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(a) Example synthetic social network graph. (b) Graph after network administrator
changes just 20% of edge weight.

(c) Graph after network administrator
changes just 30% of edge weight.

Figure 1: Social network graphs after converging to equilibrium in the Friedkin-Johnsen opinion dynamicsmodel. Node colors
represent the opinions of individuals on an issue: dark red nodes have opinion close to 1, while dark blue nodes have opinion
close to −1. The weight of an edge (i.e, strength of social connection between two individuals) is expressed by its shade.
In themiddle and right networks, we introduce a network administrator who is allowed tomake small changes to the network,
and is incentivized to connect userswith content that is similar to their opinion.After reweighting edges by just a small amount
(i.e. filtering social content), the network administrator’s actions increase a standard measure of opinion polarization in these
graphs by 180% and 260%, respectively. This illustrates the formation of a “filter bubble" in a social network.

ABSTRACT
Recent studies suggest that social media usage — while linked to an

increased diversity of information and perspectives for users — has

exacerbated user polarization on many issues. A popular theory

for this phenomenon centers on the concept of “filter bubbles": by

automatically recommending content that a user is likely to agree

with, social network algorithms create echo chambers of similarly-

minded users that would not have arisen otherwise [55]. However,

while echo chambers have been observed in real-world networks,

the evidence for filter bubbles is largely post-hoc.

In this work, we develop a mathematical framework to study

the filter bubble theory. We modify the classic Friedkin-Johnsen

opinion dynamics model by introducing another actor, a network
administrator, who filters user content by making small changes to

the edge weights of a social network (for example, adjusting a news

feed algorithm to change the level of interaction between users).

On real-world networks from Reddit and Twitter, we show that

when the network administrator is incentivized to reduce disagree-

ment among users, even relatively small edge changes can result

in the formation of echo chambers in the network and increase
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user polarization. We theoretically support this observed sensitivity

of social networks to outside intervention by analyzing synthetic

graphs generated from the stochastic block model. Finally, we show
that a slight modification to the incentives of the network adminis-

trator can mitigate the filter bubble effect while minimally affecting

the administrator’s target objective, user disagreement.

1 INTRODUCTION
The past decade has seen an explosion in social media use and

importance [59]. Online social networks, which enable users to

instantly broadcast information about their lives and opinions to a

large audience, are used by billions of people worldwide. Social me-

dia is also used to access news [57], review products and restaurants,

find health and wellness recommendations [60], and more.

Social networks, along with the world wide web in general, have

made our world more connected. It has been widely established

that social networks and online media increase the diversity of in-

formation and opinions that individuals are exposed to [15, 45, 47].

In many ways, the widespread adoption of online social networks

has resulted in significant positive progress towards fulfilling Face-

book’s mission of “bringing the world closer together”.

1.1 The puzzle of polarization
Surprisingly, while they enable access to a diverse array of infor-

mation, social networks have also been widely associated with

increased polarization in society across many issues [31], including

politics [3, 6, 21], science [51], and healthcare [41]. Somehow, de-

spite the exposure to a wide variety of opinions and perspectives,
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individuals form polarized clusters, unable to reach consensus with

one another. In politics, increased polarization has been blamed

for legislative deadlock, erratic policies, and decreased trust and

engagement in the democratic process [12, 46].

There have been many efforts to understand this seemingly

counterintuitive phenomenon of increased societal polarization.

Classical psychological theory asserts that polarization arises from

“biased assimilation” [48], i.e. individuals are more likely to trust

and share information that already aligns with their views. Isolated

examples of intense polarization, such as the 2016 US presidential

election and Brexit, can be partially explained by historical, cultural,

and ideological factors [37]. However, when such examples are

considered in bulk, it becomes clear that changes in social dynamics

arising from the increased use of social media must constitute a

major contributing factor to the phenomenon of polarization [6, 43].

1.2 Filter bubbles
An influential idea put forward by Eli Pariser suggests an important

mechanism that may explain why social media increases societal

polarization [55]. According to Pariser, preferential attention to

viewpoints similar to those already held by an individual is explicitly
encouraged by social media companies: to increase metrics like

engagement and ad revenue, recommendation systems connect

users with information already similar to their current beliefs.

Such recommendations can be direct: friend or follow sugges-

tions on platforms like Facebook or Twitter. Or they can be more

subtle: chronological “news feeds” on social media have universally

been replaced with individually filtered and sorted feeds which

connect users with posts that they are most likely to engage with

[30]. By recommending such content, social network companies

create “echo chambers" of similar-minded users. Owing to their

root cause – the external filtering of content shown to a user –

Pariser called these echo chambers filter bubbles.
The danger of filter bubbles was recently highlighted by Apple

CEO Tim Cook in a commencement speech at Tulane University

[28]. Filter bubbles have been blamed for the spread of fake news

during the Brexit referendum and the 2016 U.S. presidential elec-

tion [43], protests against immigration in Europe [35], and even

measles outbreaks in 2014 and 2015 [41]. In each of these incidents,

instead of bringing diverse groups of users together, social media

has reinforced differences between groups and wedged them apart.

At least . . . that’s the theory. While Pariser’s ideas make logical

sense, the magnitude of the “filter bubble effect” has been disputed

or questioned for lack of evidence [7, 14, 42, 54, 62, 65].

1.3 Our contributions
The goal of this paper is to better understand filter bubbles, and

ultimately, to place Pariser’s theory on firmer ground. We do so by

developing a mathematical framework for studying the effect of

filter bubbles on polarization in social networks, relying on well-

established analytical models for opinion dynamics [23].
Such models provide simple rules that capture how opinions

form and propagate in a social network. The network itself is typi-

cally modeled as a weighted graph: nodes are individuals and social

connections are represented by edges, with higher weight for re-

lationships with increased interaction. We specifically work with

the well-studied Friedkin-Johnsen opinion dynamics model, which

models an individual’s opinion on an issue as a continuous value

between −1 and 1, and assumes that, as time progresses, individ-

uals update their opinions based on the average opinion of their

social connections [32]. The Friedkin-Johnsen model has been used

successfully to study polarization in social networks [11, 18, 19, 53].

Our contribution is to modify the model by adding an external

force: a network administrator who filters social interaction be-

tween users. Based on modern recommendation systems [4], the

network administrator makes small changes to edge weights in

the network, which correspond to slightly increasing or decreasing

interaction between specific individuals (e.g. by tuning a news feed

algorithm). The administrator’s goal is to connect users with con-

tent they likely agree with, and therefore increase user engagement.

Formally, we model this goal by assuming that the network admin-

istrator seeks to minimize a standard measure of disagreement in
the social network. As individuals update their opinions according

to the Friedkin-Johnsen dynamics, the administrator repeatedly

adjusts the underlying network graph to achieve its own goal.

Using our model, we establish a number of experimental and

theoretical results which suggest that content filtering by a network

administrator can significantly increase polarization, even when

changes to the network are highly constrained (and perhaps unno-

ticeable by users). First, we apply our augmented opinion dynamics

to real-world social networks obtained from Twitter and Reddit.

When the network administrator changes only 40% of the edge

weight in the network, polarization increases by more than a factor

of 40×. These results are striking—they suggest that social networks

are very sensitive to influence by filtering. As illustrated in Figure

1, even minor content filtering by the network administrator can

create significant “filter bubbles”, just as Pariser predicted [55].

Next, to better understand the sensitivity of social networks to

filtering, we study a standard generative model for social networks:

the stochastic block model [1]. We show that, with high probability,

any network generated from the stochastic block model is in a state

of fragile consensus: that is, under the Friedkin-Johnsen dynam-

ics, the networkwill exhibit low polarization, but can become highly

polarized after only a minor adjustment of edge weights. Our find-

ings give theoretical justification for why a network administrator

can greatly increase polarization in real-world networks.

Finally, ending on an optimistic note, we experimentally show

that a simple modification to the incentives of the network admin-

istrator mitigates the filter bubble effect. Surprisingly, our proposed

solution also minimally affects user disagreement, the objective of

the network administrator by at most 5%.

1.4 Prior work
Minimizing polarization in social networks. There has been
substantial recent work on using opinion dynamics models to study

polarization in social networks. [50] first defines polarization in

the Friedkin-Johnsen model, and gives an algorithm for reducing

polarization in social networks. [53] and [19] give methods for

finding network structures which minimize different functions

involving polarization and disagreement. Our work differs from

these results in that we study network modifications which increase
polarization, rather than decreasing it. Moreover, we study how

such modifications arise even when the network administrator is

not explicitly incentivized to change polarization.
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Other opinion dynamics models and metrics have also been used

to study network polarization. [5] gives an algorithm for mitigating

filter bubbles in an influence maximization setting. [34] studies

“controversy" in the Friedkin-Johnsen model, a metric related to

polarization, and [33] gives an algorithm for reducing controversy.

Modeling filter bubbles and recommendation systems. Bi-
ased assimilation, which is when users gravitate towards viewpoints

similar to their own, has been argued as one cause of increased

polarization in social networks. By generalizing the classic DeGroot

model [26] of opinion formation, [22] provides theoretical support

for the biased assimilation phenomenon and analyzes the interac-

tion of three recommendation systems on biased assimilation. [27]

models biased assimilation in social networks using a variant of

the Bounded Confidence Model (BCM) [38], an opinion dynamics

model that does not assume a latent graph structure between users.

Most similar to our work, [35] creates a variant of the BCM that

models biased assimilation, homophily, and algorithmic filtering,

and shows how echo chambers can arise as a result of these factors.

[17] studies the more general problem of how recommendation

systems increase homogeneity of user behavior.

1.5 Notation and Preliminaries
We use bold letters to denote vectors. The ith entry of vector a is
denoted ai . For a matrix A, Ai j is the entry in the ith row and jth

column. For a vector a ∈ Rn , let diag(a) return an n × n diagonal

matrix with the ith diagonal entry equal to ai . For a matrix A ∈

Rn×d , let rowsum(A) return a vector whose ith entry is equal to the

sum of all entries inA’s ith row. We use In×n to denote a dimension

n identity matrix, and 1n to denote the all ones column vector, with

the subscript omitted when dimension is clear from context.

Every real symmetric matrix A ∈ Rn×n has an orthogonal eigen-

decomposition A = UΛUT
where U ∈ Rn×n is orthonormal (i.e

UTU = UUT = I ) and Λ is diagonal, with real valued entries

λ1 ≤ λ2 ≤ . . . ≤ λn equal to A’s eigenvalues. We say a symmetric

matrix is positive semidefinite (PSD) is all of its eigenvalues are

non-negative (i.e. λ1 ≥ 0). We use ⪯ to denote the standard Loewner

ordering:M ⪰ N indicates thatM − N is PSD. For a square matrix

M , ∥M ∥2 denotes the spectral norm of M and ∥M ∥F denotes the

Frobenius norm. For a vector v , | |v | |2 denotes the L
2
norm.

1.6 Road Map
Section 2 Introduce preliminaries on Freidkin-Johnsen opinion

dynamics, which form a basis for modeling filter bubble emergence.

Section 3 Introduce our central “network administrator dynamics”

and establish experimentally that content filtering can significantly

increase polarization in social networks.

Section 4 Explore these findings theoretically by showing that

stochastic block model graphs exhibit a “fragile consensus” which

is easily disrupted by outside influence.

Section 5 Discuss a small modification to the content filtering

process that can mitigate the effect of filter bubbles while still being

beneficial for the network administrator.

Section 6 Briefly discuss future directions of study.

2 MODELING OPINION FORMATION
One productive approach towards understanding the dynamics of

consensus and polarization in social networks has been to develop

simple mathematical models to explain how information and ideas

spread in these networks.

While there are a variety of models in the literature, we use the

Friedkin-Johnsen opinion dynamics model, which has been used to

study polarization in recent work [19, 50, 53].

2.1 Friedkin-Johnsen Dynamics
Concretely, the Friedkin-Johnsen (FJ) dynamics applies to any social

network that can be modeled as an undirected, weighted graph G.
Let {v1, . . . ,vn } denote G’s nodes and for all i , j, let wi j ≥ 0

denote the weight of undirected edge (i, j) between nodes vi and
vj . Let di =

∑
j,i wi j be the degree of node vi .

The FJ dynamics model the propagation of an opinion on an

issue during a discrete set of time steps t ∈ 0, 1, . . . ,T . The issue
may be specific (Do you believe that humans contribute to climate

change?) or it may encode a broad ideology (Do your political views

align most with conservative or liberal politicians in the US?).

In either case, the FJ dynamics assume that the issue has exactly

two poles, with an individual’s opinion encoded by a continuous

real value in [−1, 1]. −1 and 1 represent the most extreme opinions

in either direction, while 0 represents a neutral opinion. Each node

vi holds an innate (or internal) opinion si ∈ [−1, 1] on the issue.

The innate opinion vector s = [s1, . . . , sn ] does not change over
time. It can be viewed as the opinion an individual would hold in a

social vacuum, with no outside influence from others. The value of

si might depend on the background, geographic location, religion,

race, or other circumstances about individual i .
In addition to an innate opinion, for every time t , each node is

associated with an “expressed” or “current” opinion z
(t )
i ∈ [−1, 1],

which changes over time. Specifically, the FJ dynamics evolves

according to the update rule:

z
(t )
i =

si +
∑
j,i wi jz

(t−1)
j

di + 1
. (1)

That is, at each time step, each node adopts a new expressed opinion

which is the average of its own innate opinion and the opinion of

its neighbors. For a given graphG and innate opinion vector s, it is
well known that the FJ dynamics converges to an equilibrium set

of opinions [11], which we denote

z∗ = lim

t→∞
z(t ).

It will be helpful to express the FJ dynamics in a linear algebraic

way. Let A ∈ Rn×n be the adjacency matrix of G, with Ai j = Aji =

wi j and let D be a diagonal matrix with Dii = di . Let L = D −A be

the graph Laplacian of G. Then we can see that (1) is equivalent to

z(t ) = (D + I )−1(Az(t−1) + s), (2)

where we denote z(t ) = [z
(t )
1
, . . . , z

(t )
n ]. From this expression, it is

not hard to check that

z∗ = (L + I )−1s. (3)

AlternativeModels.The Friedkin-Johnsen opinion dynamicsmodel

is a variation of DeGroot’s classical model for consensus formation

in social network [26]. The distinguishing characteristic of the FJ

model is the addition of the innate opinions encoded in s. Unlike
the DeGroot model, which always converges in a consensus when
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G is connected (i.e., z∗i = z∗j for all i, j) , innate opinions allow for

a richer set of equilibrium opinions. In particular, z∗ will typically
contain opinions ranging continuously between −1 and 1.

Compared to DeGroot, the FJ dynamics more accurately model a

world where an individual’s opinion (e.g. on a political issue) is not

shaped solely by social influence, but also by an individual’s particu-

lar background, beliefs, or life circumstances. FJ dynamics are often

studied in economics and game theory as an example of a game

with price of anarchy greater than one [11]. Other variations on the

model include additional variables [39] — for example, allowing the

“stubbornness” of an individual to vary [2, 18], or adding additional

terms to Equation (1) to indicate that an individual cares about the

average network opinion as well as their neighbors’ opinions [29].

There also exist many models for opinion formation that fall

outside of DeGroot’s original framework. Several models involve

discrete instead of continuously valued opinions. We refer to reader

to the overview and discussion of different proposals in [23]. In this

paper, we focus on the original FJ dynamics, which are already rich

enough to provide several interesting insights on the dynamics of

polarization, filter bubbles, and echo chambers.

2.2 Polarization, Disagreement, and Internal
Conflict

The fact that z∗ does not always contain a single consensus opinion

makes the FJ model suited to understanding how polarization arises

on specific issues. Formally, we define polarization as the variance

of a given set of opinions.

Definition 2.1 (Polarization, Pz). For a vector of n opinions z ∈

[−1, 1]n , let mean(z) = 1

n
∑n
j=1 zj be the mean opinion in z.

Pz
def

=

n∑
i=1

(zi −mean(z))2.

Pz ranges between 0 when all opinions are equal and n when

half of the opinions in z equal 1 and half equal −1. Pz was first
proposed as a measure of polarization in [50], and has since been

used in other recent work studying polarization in FJ dynamics

[19, 53]. While we focus on Definition 2.1, we refer the interested

reader to [34] for discussion of alternative measures of polarization.

Under the FJ model, the polarization of the equilibrium set of

opinions has a simple closed form. In particular, let s = s−1·mean(s)
be the mean centered set of innate opinions on a topic, and define

z similarly. Using that 1 is in the null-space of any graph Laplacian

L, it is easy to check (see [53] for details) that mean(z) = mean(s)
and thus z∗ = (L + I )−1s. It follows that:

Pz∗ = sT (L + I )−2s. (4)

In addition to polarization, we define two other quantities of

interest involving opinions in a social network. Both have appeared

repeatedly in studies involving the FJ dynamics [2, 19, 53].

The first quantity measures how much node i’s opinion differs

from those of its neighbors.

Definition 2.2 (Local Disagreement, DG,z,i ). For i ∈ 1, . . . ,n, a
vector of opinions z ∈ [−1, 1]n , and social network graph G,

DG,z,i
def

=
∑

j ∈1, ...n, j,i
wi j (zi − zj )

2.

We also define an aggregate measure of disagreement.

Definition 2.3 (Global Disagreement, DG,z). For a vector of opin-

ions z ∈ [−1, 1]n , and social network graph G,

DG,z
def

=
1

2

·

n∑
i=1

DG,z,i .

The factor of 1/2 is included so that each edge (i, j) is only counted

once. When G has graph Laplacian L, it can be checked (see e.g.

[53]) that DG,z = zT Lz = zT Lz.

Disagreement measures how misaligned each node’s opinion is

with the opinions of its neighbors. We are also interested in how

misaligned a node’s expressed opinion is with its innate opinion.

Definition 2.4 (Local Internal Conflict, Iz,s,i ). For i ∈ 1, . . . ,n, a
vector of expressed opinions z ∈ [−1, 1]n , and a vector of innate

opinions s ∈ [−1, 1]n ,

Iz,s,i
def

= (zi − si )
2.

We also define an aggregate measure of internal conflict.

Definition 2.5 (Global Internal Conflict, Iz,s). For a vector of ex-

pressed opinions z ∈ [−1, 1]n , and a vector of innate opinions

s ∈ [−1, 1]n ,

Iz,s
def

=

n∑
i=1

Iz,s,i = ∥z − s∥2
2
.

Since mean(z) = mean(s), we equivalently have Iz,s = ∥z − s∥2
2
.

We can rewrite both the Friedkin-Johnsen update rule and equi-

librium opinion vector as solutions to optimization problems in-

volving minimizing disagreement and internal conflict.

Claim 2.1. The Friedkin-Johnsen dynamics update rule (Equation
1) is equivalent to

z
(t )
i = argmin

z
DG,z,i + Iz,s,i . (5)

The equilibrium opinion vector z∗ (Equation 3) is equivalent to

z∗ = argmin

z
DG,z + Iz,s. (6)

It was also observed in [19] that polarization, disagreement, and

internal conflict obey a “conservation law” in the Friedkin-Johnsen

dynamics.

Claim 2.2 (Conservation law). For any graphG with Laplacian
L, innate opinions s ∈ [−1, 1]n , and equilibrium opinions z∗,

Pz∗ + 2 · DG,z∗ + Iz∗,s = sT s. (7)

Now, combining Equations (6) and (7) tells us that z∗, the equi-
librium solution of the Friedkin-Johnsen dynamics, maximizes po-

larization plus disagreement.

z∗ = argmax

z
Pz +DG,z. (8)

Now suppose we add another actor, whose goal is to minimize

disagreement, to the model. Informally, since the users of the net-

work are maximizing polarization + disagreement, and this other

actor is minimizing disagreement, one would expect polarization to

increase. This intuitive observation motivates the network admin-

istrator dynamics, described below, as a vehicle for the emergence

of filter bubbles in a network.
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3 THE EMERGENCE OF FILTER BUBBLES
We introduce another actor to the Friedkin-Johnsen opinion dy-

namics, the network administrator. The network administrator

increases user engagement via personalized filtering, or showing

users content that they aremore likely to agree with. In the Friedkin-

Johnsen model, this corresponds to the network administrator re-

ducing disagreement by making changes to the edge weights of the

graph (e.g. users see more content from users with similar opinions,

and less content from users with very different opinions).

3.1 Network Administrator Dynamics
Formally, our extension of the Friedkin-Johnsen dynamics has two

actors: users, who change their expressed opinions z, and a network
administrator, who changes the graphG . The network administrator
dynamics are as follows.

Network Administrator Dynamics.
Given initial graph G(0) = G and initial opinions z(0) = s ,
in each round r = 1, 2, 3, . . .

• First, the users adopt new expressed opinions z(r ).
These opinions are the equilibrium opinions (Equa-

tion 3) of the FJ dynamics model applied to G(r−1)
:

z(r ) = (L(r−1) + I )−1s . (9)

Here L(r−1) is the Laplacian of G(r−1)
.

• Then, given user opinions z(r ), the network admin-

istrator minimizes disagreement by modifying the

graph, subject to certain restrictions:

G(r ) = argmin

G ∈S
DG,z(r ) . (10)

S is the constrained set of graphs the network ad-

ministrator is allowed to change to.

3.1.1 Restricting changes to the graph. S , the set of all graphs the
network admin canmodify the graph to (Equation 17), should reflect

realistic changes that a recommender system would make. For

example, if the network admin is unconstrained, then the network

admin will simply setwi j = 0 for all edges (i, j), as the empty graph

minimizes disagreement. This is entirely unrealistic, however, as

a social network would never eliminate all connections between

users. In our experiments, we define S as follows:

Constraints on the network administrator.
Given ϵ > 0 and initial graph G with adjacency matrixW ,

let S contain all graphs with adjacency matrixW satisfying:

(1) | |W −W | |F < ϵ · | |W | |F .

(2)

∑
jWi j =

∑
j (W )i j for all i , i.e. the degree of each

vertex should not change.

The first constraint prevents the network administrator from

making large changes to the initial graphW . Here, ϵ represents an

L2 constraint parameter for how much the network administrator

can change edge weight in the network. The second constraint

restricts the network administrator to only making changes that

maintain the total level of interaction for every user. Otherwise, the

network administrator could reduce disagreement by decreasing

the total edgeweight in the graph— corresponding to having people

spend less time on the network — which is not realistic.

Note that, since S gives a convex set over adjacency matrices and

DG,z(r ) is a convex function (as a function of the adjacency matrix

of G), the minimization problem in Equation (17) has a unique

solution, eliminating any ambiguity for the network administrator.

3.1.2 Convergence. Although it is not immediately obvious, the

Network Administrator Dynamics do converge. In each round, the

users are minimizing disagreement + internal conflict (Equation 6),

while the network admin is minimizing disagreement (Equation

17). Thus, we can view the Network Administrator Dynamics as

alternating minimization on disagreement + internal conflict:

argmin

z∈Rn,W ∈S
DG,z + Iz,s . (11)

While DG,z +Iz,s is not convex in both z andW , it is convex in

one variable when the other is fixed. Because our constraints onW
are also convex, alternating minimization will converge to a station-

ary point of DG,z + Iz,s [9, 10]. Moreover, while the convergence

point is not guaranteed to be the global minima of DG,z +Iz,s , we

empirically find that alternating minimization converges to a better

solution than well-known optimization methods such as sequential

quadratic programming [13] and DMCP [58].

3.2 Experiments
Using two real-world networks, we show that content filtering by

the network administrator greatly increases polarization.

Datasets. We use two real-world networks collected in [25],

which were previously used to study polarization in [53]. We briefly

describe the datasets. More details can be found in [25, 53].

Twitter is a network with n = 548 nodes andm = 3638 edges.

Edges correspond to user interactions. The network depicts the

debate over the Delhi legislative assembly elections of 2013.

Reddit is a network with n = 556 nodes and m = 8969 edges.

Nodes are users who posted in the politics subreddit, and there is

an edge between two users if there exist two subreddits (other than

politics) that both users posted in during the given time period.

In both networks, each user has multiple opinions associated to

them, obtained via sentiment analysis on multiple posts. Similar to

[53], we average each of these opinions to obtain an equilibrium

expressed opinion z∗i for each user i . Inverting Equation (3) yields

innate opinions s = (L + I )z, which we clamp to [−1, 1]. This yields

a rough estimate of the innate opinions of each user, and provides

a starting point for analyzing the dynamics of polarization.

Results. Figure 2 shows our results applying the network ad-

ministrator dynamics to the Reddit and Twitter datasets. For both

networks, we calculate the increase in polarization after introducing

the network administrator dynamics, relative to the polarization of

the equilibrium opinions without the network administrator. We

plot this polarization increase versus ϵ , the L2 parameter that spec-

ifies how much the network administrator can change the network.

We also plot the increase in disagreement versus ϵ .
Once ϵ is large enough, polarization rises greatly in both net-

works. For example, when ϵ = 0.5, polarization increases by a

factor of around 700× in the Reddit network, and a factor of around
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Figure 2: Applying network administrator dynamics to real-world social networks. Details in Section 3.

60× in the Twitter network. While polarization increases in both

networks, it is interesting to observe that the Twitter network is

more resilient than the Reddit network. Surprisingly, for ϵ < 0.7,

disagreement also increases in the Reddit network — so the network

administrator does not even reduce user disagreement.

Overall, our experiments illustrate how recommender systems

can greatly increase opinion polarization in social networks, and

give experimental credence to the theory of filter bubbles [55].

4 FRAGILE CONSENSUS IN SOCIAL
NETWORK GRAPHS

Our results in Section 3 establish that polarization in Friedkin-

Johnsen opinion models can significantly increase even when the

network administrator adjusts just a small amount of edge weight.

To better understand this empirical finding, we present a theoret-

ical analysis of the sensitivity of social networks to outside influence.
In this work we are most interested in the effect of “filtering” by

a network administrator, but our analysis can also be applied to

potential influence from advertisers [36, 44] or propaganda [16].

We want to understand how easily such outside influence can affect

the polarization of a network.

4.1 The Stochastic Block Model
We consider a common generative model for networks that can

lead to polarization: the stochastic block model (SBM) [40].

Definition 4.1 (Stochastic Block Model (SBM)). The stochastic

block model is a random graph model parametrized by n > 0 and

p,q ∈ [0, 1]. The model generates a graphG with 2n vertices, where

the vertex set of G, is partitioned into two sets or “communities”,

S = {v1, . . . ,vn } and T = {vn+1, . . . ,v2n }. Edges are generated as

follows. For all vi ,vj ∈ V :

• If vi ,vj ∈ S or vi ,vj ∈ T , setwi j = 1 with probability p, and
wi j = 0 otherwise.

• If vi ∈ S,vj ∈ T or vi ∈ T ,vj ∈ S , setwi j = 1 with probabil-

ity q, andwi j = 0 otherwise.

Also known as "planted partition model", the stochastic block

model has as long history of study in statistics, machine learning,

theoretical computer science, statistical physics, and a number of

other areas. It has been used to study social dynamics, suggesting

it as a natural choice for analyzing the dynamics of polarization

[8, 49]. We refer the reader to the survey in [1] for a complete

discussion of applications and prior theoretical work on the model.

There are many possible variations on Definition 4.1. For ex-

ample, S and T may differ in size or V may be partitioned into

more than two communities. Our specific setup is both simple and

well-suited to studying the dynamics of opinions with two poles.

4.2 Opinion Dynamics in the SBM
As in most work on the SBM, we consider the natural setting where

q < p, i.e. the probability of two nodes being connected is higher

when the nodes are in the same community, and lower when they

are in different communities. This setting results in a graphG which

is “partitioned”:G looks like two identically distributed Erdős-Rényi

random graphs, connected by a small number of random edges.

We assume nodes in S have innate opinions clustered near −1

(one end of the opinion spectrum), and nodes inT have innate opin-

ions clustered near 1, i.e., nodes with similar innate opinions are

more likely to be connected. This property, known as "homophily",

is commonly observed in real social networks [22]. Homophily

arises because innate opinions are often correlated with demograph-

ics like age, geographic location, and education level—demographics

which also influence the probability that two nodes are connected.

With the SBM chosen as a model for graphs which resemble

real-world social networks, our main question in this section is:

How sensitive is the equilibrium polarization of a Friedkin-
Johnsen opinion dynamics to changes in the underlying social
network graph G, when G is generated from a SBM?
To answer this question, we analyze how the equilibrium polar-

ization of SBM networks depends on parameters p and q. We show

that polarization of the equilibrium opinions decreases quadrati-
cally with q, which means that even networks with very few edges

between S and T have low polarization.

Formally, let A ∈ R2n×2n , D = diag(rowsum(A)), and L = D −A,
be the adjacency matrix, diagonal degree matrix, and Laplacian,

respectively, of a graph G drawn from the stochastic block model.

For simplicity, assume the FJ dynamics with s set to completely

polarized opinions, which perfectly correlate with a nodevi ’s mem-

bership in either S = {v1, . . .vn } or T = {vn+1 . . .v2n }:

si =

{
1 for i ∈ 1, . . . ,n

−1 for i ∈ n + 1, . . . , 2n
(12)

Our main result is:

Theorem 4.1 (Fragile consensus in SBM networks). LetG be
a graph generated by the SBM with 1/n ≤ q ≤ p and p > c log4 n/n
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for some universal constant c . Let s be the innate opinion vector
defined in Equation (12), and let v∗ be the equilibrium opinion vector
according to the FJ dynamics. Then for sufficiently large n,

C
2n

(2nq + 1)2
≤ Pv∗ ≤ C ′ 2n

(2nq + 1)2

with probability 97/100, for universal constants C,C ′ .

Note that our assumptions on q and p are mild – we simply need

that, in expectation, each node has at least one connection outside

of its home community, andO(log4 n) connections within its home

community. In real-world social networks, the average number of

connections should typically exceed these minimum requirements.

Figure 3: The equilibirum polarization of a SBM social net-
work plotted as a function of nq, i.e. the average number of
“out-of-group” edges in the network per node. Polarization
falls rapidly with nq, leading to a state of potentially fragile
consensus, where removing a small number of edges from a
network can vastly increase polarization.

Remarks. Theorem 4.1 leads to two important observations. First,

with high probability, the equilibrium polarization of a SBM net-

work is independent ofp, the probability of generating an “in-group"
edge. This is highly counterintuitive: one would expect that in-

creasing p would decrease polarization, as each node would be

surrounded by a larger proportion of like-minded nodes.

Second, when nq is sufficiently large, polarization scales as

∼ 2n
(2nq)2 . Since the maximum polarization in a network with 2n

nodes is 2n, this says that the polarization of an SBM graph drops

quadratically with nq, the expected number of “out-of-group” edges

per node. This behavior is visualized in Figure 3.

The second observation suggests an interesting conclusion on

social networks that are relatively un-polarized (i.e., are near con-

sensus). In particular, it is possible for these networks to be in a

state of fragile consensus, meaning that if small number of edges

are removed between S and T – for example by a network adminis-

trator – polarization can increase rapidly. In fact, this is the case

even when edges between S and T are eliminated randomly. Doing
so produces a new G ′

also drawn from an SBM, but with param-

eter q′ < q. Referring to Figure 3 and Theorem 4.1, G ′
can have

significantly higher polarization than G , even when q′ is close to q.

4.3 Expectation Analysis
To prove Theorem 4.1, we apply McSherry’s “perturbation” ap-

proach for analyzing the stochastic block model [52, 61]. We first

bound the polarization of an SBM graph in expectation, and then

show that the bound carries over to random SBM graphs.

Lemma 4.2. LetG be a graph with 2n vertices and adjacencymatrix

A =

0 p . . . p q q . . . q

p 0

. . .
... q q

. . .
...

...
. . .
. . . p

...
. . .
. . . q

p . . . p 0 q . . . q q

q q . . . q 0 p . . . p

q q
. . .
... p 0

. . .
...

...
. . .
. . . q

...
. . .
. . . p

q . . . q q p . . . p 0




Let s, as defined in Equation (12), be the innate opinion vector for
the network, and let w∗ be the resulting equilibrium opinion vector
according to the FJ dynamics. Then,

Pw∗ =
2n

(2nq + 1)2
. (13)

Proof. Let D and L be the diagonal degree matrix and Lapla-

cian of G, respectively. Since s is mean centered, we have that

Pw∗ = sT (L + I )−2s. To analyze Pw∗ , we need to obtain an explicit

representation for the eigendecomposition of (L + I )−2.

Let U = [u(1), u(2)] where u(1) = 1√
2n

12n and u(2) = 1√
2n

s. We

can check that A + pI = UΛUT
where Λ = diag(n(p + q),n(p − q)).

Now, let U = [u(1), u(2),Z ] ∈ R2n×2n where Z ∈ R2n×(2n−2) is

a matrix with orthonormal columns satisfying ZT u(1) = 0 and

ZT u(2) = 0. Such a Z can be obtained by extending u(1), u(2) to an

orthonormal basis. Note thatU is orthogonal, i.e.UU
T
= U

T
U = I .

Since L + I = (1 + n(p + q))I − (A + pI ), we see that

L + I = USU
T
. (14)

where S = diag([1, 2nq + 1,n(p + q) + 1, . . . ,n(p + q) + 1]).

SinceU is orthonormal, it follows that (L+ I )−2 has eigendecom-

position (L+ I )−2 = Ũ S−2ŨT
is . Moreover, since s =

√
2n · u(2), we

have that s is orthogonal to u(1) and the columns of Z . Thus,

Pw∗ = sT (L + I )−2s =
2n

(2nq + 1)2
. □

4.4 Perturbation Analysis
With the proof of Lemma 4.2 in place, we prove Theorem 4.1 by

appealing to the following standard result on matrix concentration.

Lemma 4.3 (Corollary of Theorem 1.4 in [63]). Let A be the
adjacency matrix of a graph drawn from the SBM, and let A = E[A]
as in Lemma 4.2. There exists a universal constant c such that if
p ≥ c log4 n/n, then with probability 99/100,

∥A −A∥2 ≤ 3

√
pn.



Understanding Filter Bubbles and Polarization in Social Networks Uthsav Chitra and Christopher Musco

We also require a standard Bernstein inequality (see e.g. [64]):

Lemma 4.4 (Bernstein Ineqality). Let Xi , . . . ,Xm be inde-
pendent random variables with variances σ 2

1
, . . . ,σ 2

m and |Xi | ≤ 1

almost surely for all i . LetX =
∑m
i=1 Xi , µ = E[X ], and σ 2 =

∑m
i=1 σ

2

i .

Pr[|X − µ | > ϵ] ≤ e
ϵ2

2σ 2+2ϵ/3

Using these two bounds, we can prove:

Lemma 4.5. Let L be the Laplacian of a graph G drawn from the
SBM and let L = E[L]. For fixed constant c0, with probability 98/100,

∥L − L∥2 ≤ c0
√
pn logn.

Note that when p ≥ c log4 n, c0
√
pn logn ≤

c0√
c log1.5 n

· pn, so for

sufficiently large n, this lemma implies that ∥L − L∥2 ≤ 1

2
pn

Proof. Let D be the degree matrix of G and recall that E[D] =

D. By triangle inequality, ∥L − L∥2 ≤ ∥D − D∥2 + ∥A − A∥2. By

Lemma 4.3, ∥A−A∥2 < 3

√
pn. Additionally, ∥D−D∥2 is bounded by

maxi |Dii − Dii |. Dii is a sum of Bernoulli random variables with

total variance σ 2
upper bounded by 2np. It follows from Lemma 4.4

and our assumption that p = Ω(1/n) that for any i , |Dii − Dii | ≤

c1
√
pn logn with probability 1− 1

200n for a fixed universal constant

c1. By a union bound, we have that maxi |Dii −Dii | ≤ c1
√
pn logn

with probability 99/100 for all i . A second union bound with the

event that ∥A −A∥2 < 3

√
pn gives the lemma with c0 = 3 + c1. □

With Lemma 4.5 in place, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We separately consider two cases.

Case 1, q ≥ p/2. In this setting, all eigenvalues of L+ I lie between
pn + 1 and 2pn + 1, except for the smallest eigenvalue of 1, which

has corresponding eigenvector u(1) = 1/
√
2n. Since Lu(1) = 0, u(1)

is also an eigenvector of L + I . Let P = u(1)u(1)T be a projection

onto this eigenvector. Using that u(1) is an eigenvalue of both L and

L and applying Lemma 4.5, we have:

(0.5pn + 1)(I − P) ⪯ (I − P)(L + I )(I − P) ⪯ (2.5pn + 1)(I − P).

Since (I − P)(L + I )(I − P) and (I − P) commute, it follows that

(0.5pn+1)2(I−P) ⪯ (I−P)(L+I )2(I−P) ⪯ (2.5pn+1)2(I−P). Finally,
noting that (I − P)s = s, sT s = 2n, and M ⪯ N ⇒ N−1 ⪯ M−1

gives the Theorem for q ≥ p/2.

Case 2, q < p/2. The small q case is more challenging, requiring a

strengthening of Lemma 4.5. This lemma asserts that every eigen-

value of L is within additive error c0
√
pn logn from the correspond-

ing eigenvalue in L. While strong for L’s largest eigenvalues of
(p +q)n, the statement can be weak for L’s smallest non-zero eigen-

value of 2nq. We require a tighter relative error bound:

Lemma 4.6. Assume 1/n ≤ q < p/2. Let λ2(L) be L’s smallest
non-zero eigenvalue. With probability 99/100, for sufficiently large n,

1

2

nq ≤ λ2(L) ≤ 4nq

Due to space constraints, the proof of Lemma 4.6 is omitted here.

It can be found in the full version of this paper available at [20].

In addition to Lemma 4.6, we also require the well-known bound.

Lemma 4.7 (Davis-Kahan Theorem [24]). LetM andH bem×m
symmetric matrices with eigenvectors v1, . . . , vm and ṽ1, . . . , ṽm ,
respectively, and eigenvalues λ1, . . . , λm and ˜λ1, . . . , ˜λm . If ∥M −

H ∥2 ≤ ϵ , then for all i ,

(vTi ṽi )
2 ≥ 1 −

ϵ2

minj,i |λi − λj |2

Again, let P = u(1)u(1)T . Let Ũ ∈ R2n×(2n−1) be an orthonormal

basis for the span of I − P . We will apply Lemma 4.7 to the matrices

ŨT LŨ and ŨT LŨ . Since u(1) is an eigenvector of both L and L, the

eigenvectors of ŨT LŨ and ŨT LŨ are equal to the remaining 2n − 1

eigenvectors of L and L left multiplied by ŨT
. The eigenvalues of

ŨT LŨ and ŨT LŨ are simply the non-zero eigenvalues of L and L.
Let y be the eigenvector of L associated with λ2(L). Theorem 4.5

implies that ∥ŨT LŨ − ŨT LŨ ∥ ≤ c0
√
pn logn and so by Lemma 4.7,

we have:

(u(2)T ŨT Ũ y)2 ≥ 1 −
c2
0
pn logn

((p − q)n)2
.

Since p−q ≥ p/2, our assumption that p = Ω(log4 n/n) implies that

(u(2)T ŨT Ũ y)2 ≥ 1 −O(1/log3 n)), which is ≥ 1/2 for large enough

n. Since y and u(2) are eigenvalues of L and L respectively, both are

orthogonal to u(1). So (u(2)T ŨT Ũ y)2 = (u(2)T y)2. We conclude:

1/2 ≤ (yT u(2))2 ≤ 1. (15)

In other words, L’s second eigenvector y has a large inner product

with L’s second eigenvector u(2).
Since L and (L + I )−2 have the same eigenvectors, we can bound

Pz∗ = sT (L + I )−2s = 2n · u(2)T (L + I )−2u(2) as follows:

(yT u(2))2(λ2(L) + 1)−2 ≤
1

2n
Pz∗

≤ (yT u(2))2(λ2(L) + 1)−2 + (1 − (yT u(2))2)∥(L + I )−2R∥2

where R = I − yyT − u(1)u(1)T is a projection matrix onto (L + I )’s
largest n− 2 eigenvectors. From the same argument used for Case 1,

all of these eigenvectors have corresponding eigenvalues ≥ 1

2
pn+1,

and thus ∥(L + I )−2R∥2 ≤ 1

( 1
2
pn+1)2

≤ 1

(qn+1)2 . Applying (15) and

Lemma 4.6, we have:

1

2

2n

(4nq + 1)2
≤ Pz∗ ≤

3n

( 1
2
nq + 1)2

,

which establishes the theorem. □

5 A SIMPLE REMEDY
Throughout this paper, our results have largely been pessimistic.

The introduction of a network administrator who filters user con-

tent causes polarization to rises and echo chambers form, along

the lines of Pariser’s filter bubble theory [55]. Our analysis in the

SBM further evidences that social networks can easily be in a state

of “fragile consensus", which leaves them vulnerable to extreme

polarization, even when only a small number of edges are modified.

In this section, however, we conclude with a positive result. We

find that, with a slight modification to the network administrator

dynamics, the filter bubble effect is vastly mitigated. Even more

surprisingly, disagreement also barely increases, showing that it
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Figure 4: Applying regularized network administrator dynamics to real-world social networks, γ = 0.2. Details in Section 5.

is possible for the network administrator to reduce polarization in

the network while not hurting its own objective.

5.1 Regularized Dynamics
We modify the role of the network administrator by adding an L2

regularization term to its objective function.

Regularized Network Administrator Dynamics.
Given initial graph G(0) = G and initial opinions z(0) = s ,
in each round r = 1, 2, 3, . . .

• First, the users adopt new expressed opinions z(r ).
These opinions are the equilibrium opinions (Equa-

tion 3) of the FJ dynamics model applied to G(r−1)
:

z(r ) = (L(r−1) + I )−1s . (16)

Here L(r−1) is the Laplacian of G(r−1)
.

• Then, given user opinions z(r ), the network admin-

istrator minimizes disagreement by modifying the

graph, subject to certain restrictions:

G(r ) = argmin

G ∈S
DG,z(r ) + +γ ∥W ∥2F (17)

S is the constrained set of graphs the network admin-

istrator is allowed to change to,W is the adjacency

matrix of G, and γ > 0 is a fixed constant.

γ > 0 is a fixed constant that controls the strength of regular-

ization. We use L2 regularization because

���argminx :∥x ∥1=1 ∥x ∥2

��� =
1n/n for x ∈ Rn . So intuitively, since the network administrator

must keep the total edge weight of the graph constant, the addition

of the regularization term encourages the network administrator to

make modifications to many edges in the graph, instead of making

large, concentrated changes to a small number of edges.

5.2 Results
Figure 4 shows the results of the regularized network administrator

dynamics on the Reddit and Twitter networks, with γ = 0.2. Polar-

ization increases by at most 4%, no matter the value of ϵ . This is a
drastic difference from the non-regularized network administrator

dynamics, where polarization increased by over 4000%. Disagree-

ment, which the network administrator is incentivized to decrease,

increases by at most 5%.

6 CONCLUSION AND FUTURE DIRECTIONS
Despite enabling users access to a diversity of information, social

media has been linked to increased societal polarization [31]. One

proposed explanation for this counterintuitive phenomenon is the

filter bubble theory, which posits that, by automatically recommend

content that a user is likely to agree, content filtering algorithms

on social networks create polarized “echo chambers" of users [55].

In this work, we provide experimental and theoretical support

that the filter bubble theory holds. Specifically, we propose an

extension to the Friedkin-Johnsen opinion dynamics model that ex-

plicitly models recommendation systems in social networks. Using

this model, we experimentally show the emergence of filter bubbles

in real-world networks, and provide theoretical justification for

why social networks are vulnerable to outside actors.

Our work poses many follow-up questions. For example, as dis-

cussed earlier, variants of the Bounded Confidence Model (BCM)

have been used to argue that polarization is caused by “biased as-

similation" of content by users [22, 27, 35]. In this work, we use

the Friedkin-Johnsen model because of its linear algebraic interpre-

tation, which allows us to establish concrete theoretical results. It

could be interesting incorporate our network administrator dynam-

ics into the more complex BCM variants used by [35] and [27].

Another interesting direction is modeling the interference of

other outside actors, as our theoretical analysis is not limited to

recommendation systems. Can we develop a similar framework

for modeling the effects of cyber warfare (see e.g. [56]) on societal

polarization? And perhaps more importantly, can we also develop

methods to mitigate the effects of cyber warfare on polarization?
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