
ORIGINAL ARTICLE

Integrating graph embedding and neural models for improving
transition-based dependency parsing

Phuong Le-Hong1 • Erik Cambria2

Received: 9 February 2023 / Accepted: 26 October 2023 / Published online: 27 November 2023
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
This paper introduces an effective method for improving dependency parsing which is based on a graph embedding model.

The model helps extract local and global connectivity patterns between tokens. This method allows neural network models

to perform better on dependency parsing benchmarks. We propose to incorporate node embeddings trained by a graph

embedding algorithm into a bidirectional recurrent neural network scheme. The new model outperforms a baseline

reference using a state-of-the-art method on three dependency treebanks for both low-resource and high-resource natural

languages, namely Indonesian, Vietnamese and English. We also show that the popular pretraining technique of BERT

would not pick up on the same kind of signal as graph embeddings. The new parser together with all trained models is

made available under an open-source license, facilitating community engagement and advancement of natural language

processing research for two low-resource languages with around 300 million users worldwide in total.

Keywords Dependency parsing � recurrent neural networks � transformers � transition-based parsing � English �
Indonesian � Vietnamese

1 Introduction

Dependency structures have played an important role in

analyzing natural languages, and syntactic dependency

parsing has recently gained popularity in the natural lan-

guage processing (NLP) community. The conference on

computational natural language learning (CoNLL) featured

four shared tasks which devoted to multilingual depen-

dency parsing in 2006, 2007, 2017 and 2018. In 2006,

participants trained a single parser on data from 13 dif-

ferent languages [5]. In 2007, the shared task continued to

explore data-driven methods for multilingual dependency

parsing but added the problem of domain adaptation and

partly different languages [35]. Ten years later, the 2017

CoNLL shared task focused on learning dependency

parsers that can work in real-world setting, starting from

raw text, and that can work on many typologically different

languages [48]. The 2018 CoNLL shared task continued

this effort but added a focus on morphological analysis as

well as data from new languages. The two recent shared

tasks have been made possible by the Universal Depen-

dencies (UD) initiative which has developed treebanks for

50? languages with cross-linguistically consistent anno-

tation and recover ability of the original raw texts [34, 38].

These shared tasks are major milestones for parsing

research which have enabled a comparison not only of

parsing and learning methods, but also of the performance

that can be achieved for different languages.

Practically, all data-driven methods that have been

proposed for dependency parsing in recent years use sta-

tistical machine learning models, in particular neural net-

work models, and can be described as either transition-

based or graph-based methods [15]. Regardless of the

methods, a crucial step in parser design is choosing the

right feature function for the underlying statistical classi-

fier [6]. Kiperwasser and Goldberg [18] proposed a simple

and effective method for dependency parsing which is

based on bidirectional long short-term memory neural

& Phuong Le-Hong

phuonglh@vnu.edu.vn

Erik Cambria

cambria@ntu.edu.sg

1 Vietnam National University, Hanoi, Vietnam

2 School of Computer Science and Engineering, NTU,

Singapore, Singapore

123

Neural Computing and Applications (2024) 36:2999–3016
https://doi.org/10.1007/s00521-023-09223-3(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-09223-3&domain=pdf
https://doi.org/10.1007/s00521-023-09223-3

networks. Despite its simplicity, resulting parsers match or

surpass the state-of-the-art performances on English and

Chinese dependency parsing.

The dependency structure of a natural language is

essentially a graph whose nodes are tokens and arcs are

dependency relations between tokens. This observation

allows us to come up with an idea of connecting two lines

of research namely dependency parsing and knowledge

base modeling. A knowledge base is a relational graph of

meaningful entities (nodes) and relationships (arcs).

Knowledge graph embedding methods aim to model rela-

tionships between nodes and arcs by interpreting them as

operations on the low-dimensional embeddings of the

entities.

The main purpose of this research is to test the useful-

ness of knowledge graph modeling methods in improving

dependency parsing. We introduce a method that integrates

node embeddings learned by a graph embedding algorithm

into an effective dependency parsing scheme. The resulting

augmented feature function allows the model to achieve

better parsing results on multiple languages. We perform

multilingual evaluation to test generality of our proposed

method, which helps improve dependency parsing of both

low-resource and high-resource languages.

In this paper, we make the following main contributions:

• We present a method for extracting useful distributed

features which are learned from dependency graphs by

a graph embedding algorithm.

• We present a method which integrates graph embedding

features into a state-of-the-art bidirectional recurrent

neural network scheme.

• We demonstrate the effectiveness of the proposed

method in English, Indonesian and Vietnamese. Exper-

imental results on three standard dependency treebanks

of these languages all show a significant improvement

of parsing scores.

• We show that the popular pretraining technique of

BERT would not pick up on the same kind of signal as

graph embeddings.

• Our code and experimental results are publicly avail-

able on GitHub. The code is implemented in the Julia

programming language.1

The remainder of this paper is structured as follows: Sect. 2

presents background for our work; Sect. 3 presents related

work, focusing on recent research efforts on dependency

parsing; Sect. 4 describes the baseline model, a graph

embedding algorithm and the proposed integrated method;

Sect. 5 presents experimental results on three dependency

treebanks for Indonesian, Vietnamese and English; finally,

we provide concluding remarks and discuss future work in

Sect. 6.

2 Preliminaries

2.1 Syntactic structures

Constituency structure and dependency structure are two

types of syntactic representation of a natural language

sentence. While a constituency structure represents a

nesting of multi-word constituents, a dependency structure

represents dependencies between individual words of a

sentence. The syntactic dependency represents the fact that

the presence of a word is licensed by another word which is

its governor. In a typed dependency analysis, grammatical

labels are added to the dependencies to mark their gram-

matical relations, for example subject or indirect object.

Figure 1 shows a constituency structure and its corre-

sponding dependency structure. The syntactical tags are

those from the Penn treebank project, and the dependency

labels are from the Universal Dependency project.2

2.2 Dependency parsing

Dependency parsing is a fundamental task of NLP which

aims to find the most probable dependency structure of a

given sentence. Modern methods to dependency parsing

can be roughly classified into two categories, namely

transition-based and graph-based parsing [21]. Transition-

based parsers treat parsing as a sequence prediction prob-

lem where a transition sequence from an initial configu-

ration to some terminal configuration is predicted, which

derives a target dependency parse tree [36, 37]. The most

important component of a transition-based parser is a

transition classifier which is trained to score the possible

transitions at each step and guide the parsing process.

Graph-based parsers treat parsing as a search-based struc-

tured prediction problem in which the goal is learning a

scoring function over dependency trees such that the cor-

rect tree has the largest probability [30, 31].

The focus of this paper is on improving transition-based

dependency parsing. For practical applications, the speed

of transition-based parsers have been more appealing than

graph-based parsers. For example, spaCy3—a widely used

industry tool, implements a transition-based dependency

parser component for its processing pipeline. We present

transition-based dependency parsing in more detail in the

following paragraphs.

1 https://github.com/phuonglh/jvl/, under the VLP/aep module.

2 https://universaldependencies.org/.
3 https://spacy.io/api/dependencyparser.

3000 Neural Computing and Applications (2024) 36:2999–3016

123

https://github.com/phuonglh/jvl/
https://universaldependencies.org/
https://spacy.io/api/dependencyparser

As stated above, transition-based dependency parsing

aims to predict a transition sequence from an initial con-

figuration to some terminal configuration. It uses a classi-

fier to predict the correct transition based on features

extracted from the configuration at each step of the

derivation process. In this paper, we examine only greedy

parsing where the classifier always selects the best decision

at each local stage. This greedy method tends to perform

slightly worse than the search-based methods because of

subsequent error propagation. An alternative method is

beam search which may give better result but it is slower.

We use the arc-eager algorithm, which is a transition-

based dependency parsing algorithm [33]. In an arc-eager

system, a configuration c ¼ ðr; b;AÞ consists of a stack r,
a buffer b and a set of dependency arcs A. The initial

configuration for a sentence s ¼ w1;w2; . . .;wn is r ¼
½ROOT �; b ¼ ½w1; . . .;wn� and A ¼ ;. A configuration c is

terminal if the buffer is empty and the stack contains a

single element ROOT . We use the notation vjb to indicate

that the first element of the buffer is the word v; the

notation rju to indicate that the top element of the stack is

the word u; and Ac ¼ fðx; yÞg where x, y are words of a

sentence being parsed to indicate the set of dependency

arcs of a configuration c.

The arc-eager parsing algorithm defines four types of

transitions as shown in Table 1. In the labeled version of

parsing, there are in total jT j ¼ 2Nl þ 2 transitions where

Nl is the number of different arc labels. The preconditions

of the four transition types are explained as follows:

• The precondition of LEFT-ARC u v is that there does

not exist any arc coming to u; in other words, u has not

been dependent on another word. After this transition,

the parsing of u is done and popped from the stack.

• The precondition of RIGHT-ARC u! v is that there does

not exist any arc coming to v. After this transition, the

word v is pushed onto the stack to consider next word.

Note that there can be multiple arcs coming out of u.

• The REDUCE transition pops the stack and presupposes

that the top element has already been attached to its

head in a previous RIGHT-ARC transition.

• The SHIFT transition extracts the first element of the

buffer and pushes it onto the stack. This transition

requires that the buffer is nonempty.

As an example from the Universal Dependency English

Web Treebank, the sentence ‘‘Google is a nice search

engine.’’ contains seven tokens. An artificial token ROOT

is inserted, serving as the unique root of its graph; this is a

standard addition that simplifies both theoretical definitions

and computational implementations. Figure 2 shows the

dependency graph of this sentence. Note that the root word

Fig. 1 Constituency and

dependency structure of an

English sentence

Table 1 Four transition types of the arc-eager parsing algorithm

Name Operation Precondition

LEFT-ARC ðrju; vjb;AÞ) ðr; vjb;A [fðv; uÞgÞ 6 9k : ðk; uÞ 2 A

RGHT-ARC ðrju; vjb;AÞ) ðrjujv;b;A [fðu; vÞgÞ 6 9k : ðk; vÞ 2 A

REDUCE ðrju; b;AÞ) ðr; b;AÞ 9v : ðv; uÞ 2 A

SHIFT ðr; vjb;AÞ) ðrjv;b;AÞ b 6¼ ;

Fig. 2 Dependency graph of the

English sentence ‘‘Google is a
nice search engine.’’. The
annotation labels, including

part-of-speech tags and

dependency labels, are defined

consistently across multiple

languages by the Universal

Dependency project

Neural Computing and Applications (2024) 36:2999–3016 3001

123

of this sentence is ‘‘engine’’. Table 2 illustrates an example

of one transition sequence which guides the parser from the

initial configuration to a terminal one.

It has been shown that the arc-eager parsing algorithm

can derive any projective dependency tree G for an input

sentence s and doing so always adds arc as early as pos-

sible, i.e., an arc between u and v will be added as soon as

they are at the stack/buffer top, respectively, or not at all.

The essential step in the greedy parsing process is to pre-

dict a correct transition. A statistical classifier is used to

predict the most probable transition with highest

probability. In this setting, the prediction function is

defined as f : C ! T , where C is a set of all possible

configurations and T is the set of all possible transitions:

T ¼ left� arc; right� arc; reduce; shiftf g

The greedy transition-based parsing algorithm is as fol-

lows.

Algorithm 1: Greedy transition-based parsing

Table 2 An example of arc-eager dependency parsing. We use SH, LA, RA and RE symbols to refer to shift, left-arc, right-arc and reduce

transitions, respectively

Transition/A Stack (r) Buffer (b)

[ROOT] [Google is a nice search engine .]

SH [ROOT Google] [is a nice search engine .]

SH [ROOT Google is] [a nice search engine .]

SH [ROOT Google is a] [nice search engine .]

SH [ROOT Google is a nice] [search engine .]

SH [ROOT Google is a nice search] [engine .]

LA-compound [ROOT Google is a nice] [engine .]

engine ! search

LA-amod [ROOT Google is a] [engine .]

engine ! nice

LA-det [ROOT Google is] [engine .]

engine ! a

LA-cop [ROOT Google] [engine .]

engine ! is

LA-nsubj [ROOT] [engine .]

engine ! Google

RA-root [ROOT engine] [.]

ROOT ! engine

RA-punct [ROOT .] []

engine ! .

RE [ROOT] []

3002 Neural Computing and Applications (2024) 36:2999–3016

123

Given a sentence s of n words and their corresponding

parts-of-speech, the parser is initialized with the configu-

ration c (line 1). A statistical classifier parameterized with

h predicts the most likely transition bt for c (line 3). The

transition bt is applied to the configuration, resulting in a

new parser configuration (line 4). The parsing process

terminates when reaching a final configuration (line 5). The

parse tree, represented by a set of dependency arcs, is then

extracted and returned (line 6).

The algorithm guarantees termination after at most

2n transitions for a sentence of length n, which means the

time complexity is O(n) given that transitions can be per-

formed in constant time. Furthermore, the dependency

graph given at termination is guaranteed to be acyclic and

projective [29].

The statistical classifier relies on a feature function /ðcÞ
to represent the configuration c as a vector. This vector is

then fed to a scoring function which assigns scores to (c, t)

pairs, from which the highest scoring transition bt is chosen.

Recent works usually use a nonlinear function, namely a

multi-layer perceptron, i.e., feed-forward neural network

model, with one hidden layer to estimate scores for each

feature vector /ðcÞ. These scores are then passed to a

softmax layer to select bt.

A crucial step in parser design is choosing the right

feature function /ðcÞ for the underlying statistical classi-

fier. In the next subsection, we give a brief review of

feature representations methods in NLP in general and in

dependency parsing in particular.

2.3 Feature representations

There are numerous methods to represent features. They

can be classified into three main methods. The first and

foremost simple method is using the one-hot encoding in

that each feature is represented by its index in a prebuilt

feature vocabulary. In the second method, each feature is

represented by a vector that contains other features

occurring with it in a context. This method is called the

distributional semantics representation [2]. Although the

two representation methods have been successfully applied

in numerous NLP tasks, they share the same two inherent

drawbacks: high dimensionality and feature sparseness.

Many NLP systems use millions of indicator features, and

from a statistical perspective, their corresponding param-

eters are poorly estimated because there are insufficient

data to correctly estimate such parameters. For this reason,

special techniques such as dimensionality reduction or

feature selection are often required when using one-hot or

distributional representations. The third method represents

each feature by a dense, low-dimensional and real-valued

vector. This is called distributed feature representation or

feature embedding. Representing features in a continuous

vector space has a long and rich history in natural language

processing; all methods depend on the distributional

hypothesis [14] which states that words that occur in the

same contexts share semantic meaning. The different

methods following this hypothesis can be divided into two

approaches: count-based methods (e.g., latent semantic

analysis) and predictive methods (e.g., neural probabilistic

language models). While count-based methods compute

the statistics of how often some words co-occur with its

neighbor words in a large text corpus and then embed these

counts into a low-dimensional and continuous vector for

each word, predictive methods directly predict a word from

its neighbors in terms of low-dimensional embedding

vectors.

With the rise of deep learning methods, distributed

feature representations have been shown to be advanta-

geous in many NLP tasks. Each dimension of the embed-

ding represents a latent feature which hopefully captures

useful syntactic and semantic similarities [42]. The

dimensionality is fixed for all the words in the vocabulary,

and this dimensionality is much smaller than the vocabu-

lary size.4

3 Related work

3.1 Recent research efforts on dependency
parsing

In the past, before neural network models came into

prominent, good parsers had relied on linear models over

handcrafted feature functions. In particular, a feature

function /ðcÞ for transition-based parsing usually looks at

core components, for example ‘‘token on top of stack’’,

‘‘the first token on buffer’’, or ‘‘leftmost child of the sec-

ond-to-top token on the stack’’, etc. Such a feature function

requires a predefined set of feature templates, where each

template instantiates a binary indicator function over a

conjunction of core elements, resulting in features of the

form ‘‘word on top of stack is X and part-of-speech of first

word on buffer is Y’’. An example of well-designed feature

set includes about 20 core components and 72 feature

templates [49]. A feature extraction method for transition-

based parsing usually looks at information such as the word

identity and part-of-speech tags of a fixed number of tokens

on top of the stack, a fixed number of tokens on top of the

buffer, the leftmost and rightmost modifiers of tokens on

the stack and the length of the spans covered by the tokens

on the stack.

4 In practice, the dimensionality is usually in the range of a dozen to

one thousand.

Neural Computing and Applications (2024) 36:2999–3016 3003

123

The design of the feature function is a major challenge

in parser design. In recent years, many researchers have

attempted to come up with a good feature extraction

method which is not only efficient but also reduces the

required manual effort. Most of recent efforts have used

distributed representations which are generated by neural

network models. In particular, a low-rank tensor repre-

sentation to automatically find good feature combinations

was proposed by Lei et al. [25]. In another work at the

same time, Chen and Manning [7] suggested encoding each

core feature as a dense low-dimensional vector, and the

vectors are then concatenated and fed into a multi-layer

perceptron which can potentially capture diverse feature

combinations. A larger number of core features are used

including 18 word vectors, 18 part-of-speech vectors and

12 dependency labels vectors.

Another line of recent works does not focus on reducing

the effort in hand-crafting effective feature combinations

but tackling the feature-engineering problem by designing

novel neural network models capable of encoding the

parser state, including its subtrees as vectors, which are

then fed to nonlinear classifiers. Dyer et al. [11] encode the

entire stack and buffer as a stack long short-term memory,

where each stack element is itself based on a compositional

representation of parse trees. Le and Zuidema [22] encoded

each tree node as two compositional representations cap-

turing the inside and outside structures around the node and

feed the representations into a reranker. Zhu et al. [51] used

a similar reranking approach based on recursive convolu-

tional neural networks. Kiperwasser and Goldberg [17]

presented an easy-first parser based on a novel hierarchical-

LSTM tree encoding. Finally, Kiperwasser and Goldberg

[18] encoded each sentence token by bidirectional LSTMs

and feature vectors are constructed by concatenating a few

BiLSTM vectors, resulting a simple and effective

scheme for accurate dependency parsing. Despite this

simplicity, the parsers yielded very competitive parsing

accuracies on English and Chinese.

A different line of related research is learning depen-

dency-based word embeddings. Levy and Goldberg [26]

generalized the skip-gram model, performing experiments

with dependency-based contexts, and showed that they

produce different embeddings. The dependency-based

embeddings are less topical and exhibit more functional

similarity than the skip-gram embeddings. Ling et al. [27]

proposed an extension to the continuous bag-of-words

model which adds an attention model that considers con-

textual words differently depending on the word type and

its relative position to the predicted word. Word embed-

dings learned by this method were shown to improve some

semantically and syntactically oriented tasks.

In the last five years, neural parsing, like most of NLP,

has shifted from static representations of each word type to

deep contextualized word representations. Such methods

allow encoding words with respect to the sentential context

in which they appear, producing sentence-level, dynamic

vectors as representations instead of static vectors. These

representations are typically produced by BiLSTM or

Transformers [43]. Two most popular deep contextualized

embedding models are ELMo [40] and BERT [9]. Both

models have been used for dependency pars-

ing [12, 28, 50]. In particular, Kondratyuk and Straka [20]

leveraged a multilingual BERT self-attention model pre-

trained on 104 languages to improve parsing scores without

requiring any recurrent or language-specific components.

Most of recent methods focus on high-resource and

well-studied languages such as English and Chinese which

already have existing datasets available and are accessible

to the research community. However, most languages

suffer from limited data collection and low awareness of

published data and tools for research. Two of the languages

which suffer from this resource scarcity problem are

Indonesian and Vietnamese.

3.2 Indonesian dependency parsing

Indonesian (sometimes also referred to as Bahasa Indone-

sian) is the official language of Indonesia. It is an Aus-

tronesian language that has been used as a lingua franca in

the multilingual Indonesian archipelago for years.

Indonesia is the fourth most populous nation in the world—

of which the majority speak Indonesian, which makes it

one of the most widely spoken languages in the world [41].

According to a recent statistic, Indonesian is also the fourth

largest language used over the Internet, with around 196

million users.5 Despite a large amount of Indonesian data

available over the Internet, the advancement of NLP

research in Indonesian is slow-moving. This problem

occurs because available datasets are scattered, with a lack

of documentation and minimal community engagement.

Moreover, many existing studies in Indonesian NLP do not

provide codes and test splits, making it impossible to

reproduce results [45]. The first-ever Indonesian natural

language understanding benchmark named IndoNLU is

published in 2020 by Wilie et al. [45]. This benchmark

includes 12 diverse tasks, ranging from single sentence

classification to pair-sentences sequence labeling with

different levels of complexity. The authors also provide a

set of Indonesian pretrained models (IndoBERT) trained on

a large Indonesian dataset (Indo4B). However, this

benchmark does not have dependency parsing, an impor-

tant NLP task that we are concerned with in this work. The

5 https://www.internetworldstats.com/stats3.htm.

3004 Neural Computing and Applications (2024) 36:2999–3016

123

https://www.internetworldstats.com/stats3.htm

first work on Indonesian dependency parsing is that

of Green et al. [13], which reports an ongoing work on the

development of an Indonesian dependency treebank as well

as the first full implementation of a dependency parser for

Indonesian. Their ensemble support vector machine parser

achieved an average unlabeled attachment score of about

60%. This evaluation result was performed on a quite small

corpus of 100 annotated sentences, consisting of 2705

tokens.

The method and results of Indonesian dependency

parsing presented in our work are a necessary development

of dependency parsing for Indonesian. The experimental

results are obtained on a standard training/development and

test split of a universal dependency treebank for Indone-

sian, which establish a new benchmark score for Indone-

sian dependency parsing.

3.3 Vietnamese dependency parsing

Vietnamese is among the top 20 most spoken lan-

guages [39], with around 100 million users. Vietnamese

belongs to the Viet–Muong group of the Mon–Khmer

branch, which in turn belongs to the Austro–Asiatic lan-

guage family. Vietnamese is also similar to languages in

the Tai family. The Vietnamese vocabulary features a large

number of Sino-Vietnamese words which are derived from

Chinese [1, 24].

Compared to Indonesian language processing, Viet-

namese speech and language processing has been paid

more attention since the last 15 years, especially by the

VLSP community.6 The VLSP Consortium regroups all

academic and industrial research teams involved in Viet-

namese language and speech processing. The very first

kick-off meeting of this community was in 2005, organized

at the Institute of Information Technology, Vietnam

Academy of Science and Technology. Since 2012, the

VLSP Consortium has organized a series of workshops, in

conjunction with big international conferences organized in

Vietnam. Until 2021, seven events have taken place since

then with different forms of activities such as technical

reports, activity reports, discussion panel and shared tasks

on VLSP. In particular, at VLSP 2019 workshop, the first

shared task on Vietnamese dependency parsing was pro-

posed in order to promote the development of dependency

parsers for Vietnamese. A dependency corpus in the uni-

versal dependency format of 4,000 Vietnamese sentences

was developed and released for this shared task.

The earliest experimental result on Vietnamese depen-

dency parsing was published in 2012 by [23] where the

authors conducted a syntactic analysis of Vietnamese

sentences using an automatically extracted lexicalized tree-

adjoining grammar. The derivation trees permit extracting

dependency relations between lexical units of an input

sentence. The best results they obtained are 73:21% of

unlabeled attachment score for dependency accuracy on a

test corpus, which is also automatically extracted from a

constituency treebank. The first dependency treebank for

Vietnamese was published in 2013 in which 3000 sen-

tences are automatically converted and manually edi-

ted [32]. This corpus was later revised and converted into

the universal dependency format and made publicly

available in 2016.7 It is included for the CoNLL shared task

‘‘Multilingual Parsing from Raw Text to Universal

Dependencies’’ containing 48 dependency labels for Viet-

namese based on the Stanford dependency labels

set [47, 48].

4 Methods

4.1 Baseline model

Our baseline transition classification model is a three-layer

feed-forward neural network model which includes a fea-

ture embedding layer, a dense layer with the sigmoid

activation function and a softmax layer. We use a simple

feature function which looks at the following information

at each parser configuration:

• The word identity, shape, lemma, part-of-speech tag

and universal parts-of-speech tag of the top token on the

stack;

• The same five features of the first token on the buffer;

• The same five features of the second-to-top token on the

stack;

• The same five features of the second token on the

buffer;

This feature function extracts 20 discrete features in

total for each parser configuration and they are fed to the

feature embedding layer of the model. Each feature is

embedded into an e-dimensional vector by the underlying

embedding matrix of size e� jV j of the embedding layer

where |V| is the size of the feature set extracted from a

training corpus. We investigate two different methods for

combining embedding vectors, resulting two variants of the

baseline method:

1. continuous bag-of-feature model (BOF): the 20 feature

embedding vectors are summed to represent the

embedding vector of the configuration, that is

6 Vietnamese Language and Speech Processing, http://vlsp.org.vn/. 7 https://github.com/UniversalDependencies/UD_Vietnamese-VTB/.

Neural Computing and Applications (2024) 36:2999–3016 3005

123

http://vlsp.org.vn/
https://github.com/UniversalDependencies/UD_Vietnamese-VTB/

/BðcÞ ¼
X
20

j¼1
v~fj ;

where v~f is the embedding vector of the feature f. The

feature vector /BðcÞ has e dimensions as its summands.

2. concatenated sequence-of-feature model (SOF): the 20

feature embedding vectors are concatenated to repre-

sent the embedding vector of the configuration, that is

/SðcÞ ¼ v~f1 � v~f2 � . . .� v~f20 :

In this representation, the feature vector /SðcÞ has
20 � e dimensions.

It is worth noting that we do not use pretrained embed-

dings. All the feature embeddings are trained together with

the models. Figure 3 depicts an illustration of two models

BOF and SOF. The FFN has one hidden layer of h units

and one softmax layer to perform labeled transition clas-

sification. The quantities e and h are hyperparameters of

the models and their best values are selected using a

development dataset.

4.2 RNN-based model

The feature function of the baseline model embeds all

features into the same real-valued vector space of e

dimensions. As usual embedding models in NLP, it makes

more sense to use different embedding matrices for words,

shapes and part-of-speech tags. In this improved model, we

represent each word as a w-dimensional vector in R w and

the full word embedding matrix is W 2 R w�Nw where Nw

is the dictionary size. Each shape or word form of a word is

represented by a s-dimensional vector and the full shape

embedding matrix is S 2 R s�Ns where Ns is the size of the

shape dictionary.8 Similarly, each part-of-speech tag (PoS)

is represented by a p-dimensional vector and the full PoS

embedding matrix is P 2 R p�Np where Np is the PoS

dictionary size.

For a sentence of n tokens ½ x 1; x 2; . . .; x n�, each token

x j is represented by a triple ðwj; sj; pjÞ where wj; sj and pj
are integer indices of the word, shape and part-of-speech of

token x j, respectively, for all j ¼ 1; 2; . . .; n. The whole

sentence is thus represented by an integer matrix of size

3� n. After being fed to an embedding layer, each token is

encoded as the concatenated vector of the corresponding

word, shape and PoS embedding vectors:

x~ j ¼ v~ðwjÞ � v~ðsjÞ � v~ðpjÞ:

The dimension of x~ j is wþ sþ p, and these hyperparam-

eters are optimized on a development set.

We adopt the method proposed by Kiperwasser and

Goldberg [18] which replaces the handcrafted feature

functions in favor of minimally defined feature functions

which make use of automatically learned bidirectional

recurrent neural network representations to capture con-

textual information of each token in an input sentence. The

RNN uses either bidirectional GRU or LSTM units and

introduces context by representing each input token x j as

its BiRNN vector

v~j ¼ BiRNNð½ x~1; x~2; . . .; x~n�; jÞ:

Each parsing configuration c ¼ ðr; b;AÞ consists of a stack
r, a buffer b and a set A of dependency arcs. Both the stack

and the buffer contains integer indices pointing to sentence

tokens. Our feature function is the concatenated vectors of

the top two tokens on the stack and the top two tokens on

the buffer.9 More precisely, for a configuration

c ¼ ð� � � jr2jr1; b1jb2j � � � ;AÞ, the feature function is

defined as

Fig. 3 Two variants of the baseline model. The left figure depicts the

continuous bag-of-features model (BOF) where feature embeddings

are added (þ) before being fed to a feed-forward network (FFN)

model. The right figure depicts the sequence-of-feature model (SOF)

where features are concatenated (�). The FFN has one hidden layer

and one softmax layer to perform labeled transition classification

8 The shape dictionary of a word includes a dozen of different word

forms such as number, date, allcaps, url....

9 Kiperwasser and Goldberg [18] select the top three tokens on the

stack and the first token on the buffer. They use the arc-hybrid system

instead of the arc-eager system as in our work.

3006 Neural Computing and Applications (2024) 36:2999–3016

123

/RðcÞ ¼ v~r2 � v~r1 � v~b1 � v~b2 ;

where vj is the contextual vector encoded by the BiRNN as

specified above. This selection of relevant tokens aligns

well with the simple feature function used in the baseline

model, which makes experimental results of different

models comparable. Figure 4 shows an illustration of the

arc-eager transition-based parsing model.

It is important to note that, in this model, the whole

pipeline is trained in an end-to-end fashion, where the

embedding layer (the word, shape and PoS embedding

matrices), the BiRNN layer(s) and the FFN are trained

jointly. When parsing a sentence, the pipeline iteratively

computes the scores for all possible transitions, predicts

and selects the best transition until the final configuration is

reached. The pipeline is fully supervised: all the feature

embeddings are trained together with the model without

using pretrained word embeddings.

4.3 RNN and graph embedding model

One recent problem in learning from multi-relational data

is graph embedding. We are concerned with directed

graphs whose nodes correspond to entities and arcs of the

form (head, label, tail), each of which indicates that there

exists a labeled relationship between entities head and tail.

Models of multi-relational data play an important role in

many areas such as social network analysis, recommender

systems or knowledge bases.

The main idea of graph embedding is to extract local or

global connectivity patterns between entities and then use

these patterns to perform prediction and generalize the

observed relationship between a specific entity and all

others. We hypothesize that this idea can be useful to

improve the generalization ability of a dependency parser.

If a graph embedding model can capture latent relation-

ships between words of a sentence and that information is

integrated properly into a feature function then it would

help improve the accuracy of a statistical classifier,

resulting in a more accurate dependency parser.

Algorithm 2: TransE for learning dependency embeddings

We apply the TransE embedding method which was

proposed by Bordes et al. [4]. This method is simple but

powerful, outperformed state-of-the-art methods in link

prediction on knowledge base benchmarks. Since then,

there were other graph embedding approaches which are

more complicated such as graph transformers [44] but we

do not investigate them in this work. TransE is an energy-

based model which learns relationships by interpreting

them as translations operating on the low-dimensional

Neural Computing and Applications (2024) 36:2999–3016 3007

123

embeddings of the entities. In this model, if a relationship

ðh; ‘; tÞ holds, where h and t are two entities and ‘ is a

relationship between them, then the embedding of the tail

entity t should be close to the embedding of the head entity

h plus some vector that depends on the relationship ‘. In the

context of dependency parsing, h is a head word, t is a

dependent word of h and ‘ is a typed dependency between

h and t. The TransE model learns the corresponding

embedding vectors in the vector space R k such that

h~þ ‘~� t~

when there exists the typed dependency ‘ðh; tÞ. In other

words, if ‘ðh; tÞ holds, t~ should be a nearest neighbor of

h~þ ‘~, while h~þ ‘~ should be far away from t~ otherwise.

Suppose that dðu~; v~Þ is a dissimilarity measure between two

real-valued vectors u~ and v~, to learn such embeddings, we

minimize a margin-based ranking criterion over the train-

ing set:

J ¼
X

‘ðh;tÞ2S

X

‘ðh0;t0Þ2S0
cþ dðh~þ ‘~; t~Þ � dðh0~ þ ‘~; t0~Þ
h i

þ

where ½a�þ denotes the positive part of a, c[0 is a margin

hyperparameter, S is the set of correct triplets extracted

from the training set and S0 is the set of corrupted triplets,

constructed from S as follows:

S0 ¼ ‘ðh0; tÞjh0 2 Vf g [‘ðh; t0Þjt0 2 Vf g;

where V is the vocabulary. S0 is composed of training

dependencies with either the head or dependent replaced by

a random word, but not both at the same time. That loss

function favors lower values for observed dependencies in

a dependency treebank than for unobserved ones and is

thus a natural implementation of the intended criterion. It is

worth noting that in this model, for a given word, its

embedding vector is the same when it appears as the head

or as the dependent.

Algorithm 2 describes the detailed procedure for train-

ing word and dependency embeddings using the TransE

method. Given a training set of labeled dependencies S ¼
f‘ðh; tÞg where h; t 2 V are head and dependent words and

‘ 2 L is a dependency label, the algorithm estimates word

and label embedding matrices as follows. The embedding

vectors are initialized using a uniform distribution

depending on the desired embedding dimension k (lines 1–

2). The dependency embeddings are first normalized (line

3). The training procedure is performed in M iterations

(line 4). In each iteration, a mini-batch of size b is sampled

from the training set S (line 6) and a mini-dataset Tb is

constructed by including corrupted samples into Sb, where

the corrupted triples are built as described above (line 7–

10). A loss function J is computed with respect to the

embedding vectors on the mini-dataset Tb (line 11) and

minimized using a gradient-based optimization method, for

example the stochastic gradient descent method (lines

12–13).

Fig. 4 Illustration of the neural model of the arc-eager transition-

based parser. The configuration (stack r and buffer b) is depicted at

bottom. Each transition is scored by a two-layer feed-forward network

(FFN). The embeddings of the tokens are learned by a bidirectional

recurrent neural network (BiGRU or BiLSTM) and fed to the FFN.

The colors of the four selected tokens correspond to colors of the FFN

inputs. Each x j is a concatenation of a word, a shape and a part-of-

speech embedding vector. The FFN and the entire pipeline are

optimized jointly to predict the best transition at each parsing step

3008 Neural Computing and Applications (2024) 36:2999–3016

123

We run the Algorithm 2 on the training dependency

graphs of a dependency treebank to get a word embedding

matrix. Each word is represented by a real-valued vector of

k dimensions, w~ 2 R k. These vectors are then concate-

nated with the corresponding vectors generated by a

BiRNN before being fed into a neural network transition

classifier. Thus, these pretrained embeddings are fine-tuned

together with the parameters of the model. Figure 5 illus-

trates our proposed model.

5 Experiments

5.1 Datasets

We evaluate our proposed models on English, Indonesian

and Vietnamese dependency treebanks which are publicly

available from the Universal Dependency (UD) website.

UD is a project that seeks to develop cross-linguistically

consistent treebank annotation for many languages, with

the goal of facilitating multilingual parser development,

cross-lingual learning and parsing research from a lan-

guage typology perspective. UD is an open community

effort with over 300 contributors producing nearly 200

treebanks in over 100 languages. This is a valuable lin-

guistic resource for evaluating dependency parsers in a

multilingual context.

There exist three Indonesian dependency treebanks in

UD version 2.7. We experimented with the Indonesian

GSD treebank in this work. This is the largest corpus

among the three treebanks available for this language.10

This corpus contains 5,593 sentences and 121,923 tokens.

This corpus uses 16 universal part-of-speech tags and 31

universal dependency relations. There is only one Viet-

namese dependency treebank, the Vietnamese VTB. This

corpus contains 3,000 sentences and 43,754 tokens, using

14 universal part-of-speech tags and 29 universal depen-

dency relations. There are a dozen of dependency treebanks

for English. We select the largest corpus—the English Web

Treebank (EWT) for experimentation in this work. This

corpus comprises 251,725 words and 16,062 sentences,

taken from five genres of web media: weblogs, news-

groups, emails, reviews and Yahoo! answers. Table 3

shows some statistics of the datasets used in our

experiments.

5.2 Details of the training algorithms

The training objective is to set the score of correct transi-

tions above the scores of incorrect ones. We use the

common cross-entropy loss to minimize the objective

function. The scores corresponding to possible transitions

for a configuration computed by the FFN are normalized by

the softmax function to produce a probability vector. A

cross-entropy loss is then used to minimize an objective

function. The model learns to minimize the loss over the

training data. This correlates with maximizing the number

of correct transitions in the predicted outputs.

Since the pipeline model is trained in an end-to-end

fashion, the gradients of the entire network, including the

FFN, the BiRNN and the embedding matrices for words,

shapes and part-of-speech tags with respect to the sum of

the losses are computed using the backpropagation algo-

rithm. We perform multiple training epochs, using early

stopping—the training process is stopped when the devel-

opment accuracy does not increase after three consecutive

epochs.

The maximal sequence length of each sentence is set to

40 tokens. The models are all trained by the Adam opti-

mizer [16] with default parameters.11 The batch size is set

to 32. On each dataset, we run a set of experiments with

different recurrent architecture (BiGRU or BiLSTM), with

different number of recurrent layers, different number of

hidden units in each recurrent layer and different number of

units in the dense layer of the FFN. Each experiment is run

five times, and its results are averaged and taken as the final

result. We report the accuracy on the training set, devel-

opment set and test set.

We train the TransE algorithm for learning dependency

embeddings in M ¼ 100 iterations, producing k ¼ 16

dimensions for word and label embeddings. We selected

the margin c among f1; 2; 10g using LAS on the devel-

opment corpus. The graph embeddings are fixed, i.e., they

are not fine-tuned when training the parser. Once the

embeddings are trained, they are concatenated into the core

word features of parsing configurations, as illustrated in

Fig. 5.

5.3 Evaluation metrics

The standard evaluation metrics of dependency parsing are

unlabeled attachment score (UAS) and labeled attachment

score (LAS). These scores measure the percentage of nodes

with correctly assigned reference to head node, without or

with the label (type) of the relation, respectively. Note that

the attachment of all nodes including punctuation is eval-

uated. Since the performance of a transition-based parser

depends largely on its underlying transition classifier, the

transition classification accuracy is also reported.

10 The GSD treebank is about five times larger than the PUD or CSUI

treebanks.

11 All models are implemented in the Julia programming language

using the https://fluxml.ai library.

Neural Computing and Applications (2024) 36:2999–3016 3009

123

https://fluxml.ai

5.4 Results

In the first set of experiments, we evaluate the baseline

model on the Indonesian and Vietnamese dependency

treebank. Two variants, BOF and SOF, are evaluated. We

selected the embedding dimension e among f25; 50; 75g
for the BOF model, among f5; 10; 15; 20g for the SOF

model,12 and the hidden dimension h of the feed-forward

model among f32; 64; 128; 256; 300g on the development

set of each dataset. Table 4 shows the scores of the base-

line model on the Indonesian treebank. The best UAS and

LAS of the BOF variant on the development set is 54.00%

and 43.86%, respectively, achieved at the optimal config-

uration e ¼ 75; h ¼ 128. At this configuration, the UAS

and LAS on the test set are 54.50% and 44.76%, respec-

tively. The SOF model variant is better than the BOF

model, for which the best test UAS and LAS are 55.97%

and 47.00%, respectively, achieved at the optimal

parameters e ¼ 20; h ¼ 300, where the best scores on the

development set are 56.88% UAS and 47.30% LAS. As

shown in Table 5, on the Vietnamese treebank, the BOF

model attains the best development UAS and LAS of

48.53% and 36.93%, respectively, at the optimal configu-

rations e ¼ 50; h ¼ 300, at which the test UAS and LAS

are 46.20% and 35.64%, respectively. The best develop-

ment scores of the SOF variant are 45.46% and 36.83% at

the optimal configuration e ¼ 15; h ¼ 32, where the test

scores of the SOF variant are 43.19% and 34.88%, sig-

nificantly worse than those of the BOF variant.

In the second set of experiments, we evaluate the

accuracy of the RNN-based model on the same datasets. As

presented in Sect. 4.2, the important hyperparameters of

this model include word embedding dimension w, universal

part-of-speech embedding dimension p, shape embedding

dimension s, recurrent dimension r (i.e., the output

dimension of the recurrent layer) and hidden dimension

h (i.e., the output dimension of the FNN dense layer).

Following the work of Kiperwasser and Goldberg [18]

which achieved the state-of-the-art result on English

dependency parsing,13 we fix p ¼ 25. The shape embed-

ding s is chosen as 4 experimentally.14 Since the size of

both Indonesian and Vietnamese dataset is much smaller

than that of the English treebank, we vary the word

embedding dimension w in the set f50; 100g, the recurrent
dimension r in the set f16; 32; 64; 128; 150; 200; 256g and
the hidden units h in the set f64; 128; 256g to investigate

their effect to the accuracy. Two variants of the recurrent

unit are evaluated, including unidirectional gated recurrent

Fig. 5 Illustration of an improved version of the model in Fig. 4

where word embeddings trained by a graph embedding model are

integrated into core features of a parsing configuration. v~ vectors are

generated by a bidirectional recurrent network as shown in Fig. 4,

while w~ vectors are generated by the TransE graph embedding model.

The corresponding v~ and w~ vectors are concatenated before being fed

into a neural network classifier

Table 3 Some statistics of treebanks used in this study

Statistics Ind. GSD Vie. VTB Eng. EWT

Total sentences 5,593 3,000 16,062

Training 4,477 1,400 12,543

Development 559 800 2,002

Test 557 800 2077

Total tokens 121,923 43,754 251,725

Universal PoS tags 16 14 17

Universal relations 27 29 37

12 Recall that in the SOF variant, 20 embedding vectors of individual

features are concatenated, resulting in an embedding dimension of

20 � e.

13 Kiperwasser and Goldberg [18] evaluated their model on the

English Penn Treebank corpus.
14 This small number makes sense due to a small number of 12

different possible word shapes.

3010 Neural Computing and Applications (2024) 36:2999–3016

123

unit (GRU) and bidirectional GRU (BiGRU). We use one

recurrent layer in all experiments.

Table 6 shows the performance of the RNN-based

model on the test sets of the two languages with respect to

their optimal hyperparameters tuned on their corresponding

development sets. We see that the best scores are obtained

Table 4 Performance of the baseline model on the training and

development set of the Indonesian dependency treebank. The first two

columns shows feature embedding dimensions and the number of

hidden units of the FNN. The next two columns show the transition

classifier accuracy on the training and development set. The next two

columns show unlabeled attachment scores. The last two columns

show labeled attachment scores. The first half of the table shows

scores of the BOF model, while the second half shows scores of the

SOF model

Classifier Accuracy UAS LAS

e h Train Dev Train Dev Train Dev

BOF Model

25 32 80.95 62.23 64.78 50.62 58.55 42.27

25 64 79.22 61.65 65.09 51.62 58.46 42.95

25 128 80.54 62.29 66.30 52.32 59.82 43.65

25 256 80.88 61.66 66.69 52.37 60.45 43.35

25 300 80.84 61.88 66.49 52.36 60.24 43.52

50 32 79.50 60.47 65.62 51.35 58.70 42.40

50 64 80.88 61.86 66.51 52.53 60.11 43.79

50 128 79.93 61.79 66.11 52.36 59.49 43.64

50 256 80.99 61.22 67.35 53.24 61.12 43.84

50 300 81.04 61.21 67.33 52.72 60.98 43.35

75 32 77.06 59.13 65.92 52.43 56.99 41.31

75 64 77.39 59.90 66.49 53.30 57.89 42.65

75 128 81.06 61.65 68.16 54.00 60.62 43.86

75 256 78.99 60.14 67.35 53.17 60.07 43.29

75 300 79.59 60.41 67.30 52.86 60.27 42.95

SOF Model

5 32 79.44 62.82 64.68 51.73 57.79 43.45

5 64 81.53 62.83 67.01 53.36 59.87 44.65

5 128 81.87 63.44 67.87 54.25 60.80 45.43

5 256 79.84 63.12 67.11 54.99 59.63 45.71

5 300 81.57 62.86 68.55 55.11 61.50 45.85

10 32 85.11 63.12 70.41 55.18 63.86 45.84

10 64 82.44 63.39 69.57 55.63 62.13 46.14

10 128 86.05 63.31 71.36 55.47 65.14 45.72

10 256 80.10 63.11 68.98 55.52 61.75 46.04

10 300 85.58 63.40 71.36 55.77 65.14 46.04

15 32 84.89 63.55 71.07 55.69 64.25 46.23

15 64 86.79 63.82 71.95 56.29 65.80 46.85

15 128 83.87 63.32 70.49 55.61 63.74 46.27

15 256 85.83 63.20 71.58 55.26 65.53 45.82

15 300 81.27 63.11 69.59 56.17 62.52 46.59

20 32 85.99 63.48 71.52 55.43 64.85 46.19

20 64 88.60 63.30 73.48 55.74 67.69 46.54

20 128 87.68 63.06 73.14 55.85 67.36 46.19

20 256 90.11 63.15 74.89 56.71 70.04 46.73

20 300 86.62 63.20 73.18 56.88 67.43 47.30

The bold font shows the best score on each column

Table 5 Performance of the baseline model on the training and

development set of the Vietnamese dependency treebank. Column

names are similar to those in Table 4. In general, the BOF model

outperforms the SOF model on this dataset

Classifier Accuracy UAS LAS

e h Train Dev Train Dev Train Dev

BOF Model

25 32 85.08 57.27 68.96 45.04 62.63 35.07

25 64 85.83 58.21 71.35 46.80 65.70 37.00

25 128 81.68 56.68 70.46 47.22 64.10 36.86

25 256 82.11 56.95 70.51 46.92 63.82 36.38

25 300 83.27 56.53 71.39 47.17 65.13 36.40

50 32 83.07 56.83 70.10 45.92 63.85 35.82

50 64 81.18 56.49 70.19 46.08 63.91 36.23

50 128 83.85 57.73 71.63 47.37 65.47 37.43

50 256 84.78 56.94 72.78 48.12 65.55 36.83

50 300 83.08 56.40 72.62 48.53 64.53 36.93

75 32 75.25 53.88 64.68 45.35 52.46 32.78

75 64 81.83 56.05 69.12 47.26 60.91 35.95

75 128 81.58 57.35 69.71 47.04 62.68 36.87

75 256 79.36 56.13 69.65 47.21 62.34 36.79

75 300 81.11 56.44 70.71 48.00 62.51 36.73

SOF Model

5 32 84.81 55.37 64.70 36.60 58.58 29.82

5 64 83.42 55.58 66.75 39.82 60.22 32.19

5 128 85.01 54.24 68.83 41.23 62.80 33.43

5 256 80.63 55.93 67.34 43.24 60.44 34.68

5 300 82.24 55.35 68.42 44.07 61.66 34.96

10 32 84.96 55.36 70.52 44.06 63.48 35.39

10 64 83.54 56.23 69.65 44.79 62.68 36.36

10 128 85.94 55.49 71.39 44.27 65.17 36.02

10 256 84.14 55.91 70.98 44.01 64.50 35.44

10 300 82.33 54.93 70.21 44.06 63.52 35.59

15 32 84.74 55.62 71.68 45.46 64.51 36.83

15 64 85.81 56.39 71.90 44.94 65.29 36.62

15 128 85.31 56.06 71.64 44.94 65.52 36.50

15 256 86.67 54.60 72.72 43.89 67.03 34.91

15 300 82.85 54.75 71.34 44.19 64.62 35.29

20 32 85.70 55.81 72.61 45.19 65.67 36.33

20 64 86.19 56.27 73.07 45.26 66.40 36.76

20 128 85.67 55.90 72.70 44.73 66.69 36.09

20 256 82.80 55.45 71.06 44.49 64.28 35.82

The bold font shows the best score on each column

Neural Computing and Applications (2024) 36:2999–3016 3011

123

by a small word embedding dimension w of 50, probably

due to the size of these treebanks. For Indonesian, the best

test scores of the unidirectional GRU are 60.67% of UAS

and 52.05% of LAS when the recurrent dimension r is 128

and the hidden dimension h is 50. With the bidirectional

GRU, the best test scores are 60.29% of UAS and 52.57%

of LAS when r ¼ 32 and h ¼ 128. It is interesting to see

that the BiGRU architecture is 0.52% of LAS point better

than that of the GRU architecture; but it is 0.38% of UAS

worse than that of the GRU architecture. We project that a

treatment of both forward and backward direction by the

BiGRU helps improve label prediction between a head and

a dependent token in a sequence. The best performance of

the bidirectional GRU model on the Vietnamese test set is

achieved with w ¼ 50, r ¼ 256 and h ¼ 64, where UAS is

52.35% and LAS is 46.93%. This model is significantly

better than the baseline model with an improvement of

about 11.3% of absolute point of LAS.

In the third set of experiments, we compare the perfor-

mance of integrated models with the RNN-based models to

see the effectiveness of graph embeddings. Table 7 dis-

plays the results on the datasets for the two compared

methods. The integration of TransE embeddings helps

improve the UAS and LAS scores. On the Indonesian test

set, the UAS and LAS gains are about 0.2 and 0.44 of

absolute points in average; the best test UAS and LAS are

60.74% and 52.35%, respectively. On the Vietnamese test

set, these gains are about 0.73 for UAS and 0.77 of LAS in

average; the best test UAS and LAS are 52.06% and

47.24%, respectively.

In the fourth set of experiments, we compare the per-

formance of the methods on the English corpus. Since the

English corpus is much larger than that of the Indonesian

and Vietnamese datasets, to reduce running time when

searching for the optimal hyperparameters, we opt to vary

only the recurrent dimension, fixing the word embedding

dimension at w ¼ 100, part-of-speech embedding dimen-

sion at p ¼ 25, shape embedding dimension at s ¼ 4 and

the FFN hidden dimension at h ¼ 256.15 The recurrent

dimensions are varied in the set f128; 150; 256; 300g.
Again, two recurrent architectures are compared, either

using unidirectional GRU or bidirectional GRU. Figure 6

shows the evaluation results on the development dataset.

We see that bidirectional models are better than unidirec-

tional one. The best UAS and LAS of RNN-based models

are 60.55% and 56.52%, respectively, when the recurrent

dimension is 300. Using these optimal hyperparameters,

the UAS and LAS scores on the test dataset are 60.43% and

56.33%, respectively.

In the fifth set of experiments, we evaluate the effec-

tiveness of graph embeddings by running the integrated

model on the English EWT corpus. Figure 7 shows the

development performance of the integrated models where

graph embeddings are incorporated into unidirectional and

bidirectional GRU models. We observe that integrated

RNN-based models outperform the previous models sig-

nificantly. Their best UAS and LAS are 61.60% and

57.83%, respectively, obtained by using 256 bidirectional

GRU units. The standard deviation of the GRU model is

0.00999 and that of the GRU? model is 0.00421. We test

the statistical significance of the results by performing a

paired sample t test with a ¼ 5%. The test result confirms

that the differences between LAS scores of the two models

are statistically significant, where the two-sided p-value is

less than 10�7.16 Using these optimal hyperparameters, the

UAS and LAS scores on the test dataset are 61.58% and

57.81%, respectively, which are significantly better than

the previous results.

In summary, these experimental results have confirmed

the research hypothesis—integration of embeddings

learned from dependency graphs help improve dependency

parsing for multiple languages. The maximal scores and

gains on the three treebanks are summarized in Table 8.

Table 6 Performance of the RNN-based model on the Indonesian and

Vietnamese test set obtained at their optimal hyperparameters which

are tuned on the corresponding development sets

Language w r h GRU BiGRU

UAS LAS UAS LAS

Indonesian 50 32 128 60.29 52.57

50 128 128 60.67 52.05

Vietnamese 50 150 64 52.35 46.93

50 256 64 51.43 46.55

In these experiments, we fix the part-of-speech embedding dimension

at p ¼ 25 and the shape embedding dimension at s ¼ 4

Table 7 Test performance of the two methods on the datasets at their

best parameters tuned on the development datasets. GRU? is the

GRU model with graph embedding integrated.

Language GRU GRU? Gain

UAS LAS UAS LAS Du Dl

Indonesian 60.67 52.05 60.74 52.35 0.07 0.30

Vietnamese 51.43 46.55 52.06 47.24 0.63 0.69

Du and Dl are UAS and LAS gains, respectively

15 These embedding dimensions have been tuned by Kiperwasser and

Goldberg [18].
16 We use the package HypothesisTests of Julia to perform the

statistical tests.

3012 Neural Computing and Applications (2024) 36:2999–3016

123

5.5 Pretrained embedding integration

In the previous experiments, we intended not to use pre-

trained embeddings such as ELMo [40] or BERT [9] in

order to compare architectures only. As presented in sub-

section 3.1, pretrained models have come to dominate the

NLP field during the last few years. A natural research

question arises is ‘‘Are graph embeddings and pretrained

embeddings complementary? Or, do they encode redundant

information? In other words, we would like to answer the

question whether or not recent pretrained models would

pick up the same kind of signal as graph embeddings. We

performed an additional experiment to investigate this

problem on the English EWT corpus.

In this experiment, we replace the bidirectional recurrent

network component of our model in Fig. 4 with a pre-

trained BERT for English.17 Since BERT employs a bidi-

rectional Transformers [43] which has the benefit of

learning potential dependencies between words directly,

overcoming a main drawback of recurrent models which

often struggle to learn long-range dependencies [19]. For a

token x j in sentence S, BERT’s input representation is

composed by summing a word embedding wj, a position

embedding ij and a wordpiece embedding pj, i.e.,

v~ðjÞ ¼ wj þ ij þ pj. Each x j is passed to an L-layer bidi-

rectional transformer, which is trained with a masked

language model objective. In our experiment, we adopt the

uncased model of the transformer whose number of layers

L ¼ 12, number of hidden units H ¼ 768 and A ¼ 12 self-

attention heads. The BERT embeddings are then passed to

a FFN of 256 dimensions, as in the GRU experiments.

Interestingly, this pretrained BERT model has the best

UAS and LAS of 59.25% and 56.49%, respectively, on the

test set in five runs, which are in between the scores of the

GRU and GRU? models. Table 9 shows a comparison of

the three models on the English treebank. This experi-

mental result shows that the popular pretraining technique

would not pick up on the same kind of signal as graph

embeddings. It also suggests a potential method for

improving parsing results by integrating graph embeddings

into a BERT-based model in future work.

Fig. 6 Performance of the

recurrent models on the English

development set. The x-axis
shows recurrent sizes and the y-
axis shows UAS scores and

LAS scores using either

unidirectional GRU or

bidirectional GRU architecture.

U1 and L1 are UAS and LAS of

unidirectional GRUs, and U2

and L2 are UAS and LAS of

bidirectional GRUs

Fig. 7 Performance of the graph

embedding integrated models

on the English development set.

Labels are interpreted as in

Fig. 6

17 More precisely, we use the model bert-uncased_L-12_H-768_A-12
which is publicly available.

Neural Computing and Applications (2024) 36:2999–3016 3013

123

5.6 Discussion

In the CoNLL-2017 shared task on multilingual depen-

dency parsing, the best test LAS achieved on the Indone-

sian and Vietnamese treebank by any parser is 79.19% and

47.51%, respectively [48]. The best performing system for

Indonesian parsing builds on a deep biaffine graph-based

neural dependency parser, which uses a well-tuned LSTM

network to produce vector representations for each word

and then uses those vector representations in biaffine

classifiers to predict the head token of each dependent and

the class of the resulting edge [10]. In order to address the

rare word problem, it is included a character-based word

representation that uses an LSTM to produce embeddings

from sequences of characters. The best system for Viet-

namese parsing takes an ensemble approach by blending

multiple instances of three parsers with different architec-

tures, including one graph-based parser trained with the

perceptron, one transition-based beam search parser also

trained with the perceptron and one greedy transition-based

parser trained with neural networks [3]. One year later, in

the CoNLL-2018 shared task, the best test LAS scores for

Indonesian and Vietnamese were pushed to 80.05% and

55.22%, respectively. The average test scores for Indone-

sian and Vietnamese are 73.05% and 40.40%, respec-

tively [47]. To our knowledge, these scores are the state-

of-the-art dependency parsing results for these two low-

resource languages. Table 10 shows a comparison of

existing parsing systems.

In this work, we do not aim to build a sophisticated

method for obtaining the best scores for dependency

parsing but to develop a new method for improving a state-

of-the-art parsing paradigm, using only a simple feature

set. The proposed method is also simple to implement,

language independent and it has been proven efficient on

three dependency treebanks of different sizes and

characteristics.

6 Conclusion

In this paper, we presented a method that extracts and

integrates dependency graph embeddings into a state-of-

the-art dependency parsing method. We evaluated the

proposed method on three benchmarks for English,

Indonesian and Vietnamese. Extensive experiments

showed the effectiveness of our method where the learned

graph embeddings help improve both the unlabeled

attachment score and labeled attachment score by a clear

margin over the baseline feature set and method. In addi-

tion, we also show that recent pretraining techniques such

as BERT would not pick up on the same kind of signal as

graph embeddings for English.

In a future work, we will investigate other representa-

tions of the dependency trees, which may take into account

their complete internal structures, not only their individual

nodes as in the current work. We will also investigate the

embeddings of whole sentences and their corresponding

dependency derivation under the same model formulation.

We plan to devise more qualitative and quantitative studies

of the syntactic structure embeddings as well as their

applications in various NLP tasks. Syntactic structure

embeddings learned from a grammar formalism such as the

lexicalized tree-adjoining grammar would be a valuable

source for improving dependency parsers [8]. We will also

investigate methods for combining tree embeddings into

recent self-supervised learning methods such as BERT [9],

XLNet [46] or ELMo [40] rather than recurrent neural

network based models. Finally, we will perform experi-

ments on other languages to investigate the effectiveness of

our models in a multilingual context.

Acknowledgements This study is supported by Vingroup Innovation

Foundation (VINIF) in project code VINIF.2020.DA14.

Table 8 Maximal scores and gains on the three treebanks

Language UAS LAS maxDu maxDl

English 61.58 57.81 1.15 1.48

Indonesian 60.74 52.35 0.35 0.45

Vietnamese 52.06 47.24 1.14 1.14

Table 9 Comparison of three architectures on the English EWT

treebank

Model UAS LAS

GRU 60.43 56.33

GRU? (graph embeddings) 61.58 57.81

BERT (pretraining) 59.25 56.49

The pretrained BERT-based model is slightly better than the super-

vised RNN model in terms of LAS but is worse than the graph

embedding model

Table 10 Comparison of

existing dependency parsing

systems for Indonesian and

Vietnamese

Language LAS System

Indonesian 79.19 [48]

80.05 [48]

Vietnamese 47.51 [47]

55.22 [47]

3014 Neural Computing and Applications (2024) 36:2999–3016

123

Data availability The datasets generated during and/or analyzed

during the current study are available in the Universal Dependencies

repository: https://universaldependencies.org.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Informed Consent Informed consent was not required as no human or

animals were involved.

Human and animal rights This article does not contain any studies

with human or animal subjects performed by any of the authors.

References

1. Alves M (1999) What’s so Chinese about Vietnamese? In: Pro-

ceedings of the Ninth Annual Meeting of the Southeast Asian

Linguistics Society, pp 221–224, University of California,

Berkeley, USA

2. Baroni M, Lenci A (2010) Distributional memory: a general

framework for corpus-based semantics. Comput Linguist

36(4):673–721

3. Björkelund A, Falenska A, Yu X, and Kuhn J (2017) Ims at the

conll 2017 ud shared task: Crfs and perceptrons meet neural

networks. In: Proceedings of the CoNLL 2017 Shared Task:

Multilingual Parsing from Raw Text to Universal Dependencies,

pp 40–51, Vancouver, Canada. Association for Computational

Linguistics

4. Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O

(2013) Translating embeddings for modeling multi-relational

data. In: Burges CJC, Bottou L, Welling M, Ghahramani Z,

Weinberger KQ (eds) Advances in Neural Information Process-

ing Systems, vol 26. Curran Associates Inc, pp 1–9

5. Buchholz S and Marsi E (2006) CoNLL-X shared task on mul-

tilingual dependency parsing. In: Proceedings of the Tenth

Conference on Computational Natural Language Learning

(CoNLL-X), pp 149–164, New York City. Association for

Computational Linguistics

6. Cavallari S, Cambria E, Cai H, Chang K, Zheng V (2019)

Embedding both finite and infinite communities on graph. IEEE

Comput Intell Mag 14(3):39–50

7. Chen D. and Manning C (2014) A fast and accurate dependency

parser using neural networks. In: Proceedings of the 2014 Con-

ference on Empirical Methods in Natural Language Processing

(EMNLP), pp 740–750, Doha, Qatar. Association for Computa-

tional Linguistics

8. Dang HV and Le-Hong P (2021) A combined syntactic-semantic

embedding model based on lexicalized tree-adjoining grammar.

Comput Speech Lang 68

9. Devlin J, Chang M-W, Lee K, and Toutanova K (2019) BERT:

pre-training of deep bidirectional transformers for language

understanding. In: Proceedings of NAACL, pages 1–16, Min-

nesota, USA

10. Dozat T, Qi P, and Manning CD (2017) Stanford’s graph-based

neural dependency parser at the CoNLL 2017 shared task. In:

Proceedings of the CoNLL 2017 Shared Task: Multilingual

Parsing from Raw Text to Universal Dependencies, pp 20–30,

Vancouver, Canada. Association for Computational Linguistics

11. Dyer C, Ballesteros M, Ling W, Matthews A, and Smith NA

(2015) Transition-based dependency parsing with stack long

short-term memory. In: Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pp 334–343, Beijing, China. Associ-

ation for Computational Linguistics

12. Fernandez Astudillo R, Ballesteros M, Naseem T, Blodgett A,

and Florian R (2020) Transition-based parsing with stack-trans-

formers. In Findings of the Association for Computational Lin-

guistics: EMNLP 2020, pp 1001–1007, Online. Association for

Computational Linguistics

13. Green N, Larasati SD, and Zabokrtsky Z (2012) Indonesian

dependency treebank: annotation and parsing. In: Proceedings of

the 26th Pacific Asia Conference on Language, Information, and

Computation, pp 137–145, Bali, Indonesia. Faculty of Computer

Science, Universitas Indonesia

14. Harris ZS (1954) Distributional structure. Word 10(2–3):146–162

15. Ji S, Pan S, Cambria E, Marttinen P, Yu PS (2022) A survey on

knowledge graphs: representation, acquisition and applications.

IEEE Trans Neural Netw Learn Syst 33(10):494–514

16. Kingma DP and Ba J (2015) Adam: a method for stochastic

optimization. In: Bengio Y and LeCun Y, eds, Proceedings of the

3rd International Conference on Learning Representations, ICLR

2015, pp 1–15, San Diego, CA, USA

17. Kiperwasser E, Goldberg Y (2016) Easy-first dependency parsing

with hierarchical tree LSTMs. Trans Assoc Comput Linguist

4:445–461

18. Kiperwasser E, Goldberg Y (2016) Simple and accurate depen-

dency parsing using bidirectional LSTM feature representations.

Trans Assoc Comput Linguist 4:313–327

19. Kolen JF and Kremer SC (2001) Gradient Flow in Recurrent

Nets: The Difficulty of Learning LongTerm Dependencies,

pp 237–243. IEEE

20. Kondratyuk D. and Straka M (2019) 75 languages, 1 model:

parsing Universal Dependencies universally. In: Proceedings of

the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pp 2779–2795, Hong

Kong, China. Association for Computational Linguistics

21. Kübler S, McDonald R, and Nivre J (2009) Dependency parsing.

Morgan & Claypool Publishers

22. Le P and Zuidema W (2014) The inside-outside recursive neural

network model for dependency parsing. In: Proceedings of the

2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp 729–739, Doha, Qatar. Association for

Computational Linguistics

23. Le-Hong P, Nguyen TMH, and Azim R (2012) Vietnamese

parsing with an automatically extracted tree-adjoining grammar.

In: Proceedings of the IEEE RIVF, pp 91–96, HCMC, Vietnam

24. Le-Hong P, Roussanaly A, Nguyen T-M-H (2015) A syntactic

component for Vietnamese language processing. J Lang Modell

3(1):145–184

25. Lei T, Xin Y, Zhang Y, Barzilay R, and Jaakkola T (2014) Low-

rank tensors for scoring dependency structures. In: Proceedings of

the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pp 1381–1391, Baltimore,

Maryland. Association for Computational Linguistics

26. Levy O and Goldberg Y (2014) Dependency-based word

embeddings. In: Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short

Papers), pp 302–308, Baltimore, Maryland. Association for

Computational Linguistics

27. Ling W, Tsvetkov Y, Amir S, Fermandez R, Dyer C, Black AW,

Trancoso I, and Lin C-C (2015) Not all contexts are created

equal: better word representations with variable attention. In:

Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pp 1367–1372, Lisbon, Portugal.

Association for Computational Linguistics

Neural Computing and Applications (2024) 36:2999–3016 3015

123

https://universaldependencies.org

28. Liu J and Zhang Y (2017) Encoder-decoder shift-reduce syntactic

parsing. In: Proceedings of the 15th International Conference on

Parsing Technologies, pp 105–114, Pisa, Italy. Association for

Computational Linguistics

29. McDonald R, Nivre J (2011) Analyzing and integrating depen-

dency parsers. Comput Linguist 37(1):197–230

30. McDonald R and Pereira F (2006) Online learning of approxi-

mate dependency parsing algorithms. In: Proceedings of EACL,

pp 81–88, Trento, Italy

31. McDonald R, Pereira F, Ribarov K, and Hajic J (2005) Non-

projective dependency parsing using spanning tree algorithms. In:

Proceedings of HLT-EMNLP, pp 522–530, Vancouver, Canada

32. Nguyen TL, Ha ML, Nguyen VH, Nguyen TMH, and Le-Hong P

(2013) Building a treebank for Vietnamese dependency parsing.

In The 10th IEEE RIVF, pp 147–151, Hanoi, Vietnam. IEEE

33. Nivre J (2003) An efficient algorithm for projective dependency

parsing. In: Proceedings of the Eighth International Conference

on Parsing Technologies, pp 149–160, Nancy, France

34. Nivre J, de Marneffe M-C, Ginter F, Goldberg Y, Hajič J,

Manning CD, McDonald R, Petrov S, Pyysalo S, Silveira N,

Tsarfaty R, and Zeman D (2016) Universal Dependencies v1: a

multilingual treebank collection. In: Proceedings of the Tenth

International Conference on Language Resources and Evaluation

(LREC’16), pp 1659–1666, Portorož, Slovenia. European Lan-

guage Resources Association (ELRA)

35. Nivre J, Hall J, Kübler S, McDonald R, Nilsson J, Riedel S, and

Yuret D (2007) The CoNLL 2007 shared task on dependency

parsing. In: Proceedings of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP-CoNLL),

pp 915–932, Prague, Czech Republic. Association for Compu-

tational Linguistics

36. Nivre J and McDonald R (2008) Integrating graph-based and

transition-based dependency parsers. In: Proceedings of ACL-08,

pp 950–958, Columbus, Ohio, USA. ACL

37. Nivre J and Scholz M (2004) Deterministic dependency parsing

of English text. In: Proceedings of COLING 2004, pp 1–7,

Geneva, Switzerland

38. Nivre JEA (2018) Universal dependencies 2.2. LINDAT/

CLARIAH-CZ digital library at the Institute of Formal and

Applied Linguistics (ÚFAL), Faculty of Mathematics and Phy-

sics, Charles University

39. Lewis MP, Simons GF, Fennig CD (eds) (2014) Ethnologue:

languages of the World, 17th edn. SIL International, Dallas,

Texas, USA

40. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K,

and Zettlemoyer L (2018) Deep contextualized word represen-

tations. In: Proceedings of NAACL, pp 1–15, Louisiana, USA

41. Sneddon JN (2004) The Indonesian language: its history and role

in modern society. UNSW Press

42. Turian J, Ratinov L, and Bengio Y (2010) Word representations:

a simple and general method for semi-supervised learning. In:

Proceedings of ACL, pp 384–394, Uppsala, Sweden

43. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez

AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In:

Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vish-

wanathan S, Garnett R (eds) Advances in Neural Information

Processing Systems, vol 30. Curran Associates Inc

44. Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, and

Bengio Y (2018) Graph attention networks. In: Proceedings of the

Sixth International Conference on Learning Representations

(ICLR), pp 1–12, Vancouver, Canada

45. Wilie B, Vincentio K, Winata GI, Cahyawijaya S, Li X, Lim ZY,

Soleman S, Mahendra R, Fung P, Bahar S, and Purwarianti A

(2020) IndoNLU: benchmark and resources for evaluating

Indonesian natural language understanding. In: Proceedings of

the 1st Conference of the Asia-Pacific Chapter of the Association

for Computational Linguistics and the 10th International Joint

Conference on Natural Language Processing. Association for

Computational Linguistics

46. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, and Le

QV (2019) XLNet: generalized autoregressive pretraining for

language understanding. In: Proceedings of NeurIPS,

pp 5754–5764

47. Zeman D, Hajič J, Popel M, Potthast M, Straka M, Ginter F,

Nivre, J, and Petrov S (2018) CoNLL 2018 shared task: multi-

lingual parsing from raw text to Universal Dependencies. In:

Proceedings of the CoNLL 2018 Shared Task: Multilingual

Parsing from Raw Text to Universal Dependencies, pp 1–21,

Brussels, Belgium. Association for Computational Linguistics

48. Zeman D, Popel M, Straka M, Hajič J, Nivre J, Ginter F, Luo-

tolahti J, Pyysalo S, Petrov S, Potthast M, Tyers F, Badmaeva E,

Gokirmak M, Nedoluzhko A, Cinková S, Hajič jr J, Hlaváčová J,

Kettnerová V, Urešová Z, Kanerva J, Ojala S, Missilä A, Man-

ning CD, Schuster S, Reddy S, Taji D, Habash N., Leung, H.,

de Marneffe, M.-C., Sanguinetti, M., Simi, M., Kanayama, H,

de Paiva, V., Droganova, K., Martı́nez Alonso, H., Çöltekin, Ç.,

Sulubacak, U., Uszkoreit, H, Macketanz, V, Burchardt A, Harris

K, Marheinecke K, Rehm G, Kayadelen T, Attia M, Elkahky A,

Yu Z, Pitler E, Lertpradit S, Mandl M, Kirchner J, Alcalde HF,

Strnadová J, Banerjee E, Manurung R, Stella A, Shimada A,

Kwak S, Mendonça G, Lando T, Nitisaroj R, and Li J (2017)

CoNLL 2017 shared task: Multilingual parsing from raw text to

Universal Dependencies. In: Proceedings of the CoNLL 2017

Shared Task: Multilingual Parsing from Raw Text to Universal

Dependencies, pp 1–19, Vancouver, Canada. Association for

Computational Linguistics

49. Zhang Y and Nivre J (2011) Transition-based dependency pars-

ing with rich non-local features. In: Proceedings of the 49th

Annual Meeting of the Association for Computational Linguis-

tics: Human Language Technologies, pp 188–193, Portland,

Oregon, USA. Association for Computational Linguistics

50. Zhang Z, Liu S, Li M, Zhou M, and Chen E (2017) Stack-based

multi-layer attention for transition-based dependency parsing. In:

Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pp 1677–1682, Copenhagen,

Denmark. Association for Computational Linguistics

51. Zhu C, Qiu X, Chen X, and Huang X (2015) A re-ranking model

for dependency parser with recursive convolutional neural net-

work. In: Proceedings of the 53rd Annual Meeting of the Asso-

ciation for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pp 1159–1168, Beijing, China. Association for

Computational Linguistics

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

3016 Neural Computing and Applications (2024) 36:2999–3016

123

	Integrating graph embedding and neural models for improving transition-based dependency parsing
	Abstract
	Introduction
	Preliminaries
	Syntactic structures
	Dependency parsing
	Feature representations

	Related work
	Recent research efforts on dependency parsing
	Indonesian dependency parsing
	Vietnamese dependency parsing

	Methods
	Baseline model
	RNN-based model
	RNN and graph embedding model

	Experiments
	Datasets
	Details of the training algorithms
	Evaluation metrics
	Results
	Pretrained embedding integration
	Discussion

	Conclusion
	Acknowledgements
	Data availability
	References

