
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 14162–14173
December 6-10, 2023 ©2023 Association for Computational Linguistics

Task-Aware Self-Supervised Framework for Dialogue Discourse Parsing

Wei Lia, Luyao Zhua, Wei Shaob, Zonglin Yanga and Erik Cambriaa

aNanyang Technological University, Singapore
bCity University of Hong Kong, Hong Kong SAR

{wei008, luyao001, zonglin001}@e.ntu.edu.sg
weishao4-c@my.cityu.edu.hk, cambria@ntu.edu.sg

Abstract

Dialogue discourse parsing is a fundamental
natural language processing task. It can bene-
fit a series of conversation-related downstream
tasks including dialogue summarization and
emotion recognition in conversations. However,
existing parsing approaches are constrained by
predefined relation types, which can impede the
adaptability of the parser for downstream tasks.
To this end, we propose to introduce a task-
aware paradigm to improve the versatility of
the parser in this paper. Moreover, to alleviate
error propagation and learning bias, we design
a graph-based discourse parsing model termed
DialogDP. Building upon the symmetrical prop-
erty of matrix-embedded parsing graphs, we
have developed an innovative self-supervised
mechanism that leverages both bottom-up and
top-down parsing strategies. This approach al-
lows the parsing graphs to mutually regularize
and enhance each other. Empirical studies on
dialogue discourse parsing datasets and a down-
stream task demonstrate the effectiveness and
flexibility of our framework1.

1 Introduction

Dialogue discourse parsing (DDP) plays an essen-
tial role in the field of natural language process-
ing (NLP), serving as a foundational task and re-
ceiving increasing attention from the research com-
munity (Shi and Huang, 2019; Yang et al., 2021;
Yu et al., 2022). The formulation of the DDP task
is rooted in the Segmented Discourse Relation The-
ory (Asher and Lascarides, 2003), distinguishing it
from the Rhetorical Structure Theory (Mann and
Thompson, 1988) and the Penn Discourse Relation
Theory (Prasad et al., 2008) that primarily under-
pins text-level discourse parsing (Afantenos et al.,
2015). The primary objective of DDP is to recog-
nize the links and relations between utterances in
dialogues.

1https://github.com/senticnet/DialogDP

A0: What s the matter sally you look so unhappy?

B1: I had a bad day yesterday. 

A4: Your bag. Did you get it back?

B5: I went back for it but it was already gone. 

A2: what happened? 

B3: I went to the library and lost my bag. 
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Figure 1: An example of a dialogue dependency graph
for a dailydialog (Li et al., 2017) conversation snippet.
Here A and B are two speakers with subscripts indicating
the turn of the dialogue. “QAP", “CQ", “EXP" and
“Comment" stand for dependency relations.

The parsed dependencies between utterances
should form a Directed Acyclic Graph (DAG). For
example, dependent utterance B3 in Fig. 1 depends
on two head utterances B1 and A2 in “Explana-
tion” and “QAP” relations, respectively. The early
neural-based paradigm (Shi and Huang, 2019) for
the DDP task involved sequentially scanning the
utterances in dialogues and subsequently predict-
ing dependency links and corresponding relation
types, which is prone to the severe error propaga-
tion issue (Wang et al., 2021), as the learned rep-
resentations relied on historical predictions. This
observation inspired us to formalize DDP from a
graph perspective, where the prediction of links and
relations for each pair of utterances is independent
of the others.

Existing methods (Wang et al., 2021) resorted
to the bottom-up strategy for DDP, where for each
dependent utterance, the parser retrieved only one
head utterance. These models (He et al., 2021)
may suffer from measurement bias (Mehrabi et al.,
2021) as the training labels are distorted with the
one-head retrieval for samples with multi-head la-
bels. Furthermore, these multi-head labels serve
as long-tailed data, and overlooking the long-tailed
data may result in a biased distribution estimation
during training (Wang et al., 2022).
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It inspires us to keep the multi-head labels for
bottom-up strategy training. Moreover, Yang et al.
(2021) and Yu et al. (2022) used external knowl-
edge or other NLP tasks to mitigate algorithmic
bias (Mehrabi et al., 2021) during training. Nev-
ertheless, they omitted the potential of leveraging
internal structure for regularization. While the top-
down strategy can be effective in sentence pars-
ing (Koto et al., 2021), it was rarely exploited in
DDP due to the requirement of predicting multiple
dependents for each head in dialogues. Despite
the opposite directions of the two strategies, there
exists a strong correlation between the relevance
scores of the same utterance pair in both strategies.
It leaves room for reciprocal structural supervision
between bottom-up and top-down strategies.

Meanwhile, as a foundational NLP task, DDP
has proved beneficial for downstream tasks in-
cluding dialogue summarization (Chen and Yang,
2021) and emotion recognition in conversa-
tions (ERC) (Li et al., 2022, 2023). Neverthe-
less, existing parsers are constrained by predefined
relation types, posing a potential obstacle to the
parser’s adaptability for downstream tasks. For
example, existing relations like narration and back-
ground do not/ or rarely exist in the ERC datasets.
In addition, a well-designed DDP fine-tuned with
task-aware dependency labels can capture emotion
shifts, which benefits the downstream ERC task.

Overall, the previous methods have three lim-
itations, i.e., error propagation, learning bias of
distorted training labels and a single strategy, and
incompatibility of predefined relations with down-
stream tasks. To this end, we propose a task-aware
self-supervised framework for DDP task. Con-
cretely, a graph-based model DialogDP, utilizing
biaffine mechanism (Dozat and Manning, 2017), is
designed for DDP, avoiding sequential error propa-
gation. The model consists of symmetric parsers, si-
multaneously performing bottom-up and top-down
parsing.

We investigate parsed links and relation graphs
of the two strategies and design a bidirectional self-
supervision mechanism encouraging the two strate-
gies to acquire similar graphs through mutual learn-
ing. Moreover, we propose a soft-window trian-
gular (SWT) mask incorporating a soft constraint,
as opposed to a hard constraint (Shi and Huang,
2019), to guide the parsers. SWT mask encour-
ages parsers to prioritize candidate links within a
flexible window for each utterance.

To enhance the adaptability of DialogDP for
downstream tasks, we propose a novel paradigm in-
volving fine-tuning with task-specific re-annotated
relations. We validate the effectiveness of our task-
aware paradigm on downstream ERC. The contri-
butions of this paper are:

• We propose a new DDP model that explicitly
captures structures of dependency graphs with
bottom-up and top-down strategies, avoiding
sequential error propagation.

• Bidirectional self-supervision with an SWT
mask is devised to alleviate the learning bias.

• Our parser surpasses baselines on benchmark
datasets and task-aware DialogDP demon-
strates superior effectiveness in handling
downstream tasks.

2 Related Work

DDP aims to analyze a conversation between two or
more speakers to recognize the dependency struc-
ture of a dialogue. Compared with the general
text-level discourse parsing (Mann and Thompson,
1988; Prasad et al., 2008; Li et al., 2014b; Afan-
tenos et al., 2015), DDP provides significant im-
provement for many dialogue-related downstream
tasks (Ma et al., 2023; Zhang and Zhao, 2021; Chen
and Yang, 2021) via introducing symbolic dialogue
structure information into the modeling process.

Existing works mainly focused on applying neu-
ral models to handle problems in DDP. In de-
tail, Shi and Huang (2019) formalized DDP as
a dependency-based rather than a constituency-
based (Li et al., 2014a) parsing. However, their se-
quential scan method introduced error propagation.
Wang et al. (2021) proposed a structure self-aware
model, producing representations independently of
historical predictions to handle error propagation,
yet still encounters learning bias. Recent methods
used external knowledge or other NLP tasks to mit-
igate bias during training. Liu and Chen (2021)
utilized domain adaptation techniques to produce
enhanced training data and thus improved the DDP
model’s performance. Yu et al. (2022) pointed out
the lack of modeling speaker interactions in previ-
ous works and proposed a joint learning model. Fan
et al. (2022) presented a distance-aware multitask
framework combining both transition- and graph-
based paradigms. Nevertheless, they overlooked
the potential of leveraging the internal structure for
regularization.
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In summary, despite the good performance, the
existing methods still have problems in modeling
and application. Modeling-wise, the DDP is cur-
rently limited to either a top-down or bottom-up
manner, leading to a gap in achieving bidirection-
ality. Application-wise, the issue arises due to the
constraints imposed by predefined relation types,
thereby limiting the benefits to only tasks directly
associated with these pre-defined relation types.
Consequently, there is a need to establish connec-
tions between the parsed dependency relations and
downstream tasks. In this paper, we propose a new
framework to address these important issues.

3 Methodology

DialogDP is tailored for integral graph-driven
discourse parsing, which is more computation-
efficient and avoids error propagation in the train-
ing process. Specifically, the bidirectional self-
supervision allows the parser to parse the dialogue
with both top-down and bottom-up strategies. The
employed strategies in both directions can mutually
reinforce and guide each other. Moreover, the SWT
mask guides the two strategies and imposes soft
constraints on the integral learned graph, prompt-
ing the parser to prioritize the candidate links of
each utterance within a flexible window.

3.1 Task Definition

Given a multi-turn multi-party (or dyadic) dia-
logue U consists of a sequence of utterances
{u1, u2, ..., un}, the goal of the DDP task is to iden-
tify links and the corresponding dependency types
{(uj , ui, rji)|j ̸= i} between utterances, where
(uj , ui, rji) represents a dependency with type rji
from dependent utterance uj to head utterance ui.
We formulate the DDP as a graph spanning process,
where the dependency link of the current utterance
ui is predicted by calculating a probability distribu-
tion P (uj |ui, j ̸= i) over other utterances. Depen-
dency relation type prediction is formulated as a
multi-class classification task, where the probabil-
ity distribution is computed as P (t|ui, uj , t ∈ C).
|C| is the number of pre-defined relation types.

The parsed dependencies between utterances
constitute a DAG (Shi and Huang, 2019). How-
ever, due to the limited presence of multiple in-
coming relations in STAC and Molweni datasets,
most existing methods parse a dependency tree (Liu
and Chen, 2021) which is a special type of DAG.
The dependency types are predefined as 16 rela-

tions (Appendix A), specified by (Asher et al.,
2016). Following (Li et al., 2014b), we add a root
node, denoted as u0. An utterance is linked to u0,
if not connected to preceding utterances.

3.2 Model Overview
To tackle error propagation in sequential scan,
we re-formalized the DDP in a graph-based man-
ner, where a link graph and a dependency-type
graph are built based on the scores computed by
the biaffine (Dozat and Manning, 2017; Zhang
et al., 2020) mechanism. The parsed dependency
tree can be obtained by jointly decoding the two
graphs. Fig. 2 illustrates the structure of our pro-
posed DialogDP model. First, the pre-trained
large language model BERT (Devlin et al., 2018) is
employed to generate speaker-aware and context-
aware utterance-level representations. Second,
a bidirectional self-supervision mechanism is de-
signed to capture the links and relations between
utterances, and an SWT mask is applied to regular-
izing the learned graphs in an explainable manner.

3.3 Speaker-Context Encoder
Given a dialogue U = {u1, u2, ..., un}
with a corresponding speaker list Sp =
{Sp1, Sp2, ..., Spn}, we concatenate the
whole dialogue in a single sequence
x = {[cls], [sp1], u1, [sp2], u2, ..., [spn], un},
where [cls] and [spi] are special tokens of start of
the sequence and speaker Spi, respectively. Then
speaker-context integrated embeddings e can be
obtained through PLM(x). ei := PLM(x)j
is the speaker-context integrated embedding of
utterance ui of speaker Spi, where j is obtained
when xj = [spi].

3.4 Bidirectional Self-Supervision
DialogDP is composed of two symmetric compo-
nents, a bottom-up parser and a top-down parser.
The two parsers are designed on the basis of the
biaffine mechanism (Dozat and Manning, 2017)
which is proved to be effective on sentence-level de-
pendency parsing. The bottom-up strategy involves
the parser calculating the biaffine attention score
between a dependent and a head, and selecting the
head with the highest score for each dependent. In
contrast, the top-down parser identifies the depen-
dents with high scores for each head. Subsequently,
both parsers build a link graph and a relation graph,
wherein each node represents an utterance, and the
arcs connect pairs of nodes within the graph.
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Figure 2: Architecture of DialogDP.

We calculate the arc scores (Sa
bu =

[sa1, s
a
i , ..., s

a
n]bu) and relation label scores

(Sl
bu = [sl1, s

l
i, ..., s

l
n]bu) with bottom-up strategy

through:

sai = hd
′
iW

(1)
a Hp + w(2)

a Hp (1)

sli,j = rdi
′W(1)

l rpj + (rpj ⊕ rdi )
′W (2)

l + b. (2)

Here, Hp ∈ Rd×n and rpyi ∈ Rd×1 are the head hid-
den states from two different multiple layer percep-
trons (MLPs), while hd′i ∈ R1×d and rdi

′ ∈ R1×d

are the dependent hidden states from another two
different MLPs. sai ∈ R1×n is the attention
scores between the i-th dependent and n heads.
sli ∈ R1×|C| is the likelihoods of each class given
the i-th dependent and n heads. Similarly, the arc
scores (Sa

td) and relation label scores (Sl
td) with

top-down strategy can be obtained by exchanging
the positions of head hidden states and dependent
hidden states in the above formulas. w(2)

a ∈ R1×d,
W

(1)
a ,W

(2)
l ∈ Rd×d and W(1)

l ∈ Rd×|C|×d are
learnable parameters of the biaffine mechanism.

By observing the arc (relation) scores of both
the top-down strategy and the bottom-up strategy,
we can readily infer their high relevance. In other
words, Sa

bu ∝ Sa
td
′ and Sl

bu ∝ Sl
td
′. Hence, we

designed a bidirectional self-supervision mecha-
nism for regularizing the bidirectional strategies by
assuming Sa

bu = Sa
td
′ and Sl

bu = Sl
td
′.

The symmetric self-supervision losses are

La
s = KL(Sa

bu||Sa
td
′) +KL(Sa

td
′||Sa

bu) (3)

Ll
s = KL(Sl

bu||Sl
td
′
) +KL(Sl

td
′||Sl

bu). (4)

Here KL(P ||Q) =
∑

n×n P log(PQ) is the Kull-
back–Leibler divergence (Kullback and Leibler,
1951) between the two distributions. P and Q refer
to the aforementioned paired attention scores.

3.5 Soft-Window Triangular Mask
In this work, we assume that all the head utterances
appear before the dependent utterances. This aligns
with our intuition that the current utterance can-
not be induced by the preceding utterance. As we
can see in Fig. 2, the feasible attention scores, for
bottom-up strategy, between each head and the can-
didate dependents distributed in the lower triangu-
lar matrix M l = [ml

ij ] such that ml
ij = 0 for i ≤ j,

as bottom-up strategy is to retrieve one head for
each dependent. Similarly, top-down strategy corre-
sponds to the upper triangular matrix Mu = [mu

ij ]
such that mu

ij = 0 for i ≥ j, as it identifies the
dependents for each head.

The previous method (Shi and Huang, 2019) im-
plemented a hard window constraint, compelling
the model to exclusively select links within a pre-
determined distance range. However, the hard win-
dow excluded all candidates whose distance from
the current utterance exceeds the predefined win-
dow size.
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This limitation hampers the generalization capa-
bility in real-world scenarios.To this end, we devise
a soft-window mechanism that can be implemented
by a carefully designed mask. Each element mω

i,j

of the mask Mω is calculated by:

mω
i,j =





1, di,j < B0

f(log(Pi,j), α0, 1), B0 ≤ di,j < B1

f(log(Pi,j), α1, α0), B1 ≤ di,j < B2

α2, di,j ≥ B2

where f(·,min,max) is the Max-Min scaling
that scales each input feature to a given range
[min,max]. di,j denotes |i− j|. B0, B1, and B2

are the distance boundaries suggested by the prior
distribution of head-dependent distances, of which
the distribution plot is in Appendix A. α0 = 0.95,
α1 = 0.85 and α2 = 0.7 are the hyper-parameters.

Combining the triangular mask with the soft-
window mask, SWT masks for bottom-up and top-
down strategies, Mbu and Mtd are obtained by

Mbu = M lMω (5)

Mtd = MuMω. (6)

The scores of arcs and relations after the soft-
window triangular masking are Oa ∈ Rn×n and
Ol ∈ Rn×n×|C|, respectively. We denote oai,j :=

[Oa]i,j and oli,j,k := [Ol]i,j,k.

3.6 Link and Relation Decoding
In the decoding process, the parser leverages the
bottom-up strategy to predict the link and the corre-
sponding relations. Concretely, for each dependent
utterance ui, the parser predicts its head uj and
then recognizes the relation of the predicted link.

P (ŷi,j = 1|ui, U<i) =
exp(oai,j)∑
k<i exp(o

a
i,k)

(7)

ŷi,j denotes whether the parser predicts a link be-
tween ui and uj . k < i indicates that the predicted
head should be the preceding utterance before the
current dependent utterance, which is achieved by
applying the triangular mask. Then, the j-th utter-
ance is determined as the head through

j = argmax
j<i

P (ŷi,j = 1|Ui, U<i). (8)

Similarly, the parser predicts the relation between
ui and its selected head uj . The probability distri-
bution over all relations is calculated as follows:

P (t|ui, uj , t ∈ C) =
exp(oli,j,t)∑
c∈C exp(oli,j,c)

. (9)

3.7 Loss Function
We use binary cross entropy (BCE) loss for multi-
label classification as link prediction loss for both
strategies, and adopt cross entropy (CE) loss for
relation classification. Here we show the classifica-
tion loss functions of the top-down strategy, as the
classification losses of both strategies are similar.

La
td = − 1

n(n− i)

n∑

i

n∑

j>i

BCE(oai,j , yi,j) (10)

Ll
td = − 1

nl|C|
∑

yi,j=1

∑

c∈C
CE(oli,j , y

l
i,j) (11)

For ui and uj , yi,j is a binary label for link and
yli,j is a relation label. Here nl is the number of
existing links in a dialogue. While the bottom-
up strategy in decoding selects just one head for
each dependent, it is trained using a multi-label
classification approach. This is essential because a
small set of dependents may have multiple ground-
truth heads. Our method capitalizes on this to fully
exploit the instructive dependent-head label infor-
mation, which is often ignored by other methods.
In summary, the total loss of the framework is the
weighted summation of classification and supervi-
sion losses.

L = La
bu+Ll

bu+La
td+Ll

td+λaLa
s +λlLl

s (12)

Here λa and λl are trade-off parameters.

3.8 Task-Aware Dialogue Discourse Parsing
Previous researches on DDP followed the original
definition of 16 relations, regardless of application
scenarios. However, the existing relation taxonomy
may not fit the downstream tasks, e.g., ERC. Hence,
we propose a task-aware DDP paradigm to improve
its adaptability to downstream tasks. In Fig. 3, the
task-aware DialogDP bridges the gap between the
fundamental DDP with downstream tasks through
fine-tuning DialogDP with task-aware relation an-
notations. The main steps include:

(a) Train DialogDP on existing DDP datasets
with the default taxonomy of dependency relations.

(b) Predict dependency links A of the dialogue
Ud in the downstream task training dataset.

(c) Automatically re-annotate relations T d for
predicted links A with rule-based methods based
on target labels for the downstream task, which is
detailed in Algorithm 1.

(d) Fine-tune DialogDP on downstream training
dataset with A and T d.
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DialogDP Task-aware 
DialogDP D/S Task

dialogue dependency
task-aware
dependency

Figure 3: Framework of task-aware DDP. D/S denotes downstream. The means not using the predefined relation
labels. The backward arrow from D/S Task to Task-aware DialogDP corresponds to step (c) in subsection 3.8.

(e) Predict dependency links and relations with
DialogDP for test dataset and incorporate results
into input features of downstream tasks.

Algorithm 1: Task-aware annotation
Data: downstream dialogue Ud with labels

L ∈ N+ ∪ {0}, predicted links Y
Result: task-aware relations T d

1 define state transition mapping g(li, lj), (li, lj ∈ L);
2 while yi,j in Y and yi,j ̸= 0 do
3 tdi,j ← g(li, lj);
4 end

Taking the downstream ERC task as an example,
task-aware DDP leverages the state transition to
represent emotion shift which can enhance ERC
performance (Gao et al., 2022) and contribute to
the research in the psychology domain (Winkler
et al., 2023). The state transition mapping g (eq. 13)
from head udi to udj is obtained based on their tar-
get labels li and lj , where li, lj ∈ {0, 1, 2} corre-
sponding to {negative, neutral, positive} sentiment
polarities.

g(li, lj) =



0 1 2
3 0 4
5 1 0


 (13)

The numbers from 0 to 5 in g are the rela-
tion types for ERC task-aware DDP, referring
to “same_polarity”, “sentiment_to_neutral”, “neg-
ative_to_positive”, “neutral_to_negative”, “neu-
tral_to_positive”, and “positive_to_negative”, re-
spectively. In this case, the task-aware DialogDP
fine-tuned with re-annotated relations is capable of
capturing sentiment shifting between utterances.

4 Experiment Setups

4.1 Dataset
We evaluated DialogDP on two publicly available
datasets, i.e., STAC2 (Asher et al., 2016) and Mol-
weni3 (Li et al., 2020). STAC is collected from

2https://www.irit.fr/STAC/corpus.html
3https://github.com/HIT-SCIR/Molweni

an online game, The Settlers of Catan. It con-
sists of 1, 173 annotated dialogues, divided into
two sets, i.e., 1, 062 dialogues for training and 111
for testing. Molweni is collected from Ubuntu Chat
Corpus (Lowe et al., 2015). The dataset consists
of 9, 000 annotated training instances, along with
500 instances allocated for development and an-
other 500 instances for testing. We pre-processed
datasets following (Shi and Huang, 2019).

4.2 Setups and Metrics
We used BERT-large from HuggingFace4 as
the speaker-context encoder. The optimizer is
AdamW (Loshchilov and Hutter, 2018) with initial
learning rates of 1e-5 and 5e-6 for DialogDP and
BERT encoder, respectively. The maximum value
of gradient clipping is 10. Both λa and λl are con-
figured with 0.05. The dropout rate is configured
to 0.33, adhering to the default setting of biaffine.
Following Shi and Huang (2019), we report micro
F1 scores for LINK prediction and L&R prediction,
respectively. In L&R, both the link and its cor-
responding relation should be correctly classified.
The experiments were performed on a V100 GPU
with 16 GB of memory. To provide accurate results,
we conducted three random runs on test sets and
reported the average score.

4.3 Baselines
Shi and Huang (2019) proposed DeepSequential,
which sequentially scans the utterance and predicts
the link and its corresponding relation type sequen-
tially. Wang et al. (2021) presented a structure
self-aware model, which adopts an edge-centric
graph neural network. Liu and Chen (2021) put
forward a framework leveraging cross domain data
to improve the generalization ability of the neural
parser. Li et al. (2020) built the Molweni dataset
and proposed a parser on the basis of DeepSequen-
tial. He et al. (2021) advanced a multitask learning
framework to jointly learn question-answering and
discourse parsing tasks.

4https://github.com/huggingface/transformers
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MODELS STAC Molweni

Link L&R Link L&R

Shi and Huang (2019) 73.2 55.7 77.9 54.4
Li et al. (2020) – – 78.1 54.8
Wang et al. (2021) 73.5 57.3 81.6 58.5
Liu and Chen (2021) 75.3 56.9 79.7 55.9
He et al. (2021)∗ – – 80.0 57.0
Yang et al. (2021) 74.1 57.0 – –
Fan et al. (2022) 73.6 57.4 82.5 58.9
Yu et al. (2022) 73.0 57.4 83.7 59.4
DialogDP 73.0 58.5 83.2 59.8

Table 1: Main results on STAC and Molweni datasets.
“∗” denotes the re-run results. L&R refers to
LINK&RELATION. The bold text reveals the best per-
formance and the underlined indicates the second best.

Yang et al. (2021) presented a unified frame-
work DiscProReco to jointly learn dropped pro-
noun recovery and DDP. Yu et al. (2022) pro-
posed a speaker-context interaction joint encoding
model, taking the interactions between different
speakers into account. Fan et al. (2022) combined
the advantages of both transition- and graph-based
paradigms.

4.4 Main Results

We report the DDP results of our DialogDP and
baselines on STAC and Molweni datasets. In Ta-
ble 1, DialogDP outperforms all the baselines on
L&R and achieves comparable LINK prediction re-
sults. We believe that the weak L&R of baselines
can be attributed to two factors, i.e., link predictor
and relation classifier. The F1 scores on Molweni
demonstrate that the majority of the baselines ex-
hibit weaknesses in both link prediction and rela-
tion classification. The results on STAC indicate
that some baselines have a relatively stronger link
predictor yet obtain a poor performance on L&R.
This is because their weaker relation classifiers
may fail to identify the relations of predicted links,
even if the links are determined accurately. Shi and
Huang (2019) set a fixed window in their model,
which reduced the complexity of link prediction
in DDP yet compromised the model’s capacity to
capture relations in long-range dependencies.

4.5 Ablation Study

We conducted ablation studies to further explore
the functions of essential components in DialogDP.
Table 2 demonstrates that the excellent perfor-
mance of DialogDP can be attributed to the inclu-
sion of the proposed bidirectional self-supervision

MODELS STAC Molweni

Link L&R Link L&R

DialogDP 73.0 58.5 83.2 59.8
w/o Link_Sup 72.0↓1.0 57.0↓1.5 83.1↓0.1 58.5↓1.3
w/o Rel_Sup 72.5↓0.5 55.6↓2.9 82.1↓1.1 58.7↓1.1
w/o L&R_Sup 72.0↓1.0 56.1↓2.4 83.5↑0.3 58.5↓1.3
w/o SWM 72.4↓0.6 55.8↓2.7 83.0↓0.2 58.7↓1.1

Biaffine 71.2↓1.8 55.3↓3.2 82.5↓0.7 58.1↓1.7
SupBU 71.5↓1.5 55.5↓3.0 82.9↓0.3 58.5↓1.3
SupTD 71.9↓1.1 56.5↓2.0 83.1↓0.1 58.1↓1.7

Table 2: Ablation study results. Link_Sup, Rel_Sup,
L&R_Sup and SWM corresponds to link supervision,
relation supervision, link and relation supervision, and
soft-window mask, respectively. Biaffine refers to a
variant without self-supervision or soft-window mask.
SupBU (SupTD) refers to a single supervision mechanism
where only bottom-up (top-down) strategy is supervised
by top-down (bottom-up) strategy.

mechanism and soft-window mask. Specifically,
if L&R_Sup is removed from DialogDP, the F1
scores on the four indices drop 1.1% on average.
Without SWM, the performance decreases 1.15%
on average. The results of the Biaffine model high-
light the significance of incorporating both bidi-
rectional self-supervision and SWM mechanisms.
The average F1 score drops of w/o Link_Sup on
both LINK(0.55%) and L&R(1.4%) reveals that
link supervision benefits both link prediction and
overall dependency parsing. This observation is
in line with our intuition, as the accuracy of sub-
sequent relation classification depends on that of
the predicted links. Furthermore, we observe that
the inclusion of relation supervision not only im-
proves link prediction but also suggests a reciprocal
influence between link prediction and relation clas-
sification. The results of SupBU and SupTD prove
DialogDP is regularized by the bidirectional self-
supervision, which reduces the training bias.

4.6 TA-DialogDP on ERC task
We conducted experiments on an ERC dataset
MELD (Poria et al., 2019) to investigate the pro-
posed task-aware paradigm. Specifically, we se-
lected SKIER (Li et al., 2023) as the backbone to
verify the effectiveness of the generated dialogue
dependency graph by the task-aware mechanism,
as it explicitly leveraged parsed trees for ERC. In
Table 3, the DialogDP-based models significantly
outperform SKIER W/O TL and DialogDP models
in task-aware setup even achieve comparable re-
sults with SKIER, especially on 3-class sentiment
analysis.
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Figure 4: Case studies of on a STAC dialogue. In the lower triangular attention matrix of DialogDP, the shades
varying from light blue to dark blue depict the link prediction scores ranging from 0 to 1.

Our observations indicate, in general, the task-
aware setup provides a slight benefit to DialogDP,
except for TA-DialogDP(STAC) in 7-class ERC task.
We believe this may be attributed to the fact that
the task-aware relation annotation specifically fo-
cuses on polarity shifting without differentiating
emotion shifting. We also employed ChatGPT C
for ERC. Overall, the performance of ChatGPT
lags significantly behind that of SKIER, primarily
due to the zero-shot setting. However, the inclusion
of task-aware prompts helps to align the ChatGPT
with downstream ERC through task-specific rela-
tions, whereas prompts integrated with DDP may
present a challenge for ChatGPT in comprehending
fundamental relation types.

Methods MELD

3-cls 7-cls

ChatGPT 50.20 51.60
ChatGPT(MOLWENI) 50.26 44.65
TA-ChatGPT(MOLWENI) 52.98 53.54
RoBERTa 72.14 63.61
SKIER W/O TL 73.66 65.87
SKIER∗ 75.05 67.39

DialogDP(STAC) 74.38 66.69
DialogDP(MOLWENI) 74.26 66.70
TA-DialogDP(STAC) 74.50 66.55
TA-DialogDP(MOLWENI) 74.95 66.84

Table 3: Results on the downstream ERC task. The
metric used is the weighted average F1 score. The bold
text reveals the best performance, and the underlined in-
dicates the second best. Subscripts in between brackets
denote the corpus used to train the parser. ∗ means the
model was fine-tuned on manually annotated relations.
Here, the results of SKIER∗ serve as a reference point,
not for direct comparison. w/o TL means without man-
ually annotated relations.

4.7 Case Study

As shown in Fig 4, our model surpasses Chat-
GPT in L&R. In detail, A(0)->B(2), A(0)->D(4),
D(4)->D(6) do not appear in ground truth but
are indicated by ChatGPT. Moreover, ChatGPT
fails on all QAP (label 1) pairs. The atten-
tion scores of DialogDP exhibit a notable dis-
tinction between correct links (dark) and incor-
rect links (light). Compared with DeepSequen-
tial, our graph-based DialogDP avoids sequential
error propagation through a parallel attention mech-
anism.

4.8 Effect of Dialogue Length

We examined the effect of dialogue length on the
parsing performance. As shown in Fig. 5 (a), the
trend on STAC is a gradual decline in performance
as the dialogue length increases. The reason is that
long-range dialogues encompass a greater num-
ber of links and relation types, resulting in a more
complicated parsing tree. Consequently, the perfor-
mance of the parser is adversely affected, resulting
in lower F1 scores. Additionally, the performance
of L&R declines more rapidly compared to that
of Link prediction. This suggests that the exis-
tence of long-term dependencies also presents sig-
nificant challenges for the relation classifier. In
Fig. 5 (b), we did not observe a comparable trend,
as the length of Molweni dialogues demonstrates a
concentrated distribution within a limited range of
[7, 14]. This may benefit the parser.

4.9 Effect of Dialogue Turn

We further investigated the performance of base-
lines and our DialogDP at different dialogue turns
on the Molweni dataset. In Fig. 6, we observed
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Figure 5: The predicted F1 scores of DialogDP on the
STAC and Molweni testsets.

a downward trend in all models. As the dialogue
turn increases, the search space of bottom-up-based
methods expands, leading to a decline in the accu-
racy of L&R prediction. DeepSequential displays
the consistently lowest accuracy across all dialogue
turns, largely attributed to the issue of error prop-
agation. Meanwhile, the other two models elimi-
nated this issue as they avoided using historical pre-
dictions for processing the current one. Different
from the model of Wang et al. (2021) in Fig. 6, Di-
alogDP shows a gentle-slope downward trend. Our
method exceeds the model of Wang et al. (2021) in
all the dialogue turns except the 9th turn. Addition-
ally, DialogDP has two local minimum points at
the 5th turn (48.0%) and 9th turn (43.1%), both of
which performs better than those at the 5th (40.0%)
and 8th (41.5%) turns. Given that the model pro-
posed by Wang et al. (2021) employed graph-based
techniques (Cai and Lam, 2020) to mitigate error
propagation, our model demonstrates superior per-
formance in addressing this issue since the bidi-
rectional self-supervision improves the stability of
prediction results by jointly utilizing the top-down
and bottom-up dependency parsing graphs.

5 Conclusion

In this paper, we proposed a bidiretional self-
supervised dialogue discourse parser DialogDP and

2 4 6 8 10
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A
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Wang et al.
Our DialogDP

Figure 6: Comparison of prediction accuracy between
typical methods at different dialogue turns.

a task-aware paradigm combining DDP and down-
stream task ERC. First, we designed two graph-
based parsers leveraging both bottom-up and top-
down parsing strategies and eliminating sequen-
tial error propagation. Then a bidirectional self-
supervision mechanism is designed to reduce the
learning bias by exploiting the structural symmetry
of two strategies, and thus avoid the reliance on
external knowledge. Furthermore, a soft-window
triangular mask, tailored with statistical informa-
tion, is utilized to effectively handle long-term de-
pendencies. Second, we presented a task-aware
paradigm bridging the gap between the founda-
tional DDP with downstream tasks through fine-
tuning DialogDP with task-aware dependency re-
lation annotations. Empirical studies on DDP and
downstream ERC show the superiority and adapt-
ability of our DialogDP and task-aware paradigm.

Limitations

Due to the lack of theoretical support, it is chal-
lenging to design task-aware dependency relations.
The design of task-specific dependency relations is
expected to exert a substantial influence on the per-
formance of downstream tasks that are integrated
with DDP. Hence, it is encouraged to undertake the-
oretical analysis in order to devise task-specific
relations that are better suited for the intended
downstream tasks. This paper primarily concen-
trates on the ERC task to serve as an illustrative
example for validating the effectiveness of the task-
aware paradigm. However, additional comprehen-
sive evaluations would be beneficial for thoroughly
assessing the proposed task-aware paradigm.
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A Statistics of datasets

In this section, we display the statistical informa-
tion of STAC and Molweni datasets. The x-axis
represents the distance between a pair of dependent
utterances, and the y-axis represents the propor-
tions of different distances. It is evident that the
distance between dependent utterances follows a
long-tailed distribution. In STAC training set, more
than 90% of the dependencies are within 10 dia-
logue turns; More than 99% of the dependencies
are within 20 dialogue turns; No dependency exists
beyond 26 dialogue turns. Hence, we set hyper-
parameters B0 = 10, B1 = 20, B2 = 89 for
task on the STAC dataset. Similarly, we set hyper-
parameters B0 = 8, B1 = 10, B2 = 14 for task on
the Molweni dataset.

Figure 7: The distance distribution of STAC dataset

The pre-defined 16 dependency relations as
shown as below:
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Figure 8: The distance distribution of Molweni dataset

Dependency Relations
Comment Q-Elab Conditional
Acknowledgement Elaboration Background
Contrast Alternation Narration
Correction Parallel Continuation
QAP Explanation Result
Clarification_Q

Table 4: The Predefined Dependency Relations

B The application of ChatGPT to DDP
task

This section details the usage of ChatGPT on the
DDP task. To prompt ChatGPT to parse a dialogue
based on specific requirements, we begin by provid-
ing an example dialogue that includes pre-defined
dependency relations and a parsed dependency tree.
Subsequently, we input a dialogue where we ask
ChatGPT to parse it accordingly. Below is the
prompting example:

Given the dialogue history, please
predict the discourse parsing based their
semantic relevance and logic flow as
follows: speaker: A, text: i have enough
to build a settlement too now... ?, turn: 0
speaker: A, text: and it won’t let me ,
turn: 1
speaker: B, text: because you have no
good roads!, turn: 2
speaker: C, text: youre like me, turn: 3
speaker: C, text: you need to build
another road, turn: 4
speaker: C, text: it needs to be at least
2 roads away from another of your
settlements, turn: 5
speaker: A, text: okeydoke, turn: 6
speaker: A, text: thanks guys, turn: 7

There are 16 pre-defined dependency
relations. They are [‘Continuation’,
‘Explanation’, ‘Comment’, ‘Clarifica-
tion_question’, ’Question-answer_pair’,
’Correction’, ’Contrast’, ‘Acknowledge-
ment’, ‘Background’, ‘Result’, ‘Elabo-
ration’, ‘Conditional’, ‘Narration’, ‘Q-
Elab’, ‘Parallel’, ‘Alternation’] predicted
dependencies are in the form of: (0,1,
relation: Contrast), (0,2, relation: Ex-
planation), (0,3, relation: Alternation),
(3,4, relation:Elaboration), (4,5, relation:
Continuation), (3,6, relation: Acknowl-
edgement), (2,7, relation: Acknowl-
edgement), (3,7, relation: Acknowledge-
ment).

C The application of ChatGPT to ERC
task with dependencies from
task-aware DialogDP

Input of System content: "You are an
expert in sentiment analysis. The given
head utterances may influence the emo-
tion of the current utterance. Please iden-
tify the emotion label for the current ut-
terance with one of the pre-defined emo-
tion labels. The emotion labels are [neu-
tral, surprise, fear, sadness, joy, disgust,
anger]."
Task-aware dependency-based prompt:
prompt = "Dialogue History: U , Rela-
tion: r, Head: uj , Current utterance: ui,
Emotion label for current utterance is:".
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