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Abstract

Accurate assessments of extreme weather events are vital for research and
policy, yet localized and granular data remain scarce in many parts of the
world. This data gap limits our ability to analyze potential outcomes and
implications of extreme weather events, hindering effective decision-making.
Large Language Models (LLMs) can process vast amounts of unstructured
text data, extract meaningful insights, and generate detailed assessments
by synthesizing information from multiple sources. Furthermore, LLMs can
seamlessly transfer their general language understanding to smaller mod-
els, enabling these models to retain key knowledge while being fine-tuned
for specific tasks. In this paper, we propose Extreme Weather Reasoning-
Aware Alignment (EWRA), a method that enhances small language models
(SLMs) by incorporating structured reasoning paths derived from LLMs,
and ExtremeWeatherNews, a large dataset of extreme weather event-related
news articles. EWRA and ExtremeWeatherNews together form the overall
framework, ClimaEmpact, that focuses on addressing three critical extreme-
weather tasks: categorization of tangible vulnerabilities/impacts, topic la-
beling, and emotion analysis. By aligning SLMs with advanced reasoning
strategies on ExtremeWeatherNews (and its derived dataset ExtremeAlign
used specifically for SLM alignment), EWRA improves the SLMs’ ability to
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generate well-grounded and domain-specific responses for extreme weather
analytics. Our results show that the approach proposed guides SLMs to out-
put domain-aligned responses, surpassing the performance of task-specific
models and offering enhanced real-world applicability for extreme weather
analytics.

Keywords: Extreme Weather, Large Language Models, Small Language
Models, Alignment, Reasoning

1. Introduction

The increasing occurrence and intensity of extreme weather events present
significant dangers that affect both individuals and communities [1]. These
events, including heatwaves, prolonged dry conditions, extreme precipita-
tion, and tropical cyclones, have significant effects on human livelihoods and
the natural environment, often leading to lasting and sometimes irreversible
consequences. However, our limited understanding of their societal impacts
hinders the development of effective disaster response and communication
strategies [2, 3]. Enhancing access to accurate and comprehensive informa-
tion is crucial to addressing this challenge. Such data can serve as a foun-
dation for extreme weather analysis tasks that can provide crucial extreme
weather analytics such as vulnerability and impact assessment [4, 5, 6, 7, 8, 9].

Large Language Models (LLMs) present a promising tool for providing
comprehensive and accurate information on extreme weather events by ef-
ficiently extracting and synthesizing large climate-related data from various
textual sources [10, 11, 12, 13]. Yet, there are several challenges on the path-
way to achieve this goal, including outdated data that does not consider the
latest events [14], and scarcity of expert-annotated data, which is critical for
training and evaluation. These challenges can affect the accuracy of extreme
weather analysis tasks by hindering the model’s ability to account for the
latest extreme weather events, shifts in vulnerability, and evolving impact
assessments. To mitigate these issues, some solutions have been proposed
in the literature. For instance, ClimateGPT [15] implements various strate-
gies, including a hierarchical retrieval augmentation strategy, drawing upon
external knowledge sources like Wikipedia and IPCC AR6 reports. While
integrating scientifically validated sources enhances the accuracy of LLM re-
sponses, it does not entirely eliminate the potential for generating inaccurate
or misleading information [16].
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Indeed, the critical gap posed by the lack of structured and up-to-date
knowledge in the domain of extreme weather event analysis still persists, and
requires urgent attention. Addressing this gap is crucial to comprehensively
understand the evolving vulnerabilities and impacts associated with extreme
weather events, encompassing both the tangible damages and the emotional
consequences experienced by affected communities.

To fill this gap, we leverage the advanced reasoning capabilities of LLMs
on news articles associated with extreme weather events. In particular, we
prompt LLMs to generate detailed, step-by-step reasoning paths on three
extreme-weather analysis tasks: (i) identification of vulnerability, impact,
and emergency response of the region affected by the extreme event, (ii)
topic/subtopic labeling and keyword extraction, and (iii) emotion analysis.
These reasoning paths act as alignment data, providing clear, detailed expla-
nations that illustrate how to approach and solve complex extreme weather
analysis problems. For instance, when tasked with categorizing a sentence
that describes a weather impact, the LLM does not simply provide the cat-
egory but also explains the logical steps it followed, highlighting relevant
keywords and contextual clues.

Building upon these alignment examples, we propose a novel domain-
specific reasoning approach aimed at enhancing the analytical capabilities of
language models for extreme weather analysis tasks. We introduce Extreme
Weather Reasoning-Aware Alignment (EWRA), a fine-tuning method that
transfers the advanced reasoning skills of LLMs to small language models
(SLMs). EWRA trains SLMs using LLM-generated reasoning paths, enabling
these models to decompose complex problems into manageable steps and pro-
vide clear, logical explanations, making them domain-specialized for provid-
ing extreme weather analytics. Our approach effectively applies a two-stage
fine-tuning strategy: first, SLMs are trained with implicit reasoning to inter-
nalize reasoning logic instead of depending only on prompt patterns; second,
the models are provided with detailed definitions of task categories within
the prompts for explicit fine-tuning. This capability is particularly critical
for retrieving useful extreme weather analytics, where robust representations
capable of accurately identifying and characterizing extreme weather features
and understanding the underlying rationale for predictions are as important
as the predictions themselves [17, 18].

As part of this work, we also release a new dataset, ExtremeWeatherNews,
which comprises news articles collected for 60 distinct extreme weather events.
EWRA and ExtremeWeatherNews constitute the two elements of our Cli-
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maEmpact framework (climaempact.ai) for near real-time extreme weather
analytics. To evaluate the effectiveness of EWRA, we perform a series of
experiments comparing its performance against baseline models on a special-
ized dataset derived from ExtremeWeatherNews, namely the ExtremeAlign
dataset, prepared using LLM-generated reasoning paths. We evaluate multi-
ple fine-tuning strategies, including standard and reasoning-based approaches,
and show that EWRA delivers competitive performance compared to other
fine-tuning methods across tasks, particularly on the Qwen2.5-3B-Instruct
model. On the Vulnerability/Impact/Emergency assessment task, EWRA
achieves 5.2% improvements in Spearman Rank Correlation over Reason
Explicit-SFT, demonstrating stronger alignment with human-annotated rea-
soning patterns, while also showing comparable or superior performance on
topic/subtopic labeling tasks and emotion analysis.

In summary, the key contributions of our work are as follows.
1. We introduce Extreme Weather Reasoning-Aware Alignment (EWRA),

a novel approach for enhancing SLMs by transferring reasoning capa-
bilities from LLMs through fine-tuning using synthetic alignment data
for extreme weather event analysis.

2. We release ExtremeWeatherNews, a comprehensive collection of news
articles related to 60 distinct extreme weather events, curated to sup-
port the study of various extreme weather related tasks. In order to
implement EWRA, we also introduce a new alignment dataset called
the ExtremeAlign, comprising rationales across three tasks.

3. We evaluate the performance of EWRA through a series of experi-
ments using the ExtremeAlign dataset, demonstrating its ability to
significantly improve domain-specific reasoning accuracy, as compared
to task-specific baseline models.

The ClimaEmpact framework is deployed on online for fast and near real-time
analyses of extreme weather events.

2. Related Work

We focus on three key areas of research that are related to our, namely:
standard NLP methods for extreme weather analysis, LLMs for extreme
weather analysis, and SLMs alignment. Each of these areas and the related
work is reported in the following.
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Traditional NLP methods for extreme weather. Textual data, such as
news reports, social media posts, and official bulletins, complement satellite-
based datasets by providing context-rich and timely information on extreme
weather impacts. Multiple natural language processing (NLP) approaches
have utilized textual data to analyze and classify extreme weather impacts [19,
20, 21]. Social media data have also been exploited; for example, drought im-
pacts in California have been categorized using BERT-based models applied
to Twitter posts [22]. Similarly, automated text processing has mapped tra-
jectories, impacts, and the aftermath of the 2021 European floods, providing
broader categorization and insights into weather extremes [23].

Transformer-based models, such as ClimateBERT, have enhanced vari-
ous NLP applications related to climate, including text classification, sen-
timent analysis, and fact-checking [24]. Moreover, affective computing and
text mining techniques have proven valuable for capturing emotional nu-
ances within textual datasets [25, 26]. An example includes analyzing public
opinions on wildfires through a neurosymbolic approach employing BERT-
based models [27]. Additionally, the ClimaText dataset has demonstrated
the limitations of keyword-based approaches in climate discourse, emphasiz-
ing the advantages of context-aware methods like BERT for effective topic
labeling [28, 29]. Recent studies have explored metaphorical concept map-
pings to analyze public perceptions of weather disasters, leveraging tools such
as MetaPro to elucidate distinct public perspectives across various disaster
types [2, 30].

LLMs for extreme weather. Current methods typically rely on task-
specific models, limiting adaptability and efficiency. LLMs offer an inte-
grated framework, leveraging unsupervised pretraining, instruction tuning,
and reinforcement learning to enhance contextual understanding from exten-
sive textual datasets [31]. These capabilities are increasingly utilized for
disaster response tasks. Examples include FloodBrain, which automates
flood impact reporting to expedite response times [32], and Llama2-based
models designed for emergency classification and issuing public instructions
during emergencies when 911 systems become overwhelmed [33]. Further,
fine-tuned LLMs have improved disaster-related tweet classification for event
identification and aid distribution [34], while other efforts have optimized
LLM performance through prompt engineering techniques integrating tex-
tual and satellite data [35]. DisasterResponseGPT generates personalized
disaster preparedness plans, enhancing response efficiency [36].
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Several climate-specific LLMs have also emerged. ClimateGPT-2 fine-
tunes GPT-2 with climate-specific data to support claim generation and
fact-checking tasks [37]. The Arabic Mini-ClimateGPT focuses specifically
on conversational Arabic climate instruction tuning using the Clima500-
Instruct dataset [38], while ChatClimate [16] grounds climate-change-related
responses in IPCC AR6 reports, enhancing accuracy and timeliness in cli-
mate conversations. Similarly, ClimateGPT synthesizes interdisciplinary cli-
mate knowledge through domain-specific instruction tuning and extensive
climate-related resource training [15]. Despite their advantages, retraining
and fine-tuning these LLMs are computationally intensive, leading to signif-
icant environmental impacts due to high carbon emissions.

Small Language Models (SLMs) alignment. Recent studies have fo-
cused on reasoning-based alignment methods to enhance small models us-
ing larger counterparts’ reasoning abilities. Reasoning alignment can sig-
nificantly improve the performance of smaller models by transferring ad-
vanced reasoning from larger models [39]. Chain-of-Thought reasoning tech-
niques have demonstrated substantial improvements in generalization ca-
pabilities [40], while other research has successfully transferred intermedi-
ate reasoning steps to enhance decision-making processes [41]. Knowledge
Distillation (KD), a popular technique, reduces model complexity and la-
tency while retaining accuracy [42, 43]. The Generalized Knowledge Distilla-
tion (GKD) framework extends traditional KD by incorporating structured
knowledge to improve training outcomes [44].

Unlike conventional KD, our approach explicitly transfers intermediate
reasoning structures rather than solely matching model outputs. Although
SLM alignment has been explored extensively within general NLP contexts,
its application specifically to extreme weather analysis remains understudied.
To address this gap, we propose Extreme Weather Reasoning-Aware Align-
ment (EWRA), a method that aligns smaller models with larger LLMs by
training them on reasoning paths generated by the latter. EWRA enables
SLMs to decompose complex problems into structured reasoning steps and
produce logical explanations, making them highly specialized for extreme
weather analysis tasks. This approach offers computational efficiency ad-
vantages over traditional methods, substantially reducing the environmental
footprint associated with large-scale model training. Additionally, we delib-
erately refrain from employing retrieval-augmented generation (RAG)-based
systems [45, 16], as fine-tuning inherently incorporates real-time, domain-
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specific information essential for handling nuanced queries related to extreme
weather events thus limiting hallucination in response more effectively than
retrieval-based approaches.

3. Methodology

In this section, we present the ClimaEmpact framework, composed of the
ExtremeWeatherNews dataset (section 3.1), forming the foundation of our
analysis; ExtremeAlign (section 3.2), a task-specific alignment dataset en-
abling SLMs to navigate complex reasoning tasks; and EWRA (section 3.3),
a reasoning-aware fine-tuning method transferring reasoning capabilities from
LLMs to smaller ones. EWRA improves SLMs’ ability to handle ambiguities
and complexities inherent in extreme weather information.

3.1. ExtremeWeatherNews (EWN) Dataset
The ExtremeWeatherNews dataset comprises news articles collected for

60 distinct extreme weather events, and chosen based on ClimaMeter [46]1.
The extreme weather events include heatwaves, cold spells, extreme wind,
and extreme precipitation; the name of each event considered is reported in
Table A.1.

To build ExtremeWeatherNews, we employed a web scraping approach,
based on Google News RSS feeds and the newspaper3k Python library2, tar-
geting news articles related to the 60 extreme weather events of interest.
The scraper retrieved RSS feeds within a one-month time window before and
after each event date, parsing content to extract relevant details such as arti-
cle titles, descriptions, and full text, with a focus on English-language news
articles. To isolate location-specific information, we first extracted sentences
from the news articles and then employed the Flair NER tagger3 to identify
and extract entities of the GPE (Geopolitical Entity) category. Sentences
lacking location tags were considered noisy and subsequently filtered out,
resulting in a curated dataset of 127,454 sentences. This process allowed
us to focus on extreme weather-specific news, containing information about

1https://www.climameter.org
2https://newspaper.readthedocs.io/en/latest
3https://huggingface.co/flair/ner-english
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vulnerabilities, impacts, and emergency responses across diverse geographi-
cal locations. Table A.1 provides additional details on the selected events,
including event types, dates, and associated locations.

We note that effectively retrieving news articles for a specific extreme
weather event requires more than simply searching for a single attribute,
such as the event name, since many articles either omit explicit mentions
or discuss broader contexts. To address this issue, we constructed compre-
hensive search queries combining the event’s name or an appropriate proxy
(e.g., “Typhoon Yagi” or “Central Asia heatwave”), the event location ob-
tained from ClimaMeter, and the region of interest for the analysis, along
with predefined thematic keywords categorized into: (a) public, (b) economic,
and (c) weather conditions. Public keywords (e.g., “relief”, “evacuation”) em-
phasize community resilience and emergency responses, economic keywords
(e.g., “economic cost”, “insurance”) target financial impacts and recovery, and
weather conditions keywords (e.g., “high temperature”, “rain”) capture spe-
cific meteorological factors. A comprehensive list of adopted keywords is
provided in Table A.2.

An example of the search query is: “Typhoon Yagi Vietnam resilience
weather ”, where we include the general keyword “weather ” to improve rele-
vance and context. Without this keyword, terms like “impact”, “resilience”, or
“insurance” could yield results unrelated to weather, such as economic poli-
cies or general disaster recovery efforts. We also note that the time window
adopted for our web scraping – i.e., ± 1 month with respect to a given ex-
treme weather event – further anchors the search to relevant content specific
to the event of interest.

3.2. Alignment Data
The dataset introduced in section 3.1 provides event-specific textual data,

serving as a foundation for developing ExtremeAlign, a high-quality, task-
specific alignment dataset leveraging LLMs. Training small language models
to effectively handle diverse extreme weather analysis tasks necessitates ex-
tensive, accurately annotated data. However, manual annotation of large-
scale datasets focused on extreme weather events is both labor-intensive
and costly, making it impractical. To overcome this challenge, we utilize
Qwen2.5-32B-Instruct [47], an expert-level model in extreme weather rea-
soning, to automatically generate high-quality alignment data through a
one-shot prompting strategy, collectively denoted as Done-shot. This approach
incorporates comprehensive definitions of task-specific categories and clear
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guidelines within each prompt, enhancing data consistency, facilitating hu-
man alignment, and reducing subjective biases during dataset construction.

To effectively analyze extreme events, we design prompts for three inter-
connected tasks: vulnerability/impact/emergency assessment, topic/subtopic
labeling and keyword extraction, and emotion analysis. The first assesses
event severity and urgency, the second categorizes thematic content, and the
third evaluates public sentiment and emotional responses. Together, these
tasks provide a comprehensive framework capturing the vulnerability and
impact, societal reactions, and broader implications of extreme weather.

Consequently, we formulate the overall dataset generation task as:

Dgen ← LLMp(T,Done-shot)

where Dgen represents the generated dataset, p indicates the prompt used
during inference, and T refers to the three tasks.

Prior to prompt design, we considered several key aspects to ensure sys-
tematic categorization and consistency. Clear category definitions, including
explicit inclusion and exclusion criteria, were established to avoid ambigu-
ity. We also integrated structured reasoning into our prompts, requiring the
model to articulate step-by-step thinking before assigning probabilities. To
enforce interpretability and consistency, we constrained probability scores to
sum exactly to one and adopted a strict output format with distinct <think>
and <output> sections. A strict format standardizes output structure, which
is essential for post-processing and evaluation. These considerations facili-
tated structured decision-making, improved response accuracy, and enhanced
model reliability in real-world extreme weather analysis.

We followed a consistent prompting strategy across all three tasks:

Step 1: Given a sentence, we prompt the LLM to identify applicable
categories based on the information taxonomy in Table B.3.
Step 2: The LLM assigns a probability score (between 0 and 1) to
each category, reflecting its confidence.
Step 3: Probability scores across all categories must sum exactly to 1.

By framing these tasks as ranking problems, we enable the LLM to learn
relative importance among categories, thereby reflecting the inherent am-
biguity and complexity of extreme event-related information. Generating
probability scores instead of single labels allows for representations of uncer-
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tainty, accommodates overlapping categories, and supports accurate decision-
making in critical applications such as disaster response, risk analysis, and
resource allocation. Detailed prompts for each task are provided in sec-
tion Appendix B.1.

The final dataset consists of 30,000 high-quality annotations, evenly di-
vided across the three primary tasks, ensuring balanced supervision for multi-
task alignment.

3.3. Extreme Weather Reasoning-Aware Alignment (EWRA)
To improve the performance of SLMs, we go beyond conventional su-

pervised fine-tuning (SFT), which typically depends on human-annotated
datasets. Instead, we adopt an advanced reasoning-based learning frame-
work, a specialized variant of SFT, combined with a knowledge transfer
mechanism from LLMs. This strategy involves training the SLM using a
synthetic alignment dataset D = {(p, q, rp)}, generated by the LLM. Here,
p denotes a prompt, q refers to an input query, and rp is the corresponding
output that incorporates reasoning, including both intermediate reasoning
steps and the final task-specific output.

The output rp is composed of two parts: the reasoning steps rreasoning =
[t1, t2, . . . , tk], where k is the total number of reasoning tokens, and the final
output rfinal, which is the ultimate answer or prediction. The reasoning pro-
cess is generated step-by-step as rp = [rreasoning, rfinal], where rreasoning contains
intermediate reasoning and rfinal is the final output of the task.

At each time step j, the token tj is sampled from the generation dis-
tribution πϕ(·|sj), where πϕ represents the model’s learned distribution over
possible tokens, and sj represents the model’s state. The training objective
is to maximize the likelihood of the reasoning sequence conditioned on the
prompt. We consider two distinct prompting regimes: 1. Explicit prompt
incorporates detailed task definitions, inclusion/exclusion criteria, and step-
by-step reasoning instructions. These promote structured alignment and pre-
cise instruction following. 2. Implicit prompt, in contrast, excludes such def-
initions. This setting encourages reliance on the LLM’s internalized domain
knowledge and captures more flexible, context-dependent reasoning patterns.

The respective training objectives are defined as:

LExplicit(ϕ) = −E(p,q,rp)∼Dexplicit

[
k∑

j=1

log πϕ(tj | sj, p)

]
, (1)
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Figure 1: An overview of EWRA. The process begins with web scraping news articles
to construct the ExtremeWeatherNews, followed by pre-processing. In Step 1, the task
is formulated for an LLM. Step 2 introduces the ExtremeAlign (Alignment Data Con-
struction), which structures reasoning-based outputs. Finally, in Step 3, a domain-specific
Small Language Model (SLM) is trained using EWRA to improve reasoning alignment for
extreme weather analysis.

LImplicit(ϕ) = −E(p,q,rp)∼Dimplicit

[
k∑

j=1

log πϕ(tj | sj, p)

]
. (2)

Our training strategy for EWRA follows a two-stage curriculum. We be-
gin by training SLMs on data generated with implicit prompts. This stage
promotes generalizable, context-aware reasoning by encouraging the model
to draw upon latent knowledge from the LLM. We then fine-tune the model
using explicitly guided examples that include structured definitions and in-
termediate reasoning steps. This phase sharpens the model’s ability to follow
prompts and improves task-specific performance.

This curriculum style approach enables robust transfer of reasoning ca-
pabilities from LLMs to SLMs, blending the flexibility of implicit reasoning
with the precision of explicit guidance. By leveraging both types of prompts,
EWRA supports nuanced decision-making and alignment in high-stakes ap-
plications such as extreme weather analysis.

Overall, EWRA leverages reasoning-based alignment to enhance the rea-
soning capabilities of SLMs for extreme weather analysis. By utilizing Ex-
tremeAlign, a structured alignment dataset generated using LLMs, we trans-
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fer domain-specific reasoning properties to SLMs. In the following section, we
present our experimental results, demonstrating the effectiveness of EWRA
in improving reasoning performance for extreme weather event analysis tasks.

4. Experiments

4.1. Model Setup
We use Unsloth 4 for training our models and use Unsloth’s pre-selected

defaults for fine-tuning such as we set the LoRA rank to 16 and fine-tune
all modules. The LoRA scaling factor is set to 16, with a dropout rate of
0 and no bias applied. Gradient checkpointing is enabled using “unsloth”
for memory efficiency. The random seed is fixed at 3407 for reproducibility.
Rank-stabilized LoRA is disabled, and loftq config is set to None. All the
models are trained for one epoch with a learning rate of 2e-4 and a weight
decay of 0.01. We employ a linear learning rate scheduler with 5 warmup
steps. The effective batch size is 64, achieved by setting the per-device batch
size to 16 and applying gradient accumulation over 4 steps. Training is
optimized using AdamW 8-bit, with mixed precision enabled via FP16 or
BF16, depending on hardware support. Max sequence length is set to 2048
with 4bit quantization to reduce memory usage. Learning rate scheduler
type is linear. The experiments were conducted on a workstation equipped
with four NVIDIA RTX 3090/4090 GPUs, each with 24GB of VRAM. For
alignment data generation, Qwen2.5-32B-Instruct processes each sample in
1 minute, utilizing 21GB of VRAM. Task-specific models were trained with
a batch size of 16, a maximum sequence length of 256, a learning rate of
2e-5, and a dropout rate of 0.3. For computing BERTScore, we use the
default model employed viz. roberta-large. We adopt Query-Key (QK) fine-
tuning, where only the query and key matrices in the attention layers are
updated [48]. Our goal is to align SLMs to reason better about extreme
weather events without overwriting their general language understanding.
Since the value matrices and MLP layers are key to storing factual knowledge,
freezing them preserves the LLM’s pretraining, while still allowing adaptation
of attention dynamics. For our training protocol, we run each of the explicit
and implicit alignment datasets for 2 epochs. For the EWRA strategy, we
adopt a two-stage curriculum: the model is first trained for 1 epoch on the
implicit data, followed by 1 epoch on the explicit data.

4http://github.com/unslothai/unsloth
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4.2. Evaluation
Given the subjective nature of extreme weather analysis tasks, we use

ranking-based evaluation instead of absolute accuracy to better capture model
performance for our task, where multiple correct outputs exist. Specifically,
we employ Spearman Rank Correlation [49] to assess alignment between
model predictions and human annotations, ensuring relevance and expert-
aligned ordering.

Spearman Rank Correlation. The Spearman rank correlation (SRC) coeffi-
cient (ρ) measures the strength and direction of the monotonic relationship
between predicted and ground-truth rankings. For two ranked sets X and Y
with n observations, ρ is computed as:

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)

where di represents the rank difference between the i-th observation in X
and Y . Spearman’s ρ ranges from -1 (perfect negative correlation) to +1
(perfect positive correlation), with 0 indicating no monotonic association.

Similarly, to evaluate the generated explanations, we use the Jaccard
Index, which quantifies the overlap between two sets of words or tokens
representing the explanations. It evaluates how similar the content of two
explanations is by comparing their shared elements. It is calculated as the
ratio of the number of common words (or tokens) between two explanations to
the total number of unique words across both explanations. We also report
BERTScore[50], which is a token-level similarity metric that evaluates the
quality of generated text by computing contextualized embeddings using a
pre-trained transformer model. Instead of relying on exact word matching,
BERTScore measures semantic similarity between candidate and reference
texts by computing cosine similarity between their embeddings. The range
for both metrics is from 0 to 1.

4.3. Model Description
We compare the performance of different models on the ExtremeWeath-

erNews dataset across three key tasks: (1) Vulnerability/Impact/Emergency
Statement Assessment, (2) Topic/Subtopic Labeling and Keyword Extrac-
tion, (3) Emotion Analysis. These tasks are evaluated using the alignment
data described in section 3.2.

Below, we describe the models used in our experiments.
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1. Task-Specific Models: For the first task, we use a RoBERTa-based
model [51] and perform multi-class classification. As this task has not
been previously explored, we utilize the model as a baseline for our
experiments. For emotion analysis, we leverage the proposed model
by [52] for our experiments. We also record the probabilities over all
the classes. Similarly, for the third task, we also employ RoBERTa,
since this task has not been previously formulated as a ranking prob-
lem, while for keyword extraction, we utilize concept parsing [53, 54]
which utilizes part-of-speech (POS) tagging and dependency parsing to
identify syntactic relationships. This model is a fine-tuned transformer-
based classifier optimized individually for each task. It does not lever-
age chain-of-thought explanations but is trained specifically for classi-
fication using supervised learning.

2. Qwen2.5 Instruct Models (1.5B, 3B): Qwen2.5 [47] is a family of LLMs
developed by Alibaba’s Qwen team. We experiment with two variants:
Qwen2.5-1.5B-Instruct, and Qwen2.5-3B-Instruct. These models differ
in capacity, with larger variants expected to capture more complex
reasoning patterns and provide more reliable explanations.

(a) Zero-shot setting: We established a baseline by performing zero-
shot inference on the ExtremeAlign dataset using the Qwen2.5-
1.5B-Instruct model without any fine-tuning. This provides a ref-
erence point to assess the effectiveness of our alignment strategies.

(b) Direct-SFT: A standard supervised fine-tuning (SFT) approach
where the model is trained only on the final task-specific outputs
(category labels). While category definitions are included in the
instruction, the training data omits any reasoning traces or inter-
mediate steps.

(c) ReasonImplicit-SFT: In this setting, the model is trained on both
reasoning traces and final category labels. However, task-specific
definitions are excluded from the instructions. This design en-
courages the model to rely on its internal parametric knowledge
and domain understanding during reasoning.

(d) ReasonExplicit-SFT: The model is trained using both step-by-step
reasoning traces and final outputs, with the instructions explicitly
prompting for structured reasoning. Additionally, detailed task
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definitions are included in the prompt to guide the model’s pre-
dictions.

(e) EWRA (Extreme Weather Reasoning-Aware Alignment): Our pro-
posed alignment strategy described in section 3.3. It employs a
two-stage curriculum. First, the model is trained on implicitly
prompted data (without definitions) to encourage generalizable
and context-aware reasoning. This is followed by fine-tuning on
explicitly guided data (with structured definitions and reasoning),
promoting task adherence and instruction following.

4.4. Data Splits and Gold TestSet
The ExtremeAlign dataset is partitioned into training, validation, and

test splits using a 70%, 15%, and 15% ratio, respectively. To evaluate model
performance under realistic human-like reasoning, we additionally construct a
gold-standard test set comprising 600 samples manually annotated by human
experts, 200 for each core task: vulnerability/impact/emergency assessment,
topic/subtopic/keyword labeling, and emotion analysis. The annotation pro-
cess followed a detailed set of guidelines, as described in section Appendix
B.2. These annotations reflect both explicit instruction adherence and im-
plicit domain knowledge, capturing the nuanced decision-making typically
employed by humans in extreme weather analysis.

4.5. Results & Discussion
Tables 1, 2 and 3 report the performance of various models on the Ex-

tremeAlign dataset across three tasks. Evaluation is conducted using Spear-
man’s rank correlation coefficient (ρ) to assess ranking accuracy, while ex-
planation quality is measured using the Jaccard Index and BERTScore by
comparing model outputs with the gold set.

Overall, EWRA consistently outperforms other training strategies, par-
ticularly when applied to the Qwen2.5-3B-Instruct model with higher num-
ber of parameters. Compared to ReasonExplicit-SFT, EWRA provides clear
improvements across most tasks and metrics. For instance, in the Vulner-
ability/Impact/Emergency assessment task on the 3B model, EWRA im-
proves Jaccard Index by 2.7% and increases SRC score by 4.3%. These
gains indicate that reasoning alignment helps models generalize better and
make more precise predictions. EWRA and ReasonExplicit-SFT are the top-
performing fine-tuning strategies overall. While improvements in generated
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Table 1: Performance comparison across Vulnerability/Impact/Emergency Assessment
task using different fine-tuning strategies on Qwen2.5-1.5B and Qwen2.5-3B models. Met-
rics include Spearman Rank Correlation (SRC (ρ)), Jaccard Index, and BERTScore.

Vulnerability/Impact/Emergency Assessment

Model Method SRC (ρ) Jaccard
Index BERTScore

Task-Specific Models - 0.1467 - -

Qwen2.5-1.5B-
Instruct

Zero-shot 0.3638 0.1277 0.7133
Direct-SFT 0.7290 - -

ReasonImplicit-SFT 0.4200 0.1861 0.7290
ReasonExplicit-SFT 0.7960 0.2585 0.8897

EWRA 0.7140 0.2573 0.9028

Qwen2.5-3B-
Instruct

Zero-shot 0.5400 0.1226 0.3744
Direct-SFT 0.7910 - -

ReasonImplicit-SFT 0.4860 0.1937 0.6993
ReasonExplicit-SFT 0.7820 0.3294 0.9163

EWRA 0.8230 0.3340 0.9161

explanation (measured via BERTScore) are less significant as compared to
ReasonExplicit-SFT, this is likely due to the fact that these metrics em-
phasize semantic overlap, which may remain high even when explanation
structure or specificity differs. As such, BERTScore may under-represent
the qualitative differences in reasoning alignment captured by EWRA.

1. Zero-shot vs EWRA: zero-shot models typically underperform com-
pared to EWRA and other fine-tuned variants—due to their lack of
task-specific alignment and limited domain grounding. However, we
may note that Qwen2.5-1.5B-Instruct in the zero-shot setting achieved
a Spearman correlation of 0.4104/0.6702, while the EWRA-aligned
model reached only 0.5673/0.6671. A similar trend is observed for
Qwen2.5-3B-Instruct, where the zero-shot model attained 0.4660/0.7727
, outperforming the EWRA variant (0.5386/0.7149). While EWRA
is effective for broad topic labeling and structured categorization, it
falls short in subtopic labeling, which often requires nuanced semantic
understanding and sensitivity to fine-grained distinctions. One likely
reason is the task design: subtopic evaluation relies on ranking-based
accuracy metrics, which are sensitive to the model’s ability to pro-
duce all relevant labels. However, SFT-aligned models—particularly
under EWRA—tend to predict only a subset of categories, reducing
performance on ranking-based evaluations. This is further supported
by explanation similarity metrics (e.g., BERTScore), where ReasonEx-
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Table 2: Performance comparison across Topic/Subtopic Labeling and Keyword Extrac-
tion task, using different fine-tuning strategies on Qwen2.5-1.5B and Qwen2.5-3B models.
Metrics include Spearman Rank Correlation (SRC (ρ)), Jaccard Index, and BERTScore.

Topic/Subtopic Labeling

Model Method SRC (ρ) Jaccard
Index BERTScore

Task-Specific Models - 0.2100/0.1999 - -

Qwen2.5-1.5B-
Instruct

Zero-shot 0.4104/0.6702 0.0436/0.0436 0.6342/0.6342
Direct-SFT 0.3264/0.5770 -/- -/-

ReasonImplicit-SFT 0.3040/0.52883 0.1670/0.1670 0.8741/0.8741
ReasonExplicit-SFT 0.5157/0.6589 0.1744/0.1720 0.8772/0.8772

EWRA 0.5673/0.6671 0.1711/0.1711 0.8765/0.8765

Qwen2.5-3B-
Instruct

Zero-shot 0.4660/0.7727 0.1592/0.1592 0.8257/0.8257
Direct-SFT 0.4179/0.6397 -/- -/-

ReasonImplicit-SFT: 0.4131/0.6066 0.1907/0.1671 0.8831/0.8741
ReasonExplicit-SFT 0.5692/0.6527 0.2045/0.1743 0.8879/0.8771

EWRA 0.5386/0.7149 0.2026/0.2026 0.8890/0.8890
Keyword Extraction

Model Method Jaccard Index
Task-Specific Models - 0.132

Qwen2.5-1.5B-
Instruct

Zero-shot 0.1257
Direct-SFT 0.1984

ReasonImplicit-SFT 0.2813
ReasonExplicit-SFT 0.2343

EWRA 0.2333

Qwen2.5-3B-
Instruct

Zero-shot 0.2817
Direct-SFT 0.2698

ReasonImplicit-SFT: 0.3269
ReasonExplicit-SFT 0.2343

EWRA 0.2856

plicit and EWRA settings achieve the highest scores, indicating that
while reasoning quality improves, the alignment objective may suppress
broader coverage needed for exhaustive subtopic labeling.

2. ReasonImplicit-SFT vs ReasonExplicit-SFT: A comparison between
ReasonImplicit-SFT and ReasonExplicit-SFT highlights the importance
of including explicit definitions and step-by-step guidance. While gains
in Emotion analysis are relatively small (e.g., BERTScore improvement
of 0.15%), Vulnerability/Impact/Emergency assessment task shows a
70.3% relative improvement in Jaccard when moving from implicit to
explicit reasoning on the 3B model. This suggests that when categories
are fine-grained or semantically overlapping, models benefit from being
explicitly told how to structure their reasoning. However, we observe
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Table 3: Performance comparison across Emotion Analysis task using different fine-tuning
strategies on Qwen2.5-1.5B and Qwen2.5-3B models. Metrics include Spearman Rank
Correlation (SRC (ρ)), Jaccard Index, and BERTScore.

Emotion Analysis

Model Method SRC (ρ) Jaccard
Index BERTScore

Task-Specific Models - 0.2876 - -

Qwen2.5-1.5B-
Instruct

Zero-shot 0.6071 0.1336 0.7434
Direct-SFT 0.8389 - -

ReasonImplicit-SFT: 0.7828 0.2528 0.8986
ReasonExplicit-SFT 0.5578 0.2583 0.8979

EWRA 0.8308 0.2565 0.8976

Qwen2.5-3B-
Instruct

Zero-shot 0.6458 0.1112 0.2666
Direct-SFT 0.8442 - -

ReasonImplicit-SFT: 0.8380 0.2627 0.9011
ReasonExplicit-SFT 0.8716 0.2646 0.8989

EWRA 0.8708 0.2664 0.8995

that results on keyword extraction reveal that ReasonImplicit-SFT out-
performs ReasonExplicit-SFT in several cases, especially on the smaller
Qwen2.5-1.5B model. This can be attributed to the flexible nature of
the task: since keyword extraction does not rely on fixed category def-
initions, models may benefit from a more latent understanding of task
intent, which ReasonImplicit-SFT encourages. The implicit formula-
tion likely gives the model room to adapt and use contextual cues from
the input without being overly constrained by rigid definitions. This
suggests that ReasonImplicit-SFT may promote better domain adapta-
tion in tasks like keyword extraction, where the model must infer task
structure from context rather than from explicit templates.

3. ReasonExplicit-SFT vs Direct SFT: Direct-SFT achieves a high Spear-
man correlation (e.g., 0.8389 for the 3B model) on the emotion analy-
sis task, likely due to the dominance of a few frequent classes such as
sadness, and fear. While this indicates some alignment with ground-
truth rankings, the absence of reasoning traces suggests that the model
may be overfitting to surface-level patterns or task-specific heuristics
rather than learning meaningful structure. In contrast, EWRA and
ReasonExplicit-SFT consistently performs well across all metrics, demon-
strating its ability to generate outputs that are not only accurate but
also coherent and well-aligned with the reasoning behind the task.
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4.6. Effectiveness of EWRA
To further examine the role of reasoning alignment in model performance,

we perform an ablation study by introducing a ReverseEWRA (Table 4) set-
ting. ReverseEWRA is a contrastive variant of EWRA in which the cur-
riculum order is reversed: the model is first trained on explicit instructions
and reasoning, followed by fine-tuning using the implicit setting. This base-
line helps isolate the impact of curriculum ordering on model alignment and
reasoning capabilities. The motivation behind this experiment is to assess
whether the performance gains in EWRA stem from the curriculum structure
rather than just prolonged fine-tuning.

Table 4: Effectiveness of EWRA: Task-wise Ablation using ReverseEWRA

Vulnerability/Impact/Emergency Assessment

Model Method SRC (ρ) Jaccard
Index BERTScore

Qwen2.5-1.5B-Instruct ReverseEWRA 0.7080 0.2555 0.9025
Qwen2.5-3B-Instruct ReverseEWRA 0.7070 0.3117 0.9124

Topic/Subtopic Labeling

Model Method SRC (ρ) Jaccard
Index BERTScore

Qwen2.5-1.5B-Instruct ReverseEWRA 0.5182 / 0.4949 0.1595 / 0.1595 0.8729 / 0.8728
Qwen2.5-3B-Instruct ReverseEWRA 0.5209 / 0.6747 0.1931 / 0.1931 0.8859 / 0.8859

Keyword Extraction
Model Method Jaccard Index

Qwen2.5-1.5B-Instruct ReverseEWRA 0.2411
Qwen2.5-3B-Instruct ReverseEWRA 0.2939

Emotion Analysis

Model Method SRC (ρ) Jaccard
Index BERTScore

Qwen2.5-1.5B-Instruct ReverseEWRA 0.8650 0.2512 0.8974
Qwen2.5-3B-Instruct ReverseEWRA 0.8543 0.2667 0.9005

Across all tasks, particularly those involving multi-label ranking, such as
Vulnerability/Impact/Emergency assessment and Topic/Subtopic labeling,
we observe notable performance degradation in the ReverseEWRA setting.
For example, on the Qwen2.5-3B model, the SRC score for Vulnerability/Im-
pact/Emergency assessment drops from 0.8230 in EWRA to 0.7070 in Re-
verseEWRA. ReverseEWRA leads to a consistent drop in SRC for Topic/-
Subtopic labeling across both models, with a relative decline of approximately
8.7% (from 0.5673 to 0.5182) and 25.8% (from 0.6671 to 0.4949) for Qwen2.5-
1.5B, and 3.3% (from 0.5386 to 0.5209) and 5.6% (from 0.7149 to 0.6747) for
Qwen2.5-3B.
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Interestingly, the Qwen2.5-1.5B model achieves its best performance in
Emotion Analysis under the ReverseEWRA setting, with an SRC score of
0.8650—outperforming all other fine-tuning strategies for that task. This
suggests that in some domains (like emotion inference), starting with explicit
reasoning may provide a better inductive bias for low-capacity models, even
if the overall curriculum is less optimal across tasks.

5. Conclusion

In this study, we presented Extreme Weather Reasoning-Aware Alignment
(EWRA), a novel fine-tuning framework that transfers the structured rea-
soning capabilities of LLMs to small language models (SLMs) for the domain
of extreme weather event analysis. By integrating LLM-generated reasoning
paths into a two-stage training strategy, EWRA enables SLMs to develop
both context-aware and task-specific reasoning skills. We introduced two new
datasets: ExtremeWeatherNews, a rich collection of extreme weather event
news data, and ExtremeAlign, a reasoning-augmented alignment set tailored
to three key analysis tasks: vulnerability/impact/emergency assessment, top-
ic/subtopic/keyword labeling, and emotion analysis. Our experiments across
these tasks demonstrate that EWRA substantially improves the alignment
of SLMs with domain-specific reasoning, outperforming both standard su-
pervised fine-tuning and other reasoning-based approaches, particularly on
models such as Qwen2.5-3B-Instruct with higher number of parameters as
compared to Qwen2.5-1.5B-Instruct model. As future work, we plan to ex-
tend EWRA to broader generative tasks such as temporal summarization
and scenario simulation, while also investigating cross-task generalization by
developing modular, instruction-tuned variants of ExtremeAlign.
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Appendix A. ExtremeWeatherNews Dataset

This appendix section describes the ExtremeWeatherNews dataset and
the steps used for data collection. The dataset comprises a curated corpus of
news articles and reports centered around major extreme weather incidents.
Events were selected using Climameter’s event lists [46], ensuring broad ge-
ographic and thematic coverage. Table A.1 lists the selected events used
for news collection and additional details on the selected events, including
event types, dates, and associated locations. To streamline data scraping,
we implemented a multithreaded script capable of handling a high volume
of concurrent requests. For targeted retrieval of relevant content, we devel-
oped a carefully curated set of keywords (see Table A.2). These keywords
played a critical role in capturing a comprehensive and diverse range of ar-
ticles. To ensure geographical relevance, we applied a filtering process based
on location mentions. Specifically, we used administrative codes from the
GeoNames5 database—namely admin1code (primary divisions such as states
or provinces) and admin2code (secondary divisions like cities or districts).
We retained only those articles whose mentioned locations matched the geo-
graphical scope of the corresponding events. Articles were further filtered to
exclude sentences shorter than 30 characters or longer than 200 characters.
Finally, to reduce noise and eliminate content unrelated to extreme weather,
human annotators manually reviewed the data. They removed irrelevant
samples, particularly those referring to unrelated domains. Further details
about the annotation process are provided in Section Appendix B.2.

Appendix B. Methodology

We begin by developing a robust taxonomy, establishing a foundational
structure that organizes climate concepts into key topics, subtopics, and
specific entities. This taxonomy covers areas such as vulnerabilities, im-
pacts, and emergency responses, creating a data-driven framework that sup-
ports integration with broader climate analysis tools. By categorizing data
across these domains, the taxonomy enables dynamic, multi-dimensional ex-
ploration of insights, ranging from localized effects to wider climate patterns.
However, empirical approaches in the literature are limited [55, 56], and these
methods do not involve human evaluation to ensure the meaningfulness of

5https://www.geonames.org
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Table A.1: Summary of Events with Types, Locations, and Dates.

Event Name Event Type Country Event Date
Romania Floods floods Romania 31/08/2024
Poland Floods floods Poland 18/08/2024
USA Winter Storm cold USA 14/01/2024
Scandinavian Cold Spell cold Norway 08/01/2024
Ciro Snowstorm cold Germany 02/12/2023
North American Winter Storm cold Canada 27/12/2022
Hurricane Helene wind USA 27/09/2024
Typhoon Yagi wind Vietnam 08/09/2024
Storm Ingunn wind Norway 01/02/2024
Cyclone Belal wind France 15/01/2024
Cyclone Jasper wind Australia 18/12/2023
Storm Ciaran wind France 03/11/2023
Cyclone Tej wind Yemen 23/10/2023
Storms Babet and Aline wind Scotland 20/10/2023
Storm Poly wind Denmark 05/07/2023
Hurricane Ian Landfall wind USA 28/09/2022
April 2020 USA Tornado Outbreak wind USA 12/04/2020
Hurricane Irma Caribbean Landfall wind Caribbean 07/09/2017
European Heatwave heatwave Albania 19/07/2024
Eastern United States Heatwave heatwave USA 23/06/2024
Saudi Arabia Heatwave heatwave Saudi Arabia 18/06/2024
Eastern Mediterranean Heatwave heatwave Cyprus 14/06/2024
India Heatwave heatwave India 29/05/2024
Easter Extreme Weather in Europe heatwave Italy 01/04/2024
Morocco Heatwave heatwave Morocco 15/02/2024
Central Asia Heatwave heatwave Pakistan 30/11/2023
Brazil Heatwave heatwave Brazil 19/11/2023
October Heatwave in Europe heatwave Switzerland 13/10/2023
September Heatwave in Southern and Central Europe heatwave France 10/09/2023
Late Summer French Heatwave heatwave France 23/08/2023
Western USA Heatwave heatwave USA 31/07/2023
Cerberus Heatwave in Southern Europe heatwave Italy 25/07/2023
Southeast Asia Heat Peak heatwave Thailand 15/04/2023
Italy Multiple Floods rain Italy 19/10/2024
Storm Kirk rain France 09/10/2024
Storm Boris rain Austria 15/09/2024
Hurricane Beryl rain Jamaica 03/07/2024
Genoa Low Summer Floods rain France 24/06/2024
Bavaria Floods rain Germany 03/06/2024
Texas Floods rain USA 05/05/2024
South Brazil Floods rain Brazil 02/05/2024
China Floods rain China 23/04/2024
Dubai Floods rain UAE 16/04/2024
Storm Monica rain France 09/03/2024
California Floods rain USA 01/02/2024
San Diego Floods rain USA 01/22/2024
North-West USA and Canada Atmospheric River rain USA 06/12/2023
France and Italy Floods rain France 21/11/2023
Hurricane Otis rain Mexico 25/10/2023
New York Floods rain USA 29/09/2023
Mediterranean Depression Elias rain Greece 27/09/2023
Cape Town Floods rain South Africa 25/09/2023
Cevennes Floods rain France 17/09/2023
Medicane Daniel rain Lybia 11/09/2023
Guangdong and Hong Kong Floods rain Hong Kong 08/09/2023
Mediterranean Depression Daniel rain Greece 05/09/2023
Mediterranean Depression Rea rain Italy 29/08/2023
Storm Hans in Scandinavia rain Norway 08/08/2023
California Atmospheric River rain USA 10/01/2023
Medicane Ianos rain Greece 18/09/2020

constructed climate-related topics. Consequently, BERTopic is run on cli-
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Table A.2: Keywords for Extreme Weather Event Search

Public Keywords Economic Keywords Weather Conditions Keywords

public, community, people, infras-
tructure, society, impact, disrup-
tion, affected, resilience, support,
relief, aid, assistance, emergency,
response, preparedness, adapta-
tion, mitigation, awareness, engage-
ment, cooperation, solidarity, social,
health, welfare, equity, inclusion,
vulnerability, risk, protection, shel-
ter, evacuation, relocation, caution,
damage, evacuation, injury, help,
sympathy

damage, loss, economic, cost, im-
pact, financial, property, disaster,
recovery, reconstruction, insurance,
business, investment, job_loss, eco-
nomic_growth, market_disruption,
supply_chain, infrastructure,
resilience, recovery_funds, eco-
nomic_development, employment,
gdp_impact, financial_aid, bailout,
debt, bankruptcy, taxation

dry, snow, high temperature, wind,
thunderstorms, rain, winter, cold,
summer, hot, lost moisture, pres-
sure, water vapor, sea level pressure,
precipitation

mate news articles, with topic keywords provided to climate data experts,
to facilitate the development of the taxonomy. The taxonomy (Table B.3)
organizes information into topics and subtopics, making it easy to explore
extreme weather data from broad categories down to specific details.

Table B.3: A taxonomical organization of the analysis of extreme weather. Definitions of
Extreme Weather Categories.

Topic Definition
Vulnerabilities (V) Alert communities based on their specific vulnerability factors

• Environmental Vulnerability (V) Areas prone to greater damage due to fragile ecosystems, with
location mention

• Infrastructure Vulnerability (V) Structural deficiencies that increase the risk of damage during
extreme weather events, with location mention

• Economic Vulnerability (V) The susceptibility of an economy to financial losses due to
disasters

Impact (I) Immediate and long-term effects of extreme weather events
• Deaths (I) Fatalities caused by extreme weather events

• Infrastructure Damage (I) Physical harm to buildings, roads, and other critical structures
• Economic Damage (I) Financial losses incurred

• Homeless (I) People displaced due to the destruction
Emergency Response (E) Immediate actions taken by authorities, organizations, and

communities
• Evacuation (E) Organized movement of people to safety from threatened areas

• Community Support (E) Assistance provided to affected populations by both local
organizations and broader networks

• Emergency Services (E) Immediate rescue and medical aid delivered during a crisis
• Communication Strategies (E) Plans for conveying crucial information to the public and

responders during emergencies
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Appendix B.1. Prompt Details
Figure B.1 shows one-shot prompt for vulnerability/impact/emergency

statement assessment. Similarly, Figure B.2 and Figure B.3 shows one-shot
prompt for emotion analysis and topic/subtopic/keyword labeling.

Figure B.1: One-shot prompt for vulnerability/impact/emergency statement assessment

[Task Description:]
Given the sentence: "<sentence>", determine which categories it belongs to based on the definitions below. Assign a probability score between
0 and 1 to each category (strictly numeric values only), reflecting confidence that the sentence fits each label. Ensure the final probability for all
the categories sum is exactly 1.
[Definitions of Categories]
Vulnerability: Describes conditions that make people or places prone to harm, including:
- Forecasts or warnings for specific locations about hazardous conditions (e.g., storm alerts, flood watches).
- Excludes: General weather forecasts without warnings, past rainfall amounts, or climate trends without immediate hazard warnings.
- Special case: Mentions of inches of rain count only if linked to a forecast predicting danger.

Impact: Describes strictly measurable consequences of extreme weather, such as:
- Number of casualties, injuries, financial loss, infrastructure damage, or economic impact.
- Excludes: Mentions of states of emergency, inches of rain, road closures, tree falling, or event cancellations without quantifiable impact or flight
delays.
- Special case: Casualties always count as Impact, even if estimates (e.g., ’dozens injured’).

Emergency: Describes urgent actions requiring immediate response, including:
- Evacuations, rescues, emergency shelters, or disaster response efforts.
- Excludes: State of emergency declarations without mention of direct emergency actions.

Others:
- Sentences about extreme weather without clear Vulnerability, Impact, or Emergency markers.
- Sentences mentioning multiple events without enough detail to fit a single category.
- States of emergency, road closures, or school closures without measurable damage or emergency actions.

[Example:]
Input: Krakow is struggling after heavy rainfall, with city officials offering sandbags to protect homes.
<think>
Explanation:
1. Vulnerability: Krakow is struggling after heavy rainfall, indicating the city’s vulnerability to flooding. The mention of heavy rainfall implies
a risk, suggesting that Krakow is susceptible to potential harm due to the weather conditions. This fits the Vulnerability category as it shows
the city’s increased risk of flooding.
2. Impact: While the sentence mentions city officials offering sandbags to protect homes, there is no specific mention of measurable impacts such
as casualties, injuries, financial loss, or infrastructure damage. Therefore, this category is less relevant compared to Vulnerability and Emergency.
3. Emergency: The fact that city officials are offering sandbags to protect homes implies an urgent response to a disaster, categorizing the action
as an emergency. The immediate need for protective measures points to an emergency situation.
4. Others: This sentence describes a specific event related to heavy rainfall, but it is clearly categorized into Vulnerability, Impact, and
Emergency. Therefore, it doesn’t fit into the "Others" category as it clearly involves measurable consequences and urgent actions.
</think>
<output>
Final Output:
- Vulnerability: 0.40
- Impact: 0.10
- Emergency: 0.50
- Others: 0.00
</output>

Appendix B.2. Annotation Guidelines
This section outlines the detailed annotation process for dataset and gold

testset preparation.

Appendix B.2.1. Dataset Preparation
To construct a high-quality alignment dataset tailored to extreme weather

event analysis, we begin with the ExtremeWeatherNews corpus, which con-
tains sentence-level reports from various news sources. The goal of this stage
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Figure B.2: One-shot prompt for emotion analysis.

[Task Description:]
Given the sentence: "<sentence>", determine which emotions it conveys. Assign probability scores ensuring they sum to exactly 1.
[Emotion Definitions]
Sadness: Expresses sorrow, grief, disappointment, or loss, often involving suffering or destruction.
Anger: Indicates frustration, outrage, or dissatisfaction, including expressions of blame or criticism.
Fear: Suggests concern, anxiety, or perceived threat, often linked to warnings or potential dangers.
Joy: Reflects happiness, relief, celebration, or positive outcomes.
Optimism: Shows hope, encouragement, or confidence in a positive future.
Trust: Indicates reliability, assurance, or faith in a person, system, or institution.
Neutral: Lacks strong emotional cues, purely factual, informational or descriptive.

[Example:]
Input: "The wildfire destroyed thousands of homes, leaving families devastated."
<think>
Explanation:
- The sentence describes destruction and suffering, strongly aligning with Sadness (0.8).
- There is minor frustration in the situation, leading to Anger (0.05).
- The threat aspect contributes to Fear (0.05).
- It lacks positive emotion, optimism, or trust.
- Since the sentence is descriptive but emotionally charged, Neutral (0.1) remains minimal.
</think>
<output>
Final Output:
- Sadness: 0.8
- Anger: 0.05
- Fear: 0.05
- Joy: 0
- Optimism: 0
- Trust: 0
- Neutral: 0.1
</output>

is to ensure that only clear, relevant, and logically consistent samples are
used for training and evaluation.

Relevance and Clarity Assessment.. Annotators are first asked to rate each
sentence on two dimensions: clarity and relevance to the context of extreme
weather events.

• Clarity captures whether the sentence is grammatically sound, unam-
biguous, and interpretable without requiring additional context.

• Relevance evaluates whether the sentence pertains to vulnerabilities,
emergencies, or impacts caused by extreme weather, or if it diverges
from this core scope.

Sentences rated as low relevance or unclear are discarded from the dataset
to improve the signal-to-noise ratio and reduce noise during training.

Explanation Verification.. Following sentence-level filtering, we construct the
ExtremeAlign dataset, a alignment data contructed by adding task-specific
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Figure B.3: One-shot prompt for topic/subtopic/keyword labeling.

[Task Description:]
Given the sentence: "<sentence>", determine the most relevant topic, subtopic, and keywords based on the definitions below. Assign a probability
score between 0 and 1 to each possible category under Topic and Subtopic (strictly numeric values only), ensuring the final probability sum is
exactly 1
[Topic and Subtopic Definitions]
Vulnerabilities: Identifies risk factors that make communities more susceptible to damage.
- Environmental Vulnerability: Fragile ecosystems that increase disaster impact.
- Infrastructure Vulnerability: Structural weaknesses leading to heightened risk.
- Economic Vulnerability: Financial instability due to disasters.

Impact: Direct effects of extreme weather.
- Deaths: Fatalities resulting from disasters.
- Infrastructure Damage: Physical destruction of buildings and roads.
- Economic Damage: Financial loss due to extreme weather.
- Homeless: Displacement due to destruction.

Emergency Response: Immediate actions taken to mitigate disasters.
- Evacuation: Organized movement of people to safety.
- Community Support: Aid provided by local and national organizations.
- Emergency Services: Rescue and medical response efforts.
- Communication Strategies: Plans for disseminating critical information.
[Example:]
Input: "Hurricane Maria devastated Puerto Rico, leaving thousands homeless and without power."
<think>
Explanation:
- The sentence describes significant destruction, categorizing it under Impact (0.8).
- "Leaving thousands homeless" aligns with Homeless (0.5), and "without power" suggests Infrastructure Damage (0.3).
- Emergency efforts likely followed, so Emergency Response (0.2) is relevant, particularly Emergency Services (0.2).
</think>
<output>
Final Output:
- Topic: Impact (0.8), Emergency Response (0.2)
- Sub-Topic: Homeless (0.5), Infrastructure Damage (0.3), Emergency Services (0.2)
- Keywords: devastation, homeless, power outage, Hurricane Maria
</output>

- Keywords should not include specific locations.

prompts using the sentences in ExtremeWeatherNews dataset aimed at train-
ing models for reaosning-aware alignment. Each sample in ExtremeAlign in-
cludes a sentence, a task-specific output, and an explanation chain justifying
the output assignment.

To ensure consistency and interpretability, annotators are instructed to:
1. Read both the sentence and its associated explanation.
2. Verify whether the explanation logically and accurately supports the

given task-specific output.
3. Remove or revise samples where the explanation is incomplete, incon-

sistent, overly generic, or incorrect based on domain definitions. In
particular, explanations must align strictly with the formal definitions
of categories.

Appendix B.2.2. Gold TestSet Annotation
To ensure high-quality and consistent annotations for the gold-standard

evaluation set, we developed detailed guidelines covering each task in the
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ExtremeAlign framework: (1) Vulnerability/Impact/Emergency Assessment,
(2) Topic/Subtopic Labeling and Keyword Extraction, and (3) Emotion
Analysis. These guidelines were designed to balance both explicit task defini-
tions and the flexibility needed to incorporate human reasoning and domain
knowledge.

1. General Instructions: Annotators were provided with a set of instruc-
tions for each task, including definitions, category descriptions, and
examples of edge cases. To minimize ambiguity, we included both in-
clusion and exclusion criteria for each label, as well as clarifications
for frequently confused categories. An initial training round was con-
ducted, followed by calibration sessions to align interpretations across
annotators. We also ask them to utilize the general domain knowledge
and commonsense reasoning relevant to extreme weather events while
annotating.

2. Vulnerability/Impact/ Emergency Assessment: Annotators were in-
structed to assess whether a sentence describes a situation involving
vulnerability (pre-existing conditions that increase risk), impact ( mea-
surable damage or consequences of an event), emergency (urgent calls
for help or crisis situations). Overlapping categories were allowed, and
annotators were asked to assign probability scores across the categories
such that they sum to 1. Reasoning for each choice was recorded in
free-text format to capture implicit justifications.

3. Topic/Subtopic Labeling and Keyword Extraction: Each sentence was
evaluated to determine its thematic focus based on a predefined taxon-
omy (Table B.3). Annotators could select multiple relevant topics and
subtopics, and assign confidence scores to reflect relative importance.
Annotators were encouraged to extract salient keywords that captured
the essence of the sentence.

4. Emotion Analysis: Annotators labeled each sentence with one or more
emotions from a defined set (Sadness, Anger, Fear, Joy, Optimism,
Trust, Neutral). Probability distributions over the emotion labels were
allowed to reflect emotional ambiguity.

5. Quality Control: Annotations were reviewed by a second annotator,
and disagreements were adjudicated by a third expert.
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Annotator Details and annotator agreement. Our annotators and verifiers
comprise postdoctoral researchers and senior Ph.D. students with domain
expertise in both natural language processing (NLP) and extreme weather
analysis. Their interdisciplinary background ensures a nuanced understand-
ing of the linguistic and scientific aspects of the task. Each annotation is
evaluated against a well-defined rubric to maintain consistency and relia-
bility across the dataset. Verifiers conduct an additional round of quality
checks, resolving ambiguities and refining annotations as needed to meet
gold-standard quality. Inter-annotator agreement was measured using Fleiss
Kappa score. We obtained an average score of 0.88 for various task showing
high agreement between the annotators. Only samples with high agreement
were retained in the final gold set.
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Appendix B.3. ClimaEmpact Online Dashboard
The ClimaEmpact framework is accessible online, providing rapid and

near real-time analysis of extreme weather events. The displayed snapshot
showcases various locations impacted by Typhoon Yagi, along with associated
impacts, vulnerabilities, topics, subtopics, keywords, and emotion analysis.

Figure B.4: ClimaEmpact Online Dashboard for Extreme Weather Analysis
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