi,j is the probability distribution of label yi,j
for the ith utterance in the jth conversation; ρ is the L2-
regularization weight; θ is trainable parameters.

Experiment
Datasets
We employed three public datasets for benchmarking (Ta-
ble 1). DailyDialog (Li et al. 2017) derives from human
daily communication. The data were sourced from English
learning websites. The emotion labels include Ekman’s six
basic emotions and a NEUTRAL class. MELD (Poria et al.
2019) contains TV show scripts, collected from Friends.
The utterances involve multiple parties. The emotion la-
bels are also from Ekman’s six basic emotions plus a NEU-
TRAL class. Sentiment labels {POSITIVE, NEGATIVE, NEU-
TRAL} are also provided in this dataset. We use the tex-
tual data in the dataset. EmoryNLP (Zahiri and Choi 2018)
is a multi-party ERC dataset, sourced from Friends TV
show scripts. The emotion labels are {JOYFUL, PEACEFUL,
POWERFUL, SCARED, MAD, SAD, NEUTRAL}. Sentiment
labels were not provided but can be categorized by neu-
tral:{NEUTRAL}, positive:{JOYFUL, POWERFUL, PEACE-
FUL}, negative:{SCARED, SAD, MAD}.

Baselines
CNN (Kim 2014) is a convolutional neural network model
for sentence classification.
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KET (Zhong, Wang, and Miao 2019) employs a knowledge-
enriched Transformer, incorporating lexicon-level Concept-
Net and sentiment knowledge to enhance ERC.
DialogueGCN (DiGCN) (Ghosal et al. 2020b) learns the
intra- and inter-speaker dependencies via GCN. The input
features are 300-dimensional GloVe embeddings.
DialogueRNN(DiRNN) (Majumder et al. 2019) exploits
three groups of GRUs to represent the speaker states, con-
text, and emotion, respectively. Ghosal et al. shows the per-
formance of DiRNN (RoDiRNN) based on a RoBERTa.
COSMIC (Ghosal et al. 2020a) introduces commonsense
knowledge, such as mental states and causal relations to sup-
port ERC. GRUs are used to encode the knowledge.
DialogXL(DiXL) (Shen et al. 2021a) proposes dialog-aware
self-attention to learn intra- and inter-speaker dependencies.
DAG (Shen et al. 2021b) utilizes a directed acyclic graph to
encode the intrinsic structure within a dialogue.
P-CKG (Li et al. 2021) considers the psychological inter-
actions between utterances and proposes a commonsense
knowledge enhanced graph transformer model.
T-GCN (Lee and Choi 2021) treats the ERC as dialogue-
based relation extraction and designs a GCN-based model,
learning the way people understand dialogues.
CoMPM (Lee and Lee 2022) extracts external knowledge
using a RoBERTa and integrates the speaker’s pre-trained
memory into the context model to improve ERC results.

Setups
We used RoBERTa-Large from HuggingFace3. The opti-
mizer was AdamW (Loshchilov and Hutter 2018) with an
initial learning rate of 1e-5. We used a linear scheduler dur-
ing training. The maximum value of 5 was used for the gra-
dient clipping. The actual number of dialogue relations was
set to {9, 10, 11} for EmoryNLP, MELD and DailyDialog,
respectively, because some dialogue relations, e.g., back-
ground and narration, do not exist in the parsed datasets. The
batch size was 1. The dropout rate was 0.2. λk in Eq. 6 was
0.5. The number of destination nodes was 3. All experiments
were conducted on a V100 GPU with 16 GB memory. We
reported the average score of 3 random runs on test sets.

Results
Dialogue Parsing Analysis
As mentioned, the dialogue parsing model has poor gener-
alization ability in a new domain. Hence, we conducted TL
with annotated seed samples. Experiments were conducted
on STAC and Molweni datasets to investigate the effective-
ness of the TL mechanism. The results in Table 2 show the
performance gains of a small number of annotated samples
on a cross-domain dataset.

ERC Result
Table 3 shows the results of the baselines and SKIER. The
baselines are categorized by methods based on GloVe and
other pre-trained language models (PM). To demonstrate the

3https://github.com/huggingface/transformers

Mode S to M M to S
Metrics F1 bi F1 mul F1 bi F1 mul

No Transfer 54.83 32.78 44.47 9.61
Transfer(10) 72.12 47.54 66.17 37.46
Transfer(50) 73.41 50.56 68.00 43.22
Transfer(100) 75.28 52.42 68.92 45.56

Table 2: TL analysis. The evaluation metrics are the f1 score
of binary link prediction (F1 bi) and multi-class relation pre-
diction (F1 mul) in dialogue parsing. S to M means training
on the STAC and testing on the Molweni dataset, and vice
versa. The values in brackets are annotated seed samples.

Methods
MELD EmoryNLP DailyDialog

Weighted Avg F1 Macro Micro3-cls 7-cls 3-cls 7-cls

G
lo

V
e-

ba
se

d CNN 64.25 55.02 38.05 32.59 36.87 50.32
DiGCN - 58.37 - 34.29 49.95 53.73
KET - 58.18 - 34.39 - 53.37
DiXL - 62.41 - 34.73 - 54.93
DiRNN 66.10 57.03 48.93 31.70 41.80 55.95

PM
-b

as
ed

COSMIC 73.20 65.21 56.51 38.11 51.05 58.48
DAG - 63.65 - 39.02 - 59.33
P-CKG - 65.18 - 38.80 51.59 59.75
T-GCN 65.36 - 39.24 - 61.91
RoDiRNN 72.12 62.02 55.28 37.29 48.20 55.16
RoBERTa 72.14 63.61 55.36 37.44 49.65 57.32
CoMPM 73.08 66.52 57.14 37.37 53.15 60.34

SKIER 75.05 67.39 60.08 40.07 56.68 62.31
SKIER-l 74.73 66.99 57.98 39.49 56.39 61.72
SKIER-a 74.17 66.91 59.39 39.53 54.02 61.03

Table 3: Performance comparisons on three benchmark
datasets. The top 2 best results are in bold.

Component MELD EmoryNLP DailyDialog
SKIER 67.39 40.07 56.68(Macro)
w/o DRG 65.27↓2.12 38.54↓1.53 55.70↓0.98
w/o KI 66.10↓1.29 38.56↓1.51 52.54↓4.14
w/o DRG & KI 64.08↓3.31 38.10↓1.97 49.73↓6.95
w/o TL 65.87↓1.52 39.50 ↓0.57 53.38↓3.30
w/o DRS 65.73↓1.66 39.25↓0.82 56.33↓0.35
w/o PDR 66.24↓1.15 39.08↓0.99 56.06↓0.62
w/o RACR 65.80↓1.59 39.14↓0.93 54.99↓1.69
w/o IsA 65.95↓1.44 38.79↓1.28 55.69↓0.99
w/o HasContext 65.97↓1.42 38.44↓1.63 55.68↓1.00
w/o Causes 66.36↓1.03 38.55↓1.52 55.21↓1.47

Table 4: Ablation studies on three datasets.

effectiveness of CoAtt, we introduce its competitor solu-
tions, e.g., SKIER-l (the symbolic knowledge is fused by
a fully connected layer), and SKIER-a (the knowledge is
fused by an element-wise addition). As seen in Table 3,
SKIER surpasses the strongest baseline on each metric by
1.74% on average. For example, SKIER outperforms the
strongest baseline (CoMPM) by 1.97% and 0.87% on sen-
timent analysis (3-cls) and emotion detection (7-cls) setups
on MELD dataset, although CoMPM has more than twice
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the parameters of SKIER. Many MELD data are short con-
versations with multiple speakers, highlighting the signifi-
cance of capturing utterance dependencies. SKIER incorpo-
rates dependencies via DRG, and thus yields better results.
The overall performance on EmoryNLP is worse than that
on MELD, as many utterances are not grammatically com-
plete and contain almost no emotion-specific words. Nev-
ertheless, SKIER largely improves the performance on the
sentiment classification task by incorporating commonsense
knowledge. SKIER significantly improves the state-of-the-
art performance by 3.53% in Macro-F1. SKIER surpasses
SKIER-l and SKIER-a on the three datasets, showing that
the CoAtt module is effective for fusing external knowledge
and DRGs, as it captures interactions among each dimension
and channel.

Ablation Study
We conducted ablation studies to investigate the utilities of
the key components of SKIER. As shown in Table 4, DRG
and KI modules are crucial to SKIER. When we removed
DRG from SKIER, w/o DRG performance dropped, e.g.,
from 67.39% to 65.27% on MELD. The weighted average
F1 score decreased from 67.39% to 66.10%, if we kept the
DRG module and disabled the KI module (w/o KI). After
removing both components (w/o DRG & KI), the remaining
part equaled a RoBERTa classifier. Its F1 score further de-
clined. Without transfer learning (w/o TL), the performance
dropped by 1.52% on MELD. As a portion of dialogue re-
lations do not exist in the parsed datasets, we simplified
the number of relations. The ablation result indicated that
SKIER benefited from the dialogue relation simplification
(DRS), because the w/o DRS model is weaker.

If we removed the parsed dialogue relations (PDR) and
simply used the linking information, there is a loss in the
w/o PDR model. The result proved that a complete DRG
is indispensable, as it provides necessary fine-grained utter-
ance dependency information. We proposed a relation-aware
concept representation (RACR) mechanism, taking different
relations of concepts into account. The effect of RACR can
be confirmed by comparing the performances of SKIER and
w/o RACR. Moreover, we studied the influence of the three
selected relations from ConceptNet. When removing one of
the relations, we observed a significant drop in performance
on both datasets.

Hyperparameter Analysis
We analyzed the influence of the number of destination
nodes in this section. By viewing Fig. 3, we observed a trend
that the model achieved the best results on both datasets by
using 3 destination nodes. Using more nodes improved the
computing costs, whereas it did not yield accuracy gains.
Thus, we set the number of destination nodes as 3.

Case Study
We illustrated a case study on a conversation snippet of
MELD test set between A and B. In Fig. 4, we observed
that the utterance indexed by A1 contains 1 positive and
no negative emotional word. However, it received the trans-
mitted SADNESS emotion from (<hurt, Causes, ache>) in

1 2 3 4 5 6 7 8 9 10
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Figure 3: The number of destination nodes analysis.

A0:

A1:

Of course!A3:

Oh, I wish there was something I can do to make you feel better.
IsA awarenessIsA desire preference

You are such a sweet guy and I, I don’t want to hurt you.
CauseacheIsAtastedainty

No-no. Really?!B2:

(SADNESS)

(SADNESS)

(SURPRISE)

(JOY)

Contrast

Clarification question

QAP

Figure 4: Case study. In the KI module, the destination node
in darker color obtained a higher attention score compared
with other destination nodes, e.g., taste > dainty; The source
node in darker gray gets a higher weight γ than other source
nodes, e.g., wish > feel.

utterance A0 through PDR Contrast. In addition, the orig-
inal emotion of the utterance indexed by B2 is ambiguous
as it does not have an emotion-specific word. Nevertheless,
it got the positive word “better” transmitted directly via re-
lation Clarification question, and (<sweet, IsA, taste>) &
(<sweet, IsA, dainty>) in utterance A0 indirectly via rela-
tions Contrast & Clarification question. This enabled our
SKIER to recognize the SURPRISE emotion in utterance B2.
In short, the case indicated that DRG and KI modules al-
lowed SKIER to explore the informative words or struc-
tures under the iceberg and exploit the symbolic knowledge
to improve the emotion (sentiment) classification accuracy.
Moreover, the predicted dependency relations also explain
the emotion predictions with linguistic intuition.

Conclusion

In this paper, we proposed a neurosymbolic model for
ERC named SKIER. The model explicitly integrated dia-
logue structure knowledge and commonsense knowledge.
To effectively fuse the multiple-level symbolic knowledge,
SKIER included relational graph convolutional network,
relation-aware concept representation, and convolutional
self-attention techniques, yielding state-of-the-art perfor-
mances on three ERC datasets. Since there is a big room
for improving dialogue dependency parser performance, we
will study this in future work.
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