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The advent of the Social Web has enabled anyone with an Internet connection to easily create and share 

their ideas, opinions and content with millions of other people around the world. In pace with a global 

deluge of videos from billions of computers, smartphones, tablets, university projectors and security cam- 

eras, the amount of multimodal content on the Web has been growing exponentially, and with that 

comes the need for decoding such information into useful knowledge. In this paper, a multimodal af- 

fective data analysis framework is proposed to extract user opinion and emotions from video content. 

In particular, multiple kernel learning is used to combine visual, audio and textual modalities. The pro- 

posed framework outperforms the state-of-the-art model in multimodal sentiment analysis research with 

a margin of 10–13% and 3–5% accuracy on polarity detection and emotion recognition, respectively. The 

paper also proposes an extensive study on decision-level fusion. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Subjectivity detection and sentiment analysis consist of the au-

omatic identification of the human mind’s private states, e.g.,

pinions, emotions, moods, behaviors and beliefs [1] . In particular,

he former focuses on classifying sentiment data as either objective

neutral) or subjective (opinionated), while the latter aims to infer

 positive or negative polarity. Hence, in most cases, both tasks are

onsidered binary classification problems. 

To date, most of the work on sentiment analysis has been car-

ied out on text data. With a videocamera in every pocket and the

ise of social media, people are now making use of videos (e.g.,

ouTube, Vimeo, VideoLectures), images (e.g., Flickr, Picasa, Face-

ook) and audio files (e.g., podcasts) to air their opinions on social

edia platforms. Thus, it has become critical to find new meth-

ds for the mining of opinions and sentiments from these diverse

odalities. Plenty of research has been carried out in the field of

udio-visual emotion recognition. Some work has also been con-

ucted on fusing audio, visual and textual modalities to detect
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motion from videos. However, a unique common framework is

till missing for both tasks. There are also very few studies com-

ining textual clues with audio and visual features. This leads to

he need for more extensive research on the use of these three

hannels together. This paper aims to solve the two key research

uestions given below - 

• Is a common framework useful for both multimodal emotion

and sentiment analysis? 

• Can audio, visual and textual features jointly enhance the per-

formance of unimodal and bimodal emotion and sentiment

analysis classifiers? 

Studies conducted in the past lacked extensive research

2–4] and very few of them clearly described the extraction of

eatures and fusion of the information extracted from different

odalities. In this paper, we discuss the feature extraction process

rom different modalities in detail and explain how to use such

eatures for multimodal affect analysis. The YouTube dataset orig-

nally developed by [5] and the IEMOCAP dataset [6] were used

o demonstrate the accuracy of the proposed framework. We used

everal supervised classifiers for the sentiment classification task:

he CLM-Z [7] based method was used for feature extraction from

isual modality; the openSMILE toolkit was used to extract various

eatures from audio; and finally, textual features were extracted
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using a deep convolutional neural network (CNN). The fusion of

these heterogeneous features was carried out by means of multi-

ple kernel learning (MKL) using support vector machine (SVM) as

a classifier with different types of kernel. 

The rest of the paper is organized as follows: Section 2 proposes

motivations behind this work. Section 3 discusses related works on

multimodal emotion detection, sentiment analysis, and multimodal

fusion. Section 4 describes the used datasets in detail. Sections 5, 6 ,

and 7 explain how visual, audio, and textual data are processed, re-

spectively. Section 8 proposes experimental results. Section 9 pro-

poses a faster version of the framework. Finally, Section 10 con-

cludes the paper. 

2. Motivations 

The research in this field is rapidly picking up and has attracted

the attention of academia and industry alike. Combined with ad-

vances in signal processing and AI, this research has led to the

development of advanced intelligent systems that intend to detect

and process affective information contained in multimodal sources

[16] . However, the majority of such state-of-the-art frameworks

rely on processing a single modality, i.e., text, audio, or video. Ad-

ditionally, all of these systems are known to exhibit limitations in

terms of meeting robustness, accuracy, and overall performance re-

quirements, which, in turn, greatly restricts the usefulness of such

systems in real-world applications. 

The aim of multi-sensor data fusion is to increase the accuracy

and reliability of estimates [8] . Many applications, such as navi-

gation tools, have already demonstrated the potential of data fu-

sion. These illustrate the importance and feasibility of developing

a multimodal framework that could cope with all three sensing

modalities – text, audio, and video in human-centric environments.

Humans communicate and express their emotions and sentiments

through different channels. Textual, audio, and visual modalities

are concurrently and cognitively exploited to enable effective ex-

traction of the semantic and affective information conveyed in con-

versation [9] . 

People are gradually shifting from text to video to express their

opinion about a product or service, as it is now much easier and

faster to produce and share them. For the same reasons, potential

customers are now more inclined to browse for video reviews of

the product they are interested in, rather than looking for lengthy

written reviews. Another reason for doing this is that, while reli-

able written reviews are quite hard to find, it is sufficient to search

for the name of the product on YouTube and choose the clips with

most views in order to find good video reviews. Finally, videos are

generally more reliable than written text as reviewers often reveal

their identity by showing their face, which also allows viewers to

better decode conveyed emotions [10] . 

Hence, videos can be an excellent resource for emotion and

sentiment analysis but the medium also comes with major chal-

lenges which need to be overcome. For example, expressiveness of

opinion varies widely from person to person [2] . Some people ex-

press their opinions more vocally, some more visually and others

rely exclusively on logic and express little emotion. These personal

differences can help guide us towards the affect seeking expres-

sion. When a person expresses his or her opinions with more vo-

cal modulation, the audio data will often contain most of the clues

indicative of an opinion. When a person is highly communicative

via facial expressions, most of the data needed for opinion min-

ing may often be determined through facial expression analysis.

So, a generic model needs to be developed which can adapt itself

for any user and provide a consistent result. Both of our multi-

modal affect analysis models are trained on robust data containing

opinions or narratives from a wide range of users. In this paper,

we show that the ensemble application of feature extraction from
ifferent types of data and modalities is able to significantly en-

ance the performance of multimodal emotion and sentiment ap-

roach. 

. Related work 

In this section, we discuss related works in multimodal affect

etection covering both emotion and sentiment analysis. 

.1. Text based emotion and sentiment analysis 

Sentiment analysis systems can be broadly categorized into

nowledge-based and statistics-based systems [11] . While the use

f knowledge bases was initially more popular for the identifi-

ation of emotions and polarity in text, sentiment analysis re-

earchers have recently been using statistics-based approaches,

ith a special focus on supervised statistical methods. For exam-

le, Pang et al. [12] compared the performance of different ma-

hine learning algorithms on a movie review dataset and obtained

2.90% accuracy, using only a large number of textual features. A

ecent approach by Socher et al. [13] obtained even better accuracy

85%) on the same dataset using a recursive neural tensor network

RNTN). Yu and Hatzivassiloglou [14] used semantic orientation of

ords to identify polarity at sentence level. Melville et al. [15] de-

eloped a framework that exploits word-class association informa-

ion for domain-dependent sentiment analysis. 

Other unsupervised or knowledge-based approaches to senti-

ent analysis include Melville et al. [17] , who proposed a mathe-

atical model to extract emotional clues from blogs and then used

hese for sentiment detection; Gangemi et al. [18] , who presented

n unsupervised frame-based approach to identify opinion hold-

rs and topics based on the assumption that events and situations

re the primary entities for contextualizing opinions; and Cambria

t al. [19] , who proposed a multidisciplinary framework for po-

arity detection based on SenticNet [20] , a concept-level common-

ense knowledge base. 

Sentiment analysis research can also be categorized as single-

omain [12,16,21,22] or cross-domain [23] . The work presented in

24] discusses spectral feature alignment to group domain-specific

ords from different domains into clusters. They first incorporated

omain-independent words to help the clustering process and then

xploited the resulting clusters to reduce the gap between domain-

pecific words of two domains. Bollegala et al. [25] developed a

entiment-sensitive distributional thesaurus by using labeled train-

ng data from the source domain and unlabeled training data from

oth the source and target domains. Sentiment sensitivity was ob-

ained by including documents’ sentiment labels into the context

ector. At the time of training and testing, this sentiment thesaurus

as used to expand the feature vector. 

The task of automatically identifying fine-grained emotions,

uch as anger, joy, surprise, fear, disgust, and sadness, explicitly or

mplicitly expressed in a text has been addressed by several re-

earchers [26,27] . There are a number of theories on emotion tax-

nomy which spans from Ekman’s emotion categorization model

o the Hourglass of Emotion ( Fig. 1 ) [28] . So far, approaches to

ext-based emotion and sentiment detection rely mainly on rule-

ased techniques, bag of words modeling using a large sentiment

r emotion lexicon [29] , or statistical approaches that assume the

vailability of a large dataset annotated with polarity or emotion

abels [30] . 

Several supervised and unsupervised classifiers have been built

o recognize emotional content in texts [31] . The SNoW architec-

ure [32] is one of the most useful frameworks for text-based emo-

ion detection. In the last decade, researchers have been focus-

ng on sentiment extraction from texts of different genres, such as
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Fig. 1. The hourglass of emotion. 
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roduct reviews [33] , news [34] , tweets [35] , and essays [36] , to

ame a few. 

.2. Audio visual emotion and sentiment analysis 

In 1970, Ekman et al. [37] carried out extensive studies on fa-

ial expressions. Their research showed that universal facial ex-

ressions are able to provide sufficient clues to detect emotions.

hey used anger, sadness, surprise, fear, disgust, and joy as six ba-

ic emotion classes. Such basic affective categories are sufficient

o describe most of the emotions expressed by facial expression.

owever, this list does not include the emotion expressed through

acial expression by a person when he or she shows disrespect to

omeone; thus, a seventh basic emotion, contempt, was introduced

y Matsumoto [38] . 
The Active Appearance Model [39,40] and Optical Flow-based

echniques [41] are common approaches that use facial expres-

ion coding system (FACS) to understand facial expressions. Ex-

loiting action units (AU) as features in well known classifier

ike k nearest neighbors, Bayesian networks, hidden Markov mod-

ls (HMM), and artificial neural networks (ANN) [42] has helped

any researchers to infer emotions from facial expression. The

erformance of several machine-learning algorithms for detecting

motions from facial expressions is presented in Table 1 (cited

rom Chen et al. [43] ). All such systems, however, use different,

anually-crafted corpora, which makes it impossible to perform a

omparative evaluation of their performance. 

To this end, recently Xu et al. [44] constructed a framework

hich takes color features from the superpixel of images and

ater a piece-wise linear transformation was used to learn the
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Table 1 

Performance of various learning algorithms for detecting emotions from facial images. 

Method Processing Classification algorithm Accuracy 

Lanitis et al. [39] Appearance Model Distance-based 74% 

Cohen et al. [45] Appearance Model Bayesian network 83% 

Mase [46] Optical flow kNN 86% 

Rosenblum et al. [47] Optical flow ANN 88% 

Otsuka and Ohya [48] 2D FT of optical flow HMM 93% 

Yacoob and Davis [49] Optical flow Rule-based 95% 

Essa and Pentland [50] Optical flow Distance-based 98% 
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emotional feature distribution. The framework is basically a novel

feature learning framework from emotion labeled set of images. 

Recent studies on speech-based emotion analysis [40,51–

54] have focused on identifying several acoustic features such as

fundamental frequency (pitch), intensity of utterance [43] , band-

width, and duration. The speaker-dependent approach gives much

better results than the speaker-independent approach, as shown by

the excellent results of Navas et al. [55] , where about 98% accu-

racy was achieved by using the Gaussian mixture model (GMM) as

a classifier, with prosodic, voice quality as well as Mel frequency

cepstral coefficients (MFCC) employed as speech features. 

When it comes to fusing audio-visual emotion recognition, two

of the early works were done by De Silva et al. [56,57] . Both of

these works showed that a bimodal system yielded a higher ac-

curacy than any unimodal system. More recent research on audio-

visual emotion recognition has been conducted at either feature

level [58–60] or decision level [61–64] . Though there are plenty of

research articles on audio-visual emotion recognition, only a few

pieces of research works have been done on multimodal emotion

or sentiment analysis using textual clues along with visual and au-

dio modality. The works as described in [4,5,65] fused informa-

tion from audio, visual and textual modalities to extract emotion

and sentiment. Metallinou et al. [66,67] fused audio and textual

modality for emotion recognition. Both these approaches relied on

feature-level fusion. Wu et al. [68] fused audio and textual clues at

decision level. 

3.3. Multiple kernel learning 

Several studies have reported that MKL outperforms the average

kernel baselines. MKL is very similar to group LASSO which is a

feature selection method where features are organized into groups.

However, the choice of kernel coefficients can have a significant

impact on the classification accuracy and efficiency of MKL [69] . 

For example, in Alzheimer’s disease patients, different types of

tests correspond to different modalities that can reveal varied as-

pects of the diagnosis. MR images may show only a slight hip-

pocampal atrophy while the FDG-PET image may reveal increased

hypometabolism suggestive of Alzheimer. In [70] , MKL was used

simultaneously for optimizing different modalities in Alzheimer’s

disease. However, in order to deal with co-morbidity with other

diseases, they used the hinge loss function to penalize misclassi-

fied samples that did not scale well with the number of kernels.

Adaptive MKL (AdaMKL) was proposed in [71] based on biconvex

optimization and Gaussian kernels. Here, the objective function al-

ternatively learns one component at a time while fixing the others,

resulting in an increased computation time. 

In [72] , higher order kernels are used to enhance the learning

of MKL. Here, block co-ordinate gradient optimization is used as

it approximates the Hessian matrix of derivatives as a diagonal re-

sulting in loss of information. MKL is also used in signal processing

where grouping of features is useful to improve the interpretability

of the learned parameters [73] . 
MKL was applied to a Polish opinion aggregator service that

ontained textual opinions of different products, but this study

id not consider the hierarchical relation of different attributes of

roducts [74] . Group-sensitive MKL for object recognition in im-

ges integrates a global kernel clustering method with MKL for

haring of group-sensitive information [75] . Hence, the two differ-

nt kernels are used to group the training data and the kernels

re aligned during optimization. They showed that their method

utperformed baseline grouping strategies on the WikipediaMM

ataset of real-world web images. The drawback of this method

s that a looping strategy is used to relabel groups and may not

each the global optimum solution. 

MKL was used to detect the presence of a large lump in im-

ges using a convolution kernel [76] . However, they only consid-

red Gaussian features for the images. In [77] , MKL was used to

ombine and re-weight multiple features by using structured latent

ariables during video event detection [77] . Here, two different

ypes of kernels are used to group global features and segments

n the test video that are similar to the training videos. While, the

esults on TRECVID dataset of video events outperformed baselines,

he method requires tuning of parameters and assumes random

nitialization of latent variables. 

Multimodal features were fused at different levels of fusion for

he indexing of web data in [78] . The concept of kernel slack vari-

bles for each of the base kernels was used to classify YouTube

ideos in [79] . In order to select good features and discard bad

eatures that may not be useful to the kernel, Liu et al. [80] used

 beta prior distribution. Recently, MKL with Fourier transform on

he Gaussian kernels has been applied to Alzheimer’s Disease clas-

ification using both sMRI and fMRI images [81] . Researchers used

2 norm to enforce group sparsity constraints which were not ro-

ust on noisy datasets. Lastly, Online MKL shows good accuracy

n object recognition tasks by extending online kernel learning to

nline MKL, however, the time complexity of the methods is de-

endent on the dataset [82] . 

. Dataset used 

In this section, we describe the datasets used in multimodal

entiment and emotion analysis experiments. 

.1. Multimodal sentiment analysis dataset 

For our experiment, we use the dataset developed by Morency

t al. [2] . They started collecting the videos from popular social

edia (e.g., YouTube) using several keywords to produce search re-

ults consisting of videos of either product reviews or recommen-

ation. Some of these keywords are my favorite products, non rec-

mmended perfumes, recommended movies etc. A total of 80 videos

ere collected in this way. The dataset includes 15 male and 65

emale speakers, with their age ranging approximately from 20–60

ears. 

The videos were converted to mp4 format with a standard size

f 360 × 480. All videos were pre-processed to avoid the issues of

ntroductory titles and multiple topics, and the length of the videos
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Table 2 

Utterances per emotion class. 

Angry Happy Sad Neutral Total 

1083 1630 1083 1683 5479 
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Table 3 

Some relevant facial characteristic points (out of the 68 

facial characteristic points detected by CLM-Z). 

Features Description 

48 Left eye 

41 Right eye 

43 Left eye inner corner 

46 Left eye outer corner 

47 Left eye lower line 

44 Left eye upper line 

40 Right eye inner corner 

37 Right eye outer corner 

42 Right eye lower line 

38 Right eye upper line 

23 Left eyebrow inner corner 

25 Left eyebrow middle 

27 Left eyebrow outer corner 

22 Right eyebrow inner corner 

20 Right eyebrow middle 

18 Right eyebrow outer corner 

52 Mouth top 

58 Mouth bottom 

55 Mouth Left corner 

49 Mouth Right Corner 

14 Middle of the Left Mouth Side 

4 Middle of the Right Mouth Side 

Table 4 

Some important facial features used for the experiment. 

Features 

Distance between right eye and left eye. 

Distance between the inner and outer corner of the left eye. 

Distance between the upper and lower line of the left eye. 

Distance between the left iris corner and right iris corner of the left eye. 

Distance between the inner and outer corner of the right eye. 

Distance between the upper and lower line of the right eye. 

Distance between the left eyebrow inner and outer corner. 

Distance between the right eyebrow inner and outer corner. 

Distance between top of the mouth and bottom of the mouth. 

Distance between left and right mouth corner. 

Distance between the middle point of left and right mouth side. 

Distance between Lower nose point and upper mouth point. 

Table 5 

Features extracted using GAVAM from the facial features. 

Features 

The time of occurrence of the particular frame in milliseconds. 

The displacement of the face w.r.t X -axis. It is measured by the displacement 

of the normal to the frontal view of the face in the X-direction. 

The displacement of the face w.r.t Y -axis. 

The displacement of the face w.r.t Z -axis. 

The angular displacement of the face w.r.t X -axis. It is measured by the angular 

displacement of the normal to the frontal view of the face with the X -axis. 

The angular displacement of the face w.r.t Y -axis. 

The angular displacement of the face w.r.t Z -axis. 
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aried from 2 to 5 min. Many videos on YouTube contained an in-

roductory sequence where a title was shown, sometimes accom-

anied with a visual animation. To address this issue, the first 30

econds was removed from each video. Morency et al. [2] provided

ranscriptions with the videos. Each video was segmented into its

tterances and each utterance was labeled by a sentiment, thanks

o [2] . Because of the annotation scheme of the dataset, textual

ata was available for our experiment. On average each video has

 utterances and each utterance is 5 seconds long. The dataset con-

ains 498 utterances labeled either positive, negative or neutral. In

ur experiment we did not consider neutral labels, which led to

he final dataset consisting of 448 utterances. 

.2. Multimodal emotion analysis dataset 

The USC IEMOCAP database [6] was collected for the purposes

f studying multimodal expressive dyadic interactions. This dataset

ontains 12 hours of video data split into 5 min of dyadic interac-

ion between professional male and female actors. It was assumed

hat the interaction between the speakers are more affectively en-

iched than a speaker reading an emotional script. Each interaction

ession was split into spoken utterances. At least 3 annotators as-

igned the one emotion category, i.e., happy, sad, neutral, angry, sur-

rised, excited, frustration, disgust, fear and other to each utterance.

n this research work, we consider only the utterances with major-

ty agreement (i.e., at least two out of three annotators labeled the

ame emotion) in the emotion classes of: Angry, Happy, Sad, and

eutral. Table 2 shows the per emotion class distribution. 

. Extracting features from visual data 

Humans are known to express emotions through facial expres-

ion, to a great extent. As such, these expressions play a significant

ole in the identification of emotions in a multimodal stream. A

acial expression analyzer automatically identifies emotional clues

ssociated with facial expressions, and classifies these expressions

o define sentiment categories and discriminate between them. We

se positive and negative as sentiment classes in the classification

roblem. In the annotations provided with the YouTube dataset,

ach video was segmented into utterances and each of the utter-

nces has the length of a few seconds. Every utterance was an-

otated as either 1, 0 and −1, denoting positive, neutral and neg-

tive sentiment. Using a matlab code, we converted all videos in

he dataset to image frames, after which we extracted facial fea-

ures from each image frame. To extract facial characteristic points

FCPs) from the images, we used the facial recognition library CLM-

 [7] . From each image we extracted 68 FCPs; see examples in

able 3 . The FCPs were used to construct facial features, which

ere defined as distances between FCPs; see examples in Table 4 . 

GAVAM [83] was also used to extract facial expression features

rom the face. Table 5 shows the extracted features from facial im-

ges. In our experiment we used the features extracted by CLM-Z

long with the features extracted using GAVAM. 

If a segment of a video has n number of images, then we ex-

racted features from each image and take mean and standard de-

iation of those feature values in order to compute the final facial

xpression feature vector for an utterance. 
. Extracting features from audio data 

We automatically extracted audio features from each annotated

egment of the videos. Audio features were also extracted in 30Hz

rame-rate and we used a sliding window of 100 ms. To com-

ute the features we used the open source software openSMILE

84] . Specifically, this toolkit automatically extracts pitch and voice

ntensity. Z-standardization was used to perform voice normal-

zation. Basically, voice normalization was performed and voice

ntensity was thresholded to identify samples with and without

oice. The features extracted by openSMILE consist of several low-

evel descriptors (LLD) and their statistical functionals. Some of

he functionals are amplitude mean, arithmetic mean, root quadratic

ean, standard deviation, flatness, skewness, kurtosis, quartiles,
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inter-quartile ranges, linear regression slope etc. Taking into account

all functionals of each LLD, we obtained 6373 features. Some of the

useful key LLD extracted by openSMILE are described below. 

• Mel frequency cepstral coefficients – MFCC were calculated

based on short time Fourier transform (STFT). First, log-

amplitude of the magnitude spectrum was taken, and the pro-

cess was followed by grouping and smoothing the fast Fourier

transform (FFT) bins according to the perceptually motivated

Mel-frequency scaling. 

• Spectral Centroid – Spectral Centroid is the center of gravity

of the magnitude spectrum of the STFT. Here, M i [ n ] denotes

the magnitude of the Fourier transform at frequency bin n and

frame i . The centroid is used to measure the spectral shape.

A higher value of the centroid indicates brighter textures with

greater frequency. The spectral centroid is calculated as 

C i = 

∑ n 
i =0 nM i [ n ] ∑ n 
i =0 M i [ n ] 

• Spectral Flux – Spectral Flux is defined as the squared differ-

ence between the normalized magnitudes of successive win-

dows: 

F i = 

n ∑ 

n =1 

(N t [ n ] − N t−1 [ n ]) 2 

where N t [ n ] and N t−1 [ n ] are the normalized magnitudes of the

Fourier transform at the current frame t and the previous frame

t − 1 , respectively. The spectral flux represents the amount of

local spectral change. 

• Beat histogram – It is a histogram showing the relative strength

of different rhythmic periodicities in a signal. It is calculated as

the auto-correlation of the RMS. 

• Beat sum – This feature is measured as the sum of all entries in

the beat histogram. It is a very good measure of the importance

of regular beats in a signal. 

• Strongest beat – It is defined as the strongest beat in a signal,

in beats per minute, and it is found by identifying the strongest

bin in the beat histogram. 

• Pause duration – Pause direction is the percentage of time the

speaker is silent in the audio segment. 

• Pitch – It is computed by the standard deviation of the pitch

level for a spoken segment. 

• Voice Quality – Harmonics to noise ratio in the audio signal. 

• PLP – The Perceptual Linear Predictive Coefficients of the audio

segment were calculated using the openSMILE toolkit. 

7. Extracting features from textual data 

For feature extraction from textual data, we used a CNN. The

trained CNN features were then fed into a SVM for classification.

So, in particular we used CNN as trainable feature extractor and

SVM as a classifier. 

The intuition for building this hybrid classifier SVM-CNN is to

combine the merits of each classifier and form a hybrid classifier

to enhance accuracy. Recent studies [85] also show the use of CNN

for feature extraction. In theory, the training process of CNN is sim-

ilar to MLP as CNN is an extension of traditional MLP. MLP network

is trained using a back-propagation algorithm which uses Empiri-

cal Risk Minimization. It tries to minimize the errors in training

data. Once it finds the hyperplane, regardless of global or local op-

timum, the training process is stopped. This means that it does not

try to improve the separation of the instances from the hyperplane.

Wherein, SVM tries to minimize the generalization error on un-

seen data based on Structural Risk Minimization algorithm using a

fixed probability distribution on training data. It therefore aims to

maximize the distance between training instances and hyperplane,
o the margin area between two separate training classes is max-

mized. This separating hyperplane is a global optimum solution.

o, SVM is more generalized than MLP which enhances the classi-

cation accuracy. 

On the other hand, CNN automatically extracts key features

rom the training data. It grasps contextual local features from a

entence and after several convolution operations it finally forms a

lobal feature vector out of those local features. CNN does not need

he hand-crafted features used in a traditional supervised classi-

er. The hand-crafted features are difficult to compute and a good

uess for encoding the features is always necessary in order to get

atisfactory result. CNN uses a hierarchy of local features which are

mportant to learn context. The hand-crafted features often ignore

uch a hierarchy of local features. Features extracted by CNN can

herefore be used instead of hand-crafted features, as they carry

ore useful information. 

The hybrid classifier SVM-CNN therefore inherits the merits

rom each classifier and should produce a better result. 

The idea behind convolution is to take the dot product of a

ector of k weights w k also known as kernel vector with each k -

ram in the sentence s ( t ) to obtain another sequence of features

(t) = (c 1 (t) , c 2 (t ) , . . . , c L (t )) . 

 j = w k 
T . x i : i + k −1 (1)

e then apply a max pooling operation over the feature map and

ake the maximum value ˆ c (t) = max { c(t) } as the feature corre-

ponding to this particular kernel vector. Similarly, varying kernel

ectors and window sizes are used to obtain multiple features [86] .

For each word x i ( t ) in the vocabulary, an d dimensional vector

epresentation is given in a look up table that is learned from the

ata [87] . The vector representation of a sentence is hence a con-

atenation of vectors for individual words. Similarly we can have

ook up tables for other features. One might want to provide fea-

ures other than words if these features are suspected to be help-

ul. The convolution kernels are then applied to word vectors in-

tead of individual words. 

We use these features to train higher layers of the CNN, to rep-

esent bigger groups of words in sentences. We denote the feature

earned at hidden neuron h in layer l as F l 
h 

. Multiple features may

e learned in parallel in the same CNN layer. The features learned

n each layer are used to train the next layer 

 

l = 

∑ n h 

h =1 
w 

h 
k ∗ F l−1 (2)

here ∗ indicates convolution and w k is a weight kernel for hidden

euron h and n h is the total number of hidden neurons. The CNN

entence model preserves the order of words by adopting convo-

ution kernels of gradually increasing sizes that span an increasing

umber of words and ultimately the entire sentence. Each word

n a sentence was represented using word embedding and part-of-

peech of that word. The details are as follows –

• Word Embeddings – We employ the publicly available

word2vec vectors that were trained on 100 billion words from

Google News. The vectors have dimensionality 300 trained us-

ing the continuous bag-of-words architecture [87] . Words not

present in the set of pre-trained words are initialized randomly.

• Part of Speech – The part of speech of each word was also

appended to the word’s vector representation. As there are a

total of 6 part of speech, so the length of part of speech vector

was 6. 

So, in the end a word was represented by a 306 dimensional

ector. 

Each sentence was wrapped to a window of 50 words to reduce

he number of parameters and hence over-fitting the model. The

NN we developed in our experiment had two convolution layers,
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Table 6 

Confusion matrix for the visual modality (SVM classifier). 

Actual classification Predicted classification 

Negative Positive Precision Recall 

Negative 197 50 76.40% 79.80% 

Positive 61 140 73.70% 69.70% 

Table 7 

Confusion matrix for the audio modality (SVM classifier). 

Actual classification Predicted classification 

Negative Positive Precision Recall 

Negative 208 38 73.20% 84.60% 

Positive 76 125 76.70% 62.20% 

Table 8 

Confusion matrix for the textual modality (CNN classifier). 

Actual classification Predicted classification 

Negative Positive Precision Recall 

Negative 210 36 78.65% 85.36% 

Positive 57 143 79.88% 71.50% 
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 kernel size of 3 and 50 feature maps was used in the first convo-

ution layer and a kernel size 2 and 100 feature maps in the sec-

nd. It should be noted that the output of each convolution hidden

ayer is computed using a non-linear function (in our case we use

anh ). Each convolution layer was followed by a max-pool layer.

he max-pool size of the first and second max-pool layer was 2.

he penultimate max-pool layer is followed by a fully connected

ayer with softmax output. We used 500 neurons in the full con-

ected layer. The output layer corresponded to two neurons for

ach class of sentiments. 

We used the output of the fully connected layer (layer 6) of the

etwork as our feature vector. This feature vector was used in the

nal fusion process. So, in the fusion the 500 dimensional textual

ector was used. 

.1. Other sentence-level textual features 

We have ultimately fed the features extracted by CNN to the

VM and MKL. Motivated by the state of the art [88] , we have de-

ided to use other sentence-level features with the CNN extracted

eatures. Below, we explain these features - 

• Commonsense knowledge features – Commonsense knowl- 

edge features consist of concepts are represented by means of

AffectiveSpace [89] . In particular, concepts extracted from text

through the semantic parser are encoded as 100-dimensional

real-valued vectors and then aggregated into a single vector

representing the sentence by coordinate-wise summation: 

x i = 

N ∑ 

j=1 

x i j , 

where x i is the i -th coordinate of the sentence’s feature vector,

i = 1 , . . . , 100 ; x ij is the i th coordinate of its j th concept’s vector,

and N is the number of concepts in the sentence (extracted by

means of our concept parser [90] ). 

• Sentic feature – The polarity scores of each concept extracted

from the sentence were obtained from SenticNet and summed

up to produce a single scalar feature. 

• Part-of-speech feature – This feature is defined by the number

of adjectives, adverbs and nouns in the sentence, which give

three distinct features. 

• Modification feature – This is a single binary feature. For each

sentence, we obtained its dependency tree from the depen-

dency parser. This tree was analyzed to determine whether

there is any word modified by a noun, adjective, or adverb. The

modification feature is set to 1 in case of any modification re-

lation in the sentence; 0 otherwise. 

• Negation feature – Similarly, the negation feature is a single

binary feature determined by the presence of any negation in

the sentence. It is important because the negation can invert

the polarity of the sentence. 

. Experimental results 

For the experiment, we removed all neutral classes resulting in

he final dataset of 448 utterances. Of these, 247 were negative

nd 201 were positive. In this section, we describe the experimen-

al results of the unimodal and multimodal frameworks. For each

xperiment, we carried out 10-fold cross validation. 

.1. Extracting sentiment from visual modality 

To extract sentiment from only visual modality we used SVM

lassifier with a polykernel. Features were extracted using the

ethod explained in Section 5 . Table 6 shows the results for each

lass −{positive and negative}. 
Clearly, the recall is lower for positive samples. This means

any negative instances were labelled as positive. Below, we show

ome features which took major role to confuse the classifier. 

• The large change in distance of FCPs on eyelid from lower eye-

brow. 

• Small change between the two corners of the mouth ( F 49 and

F 55 as shown in Fig. 2 ). 

We compared the performance of SVM with other classifiers

ike Multilayer Perceptron (MLP) and Extreme Learning Machine

ELM) [91] . SVM was found to produce best performance results.

n visual modality, the best state-of-the-art result on this dataset

as obtained by Rosas et al. [5] where they got 67.31% accuracy.

n terms of accuracy our method has outperformed their result by

chieving 75.22% accuracy. 

.2. Extracting sentiment from audio modality 

For each utterance, we extracted the features as stated in

ection 6 and formed a feature vector which was then fed to SVM.

able 7 shows that for the positive class, the classifier obtained rel-

tively lower recall than for the visual modality obtained. Rosas

t al. [5] obtained 64.85% accuracy on audio modality. Conversely,

 74.49% accuracy was obtained using the proposed method, out-

erforming the accuracy of the state-of-the-art-model [5] . For 1 ut-

erance in the dataset, there is no audio data. This resulted in 447

tterances in the final dataset for this experiment. 

.3. Extracting sentiment from textual modality 

As we described in Section 7 , deep Convolutional Network

CNN) was used to extract features from textual modality and

 SVM classifier was then employed on those features to iden-

ify sentiment. We call this hybrid classifier CNN-SVM. Comparing

he performance of CNN-SVM with other supervised classifiers, we

ound it to offer the best classification results ( Table 8 ). In this ex-

eriment, our method also outperformed the state-of-the-art ac-

uracy achieved by Rosas et al. [5] . For 2 utterances, no text data

as available in the dataset. So, the final dataset for this experi-

ent consists of 446 utterances out of which 246 are negative and

00 are positive. 
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Fig. 2. A sample of facial characteristic points extracted by CLM-Z. 

Table 9 

Confusion matrix for the Audio-Visual Modality (MKL Classifier). 

Actual classification Predicted classification 

Negative Positive Precision Recall 

Negative 214 32 82.90% 87.00% 

Positive 44 156 83.00% 78.00% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Confusion matrix for the Audio-Textual Modality (SPG-GMKL Classifier). 

Actual classification Predicted classification 

Negative Positive Precision Recall 

Negative 217 29 83.46% 88.21% 

Positive 43 157 84.40% 78.50% 

Table 11 

Confusion matrix for the Visual-Textual Modality (MKL Classifier). 

Actual classification Predicted classification 

Negative Positive Precision Recall 

Negative 221 25 84.03% 89.83% 

Positive 42 158 86.33% 79.00% 

Table 12 

Confusion matrix for the Audio-Visual-Textual Modality (SPG-GMKL Classifier). 

Actual classification Predicted classification 

Negative Positive Precision Recall 

Negative 227 19 86.64% 92.27% 

Positive 35 165 89.67% 82.50% 
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The results shown in Table 8 were obtained when the utter-

ances in the dataset were translated from Spanish to English. With-

out this translation process we obtained a much lower accuracy of

68.56%. Another experimental study showed that while using CNN-

SVM produced a 79.14% accuracy, an accuracy of only 75.50% was

achieved using CNN. 

8.4. Feature-level fusion of audio, visual and textual modalities 

After extracting features from all modalities, we merged them

to form a long feature vector. That feature vector was then fed to

MKL for the classification task. We tested several polynomial ker-

nels of different degree and RBF kernels having different gamma

values as base kernels in MKL. We compared the performance of

SPG-GMKL (Spectral Projected Gradient-Generalized Multiple Ker-

nel Learning) [92] and Simple-MKL in the classification task and

found that SPG-GMKL outperformed Simple-MKL with a 1.3% rel-

ative error reduction rate. Based on the cross validation perfor-

mance, the best set of kernels and their corresponding parameters

were chosen. Finally, we chose a configuration with 8 kernels: 5

RBF with gamma from 0.01 to 0.05 and 3 polynomial with powers

2, 3, 4. 

Table 9 shows the results of the audio-visual feature-level fu-

sion. Clearly, the performance in terms of both precision and recall

increased when these two modalities are fused. 

Among the unimodal classifiers, textual modality was found to

provide the most accurate classification result. We observed the

same fact when textual features were fused with audio and visual
odalities. Both the audio-textual ( Table 10 ) and visual-textual

 Table 11 ) framework outperformed the audio-visual framework.

ccording to the experimental results, visual-textual modality per-

ormed best. 

Table 13 shows the results when all three modalities were fused

roducing a 87.89% accuracy. Clearly, this accuracy is higher than

he best state-of-the-art framework, which obtained a 74.09% ac-

uracy. The fundamental reason for our method outperforming the

tate-of-the-art method is the extraction of salient features from

ach modality before fusing those features using MKL. 
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Table 13 

Results and Comparison of Unimodal experiment and Multimodal Feature-Level 

Fusion (Accuracy). 

Perez-Rosa et al. [5] Our Method 

Audio Modality 64.85% 74.49% 

Visual Modality 67.31% 75.22% 

Textual Modality 70.94% 79.14% 

Visual and text-based features 72.39% 84.97% 

Visual and audio-based features 68.86% 82.95% 

Audio and text-based features 72.88% 83.85% 

Fusing all three modalities 74.09% 87.89% 

Table 14 

Results and Comparison of Unimodal experiment and Multimodal Feature-Level 

Fusion (Accuracy): Feature Selection was carried out. 

Perez-Rosa et al. [5] Our Method 

Audio Modality 64.85% 74.22% 

Visual Modality 67.31% 76.38% 

Textual Modality 70.94% 79.77% 

Visual and text-based features 72.39% 85.46% 

Visual and audio-based features 68.86% 83.69% 

Audio and text-based features 72.88% 84.12% 

Fusing all three modalities 74.09% 88.60% 
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.5. Feature selection 

In order to see whether a reduced optimal feature subset can

roduce a better result than using all features, we conducted a

yclic Correlation-based Feature Subset Selection (CFS) using the

raining set of each fold. The main idea of CFS is that useful fea-

ure subsets should contain features that are highly correlated with

he target class while being uncorrelated with each other. However,

uperior results were obtained when we used all features. This sig-

ifies that some relevant features were excluded by CFS. We then

mployed Principal Component Analysis (PCA) for feature selection

o rank all features according to their importance in classification.

o measure whether top K features selected PCA can produce bet-

er accuracy, we fed the top K features to the classifier. However,

ven worse accuracy was obtained than when using CFS based fea-

ure selection. When we took the combination of top K features

rom that ranking and CFS-based selected features and employed

he classifier on them, we observed the best accuracy. To set the

alue of K, an exhaustive search was made and finally we found

hat K = 300 gave the best result. This evaluation was carried out

or each experiment stated in Sections 8.1, 8.2 , and 8.4 . 

For our audio, visual and textual fusion experiment using CFS

nd PCA, a total 437 features were selected out of which 305 fea-

ures were textual, 74 were visual and 58 were from audio modal-

ty. This proves the fact that textual features were the most im-

ortant for trimodal sentiment analysis thanks to CNN feature ex-

ractor. Table 14 shows the comparative evaluation using feature

election method. 

.6. Feature-level fusion for multimodal emotion recognition 

Besides doing the experiment on multimodal sentiment analy-

is dataset, we also carried out an extensive experiment on mul-

imodal emotion analysis dataset as described in Section 4.2 . We

ollowed the same method as applied for the sentiment analysis

ataset. However, instead of taking it as a binary classification task,

e considered it as a 4-way classification. This dataset already pro-

ides the facial points detected by the markers and we only used

hose facial points in our study. CLM-Z was not able to detect faces

n most of the facial images as the images in this dataset are small

nd of low resolution. Using a similar feature selection algorithm

s described in Section 8.5 , a total of 693 features were selected,
f which 85 features were textual, 239 were audio and 369 were

rom visual modality. 

In Table 15 we see that both precision and recall of the Happy

lass is higher. However, Angry and Sad classes are very tough to

istinguish from the textual clues. One of the possible reasons is

oth of these classes are negative emotions and many words are

ommonly used to express both of the emotions. On the other

and, the classifier was confused and often classified Neutral with

appy and Anger. Interestingly, it classifies Sad and Neutral classes

ell. 

In the case of Audio modality ( Table 16 ) we observe better ac-

uracy than textual modality for Sad and Neutral classes. However,

or Happy and Angry, the performance decreased. The confusion

atrix shows the classifier performed poorly when distinguishing

ngry from Happy. Clearly, audio features are unable to effectively

lassify these based on extracted features. However, the classifier

erforms very well to discriminate between the classes of Sad and

nger. Overall identification accuracy of the Neutral emotion has

lso increased. But Happy and Neutral emotions are still very hard

o classify effectively by Audio classifier alone. 

Visual modality produced the best accuracy ( Table 17 ) when

ompared to other two modalities. The similar trend has been ob-

erved as textual modality. Angry and Sad faces are hard to clas-

ify using visual clues. However, Angry and Happy, Happy and Sad

aces can be effectively classified. Neutral classes were also sepa-

ated accurately in respect to other classes. 

When we fuse the modalities using the feature-level fusion

trategy ( Table 18 ) as stated in Section 8.4 , as expected higher ac-

uracy was obtained than with unimodal classifiers. Although the

dentification accuracy has been improved for every emotion, the

onfusion between a Sad and Angry face is still higher. Neutral and

ad emotions are also more difficult to classify. 

The comparison with the state-of-the-art model in terms of

eighted accuracy shows that the proposed method performs sig-

ificantly better. Comparing the weighted accuracy (WA) with the

tate of the art, the proposed method obtained 3.75% higher accu-

acy. However, for Anger emotion class, an approximately 3% lower

ccuracy was achieved. 

.7. Decision-level fusion 

In this section, we describe different frameworks that we de-

eloped for the decision-level fusion. Clearly, the motivation for

eveloping these frameworks is to perform the fusion process in

ess time. The fusion frameworks were developed according to the

rchitecture as shown in Fig. 3 . Each of the experiments stated be-

ow were processed through the feature selection algorithm stated

n Section 8.5 . 

Each block M i denotes a modality. As the architecture shows,

odality M 1 and M 2 are fused using feature-level fusion and then

t last stage are fused with another modality M 3 using decision-

evel fusion. For feature-level fusion of M 1 and M 2 , we used SPG-

MKL. The decision-level algorithm is described below - 

In decision-level fusion, we obtained the feature vectors from

he above-mentioned methods but used separate classifier for each

odality instead of concatenating feature vectors as in feature-

evel fusion. The output of each classifier was treated as a clas-

ification score. In particular, from each classifier we obtained a

robability score for each sentiment class. In our case, as there are

wo sentiment classes, we obtained 2 probability scores from each

odality. Let, q 12 
1 

and q 12 
2 

are the class probabilities resulted from

he feature-level fusion of M 1 and M 2 . On the other hand let, q 3 
1 

nd q 3 
2 

are the class probabilities of modality M 3 . We then form a

eature vector by concatenating these class probabilities. 

We also used sentic patterns [94] to obtain the sentiment la-

el for each text. If the result by sentic patterns for a sentence
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Table 15 

Confusion matrix for the Textual Modality (SVM Classifier, Feature selection carried out). 

Actual classification Predicted classification 

Angry Happy Sad Neutral Precision Recall 

Angry 650 82 165 186 55.13% 60.01% 

Happy 193 957 149 331 68.40% 58.71% 

Sad 139 87 619 238 55.51% 57.15% 

Neutral 197 273 182 1031 57.72% 61.25% 

Table 16 

Confusion matrix for the Audio Modality (SVM Classifier, Feature selection carried out). 

Actual classification Predicted classification 

Angry Happy Sad Neutral Precision Recall 

Angry 648 137 89 209 61.53% 59.83% 

Happy 159 926 123 422 65.21% 56.81% 

Sad 84 152 658 189 63.08% 60.75% 

Neutral 162 205 173 1143 58.22% 67.91% 

Table 17 

Confusion matrix for the Visual Modality (SVM Classifier, Feature selection carried out). 

Actual classification Predicted classification 

Angry Happy Sad Neutral Precision Recall 

Angry 710 83 116 174 66.17% 65.55% 

Happy 102 1034 148 346 72.76% 63.43% 

Sad 123 83 726 151 63.18% 67.03% 

Neutral 138 221 159 1165 63.45% 69.22% 

Table 18 

Confusion matrix for the Audio-Visual-Textual Modality (SPG-GMKL Classifier, Feature selection carried 

out). 

Actual classification Predicted classification 

Angry Happy Sad Neutral Precision Recall 

Angry 821 79 93 90 69.16% 75.80% 

Happy 119 1217 92 202 80.11% 74.67% 

Sad 93 82 782 126 67.24% 72.20% 

Neutral 154 141 196 1192 73.99% 70.82% 

Fig. 3. Decision-level fusion framework. 
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Table 19 

Comparison with the state of the art [93] on IEMOCAP dataset. 

Rozic et al. [93] Proposed Method 

Anger 78.10% 75.80% 

Happy 69.20% 74.67% 

Sad 67.10% 72.20% 

Neutral 63.00% 70.82% 

WA 69.50% 73.25% 

Table 20 

Decision-level fusion accuracy. 

M 1 M 2 M 3 Sentic Patterns Accuracy 

Visual Audio Textual No 73.31% 

Visual Audio Textual Yes 78.30% 

Visual Textual Audio No 76.62% 

Audio Textual Visual No 72.50% 

Table 21 

Decision-Level Fusion Accuracy for Multimodal Emotion Analysis. 

M 1 M 2 M 3 Weighted Accuracy 

Visual Audio Textual 64.20% 

Visual Textual Audio 62.75% 

Audio Textual Visual 61.22% 
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s ”positive” then we included 1 in the feature vector, otherwise 0

as included in the feature vector. So, the final feature vector looks

ike this - [ q 12 
1 

, q 12 
2 

, q 3 
1 
, q 3 

2 
, sentic] where sentic = 1 if the output of

entic patterns is positive otherwise we set sentic = 0. We then

mployed SVM on this feature vector in order to obtain the final

olarity label. 

The best accuracy was obtained when we early fused visual and

udio modalities. However, when we fuse all the modalities with-

ut carrying out the early fusion, the obtained accuracy was lower.

able 20 shows the decision-level accuracy in detail. 

.7.1. Decision-level fusion for multimodal emotion detection 

Like decision-level fusion for multimodal sentiment analysis,

imilar method was applied for multimodal emotion analysis as

ell ( Table 21 ). 

Similarly as we saw in the sentiment analysis experiment, the

onfiguration yielding best accuracy was obtained using M 1 , M 2 

nd M 3 as Visual, Audio and Textual, respectively. 

Table 19 shows the detail result of decision-level fusion experi-

ent on IEMOCAP dataset. It should be noted that sentic patterns

annot be used in this experiment as it is specific to sentiment

nalysis. 

. Speeding up the computational time: The role of ELM 

.1. Extreme learning machine 

The ELM approach [95] was introduced to overcome some is-

ues in back-propagation network [96] training, specifically; poten-

ially slow convergence rates, the critical tuning of optimization

arameters, and the presence of local minima that call for multi-

tart and re-training strategies. The ELM learning problem settings

equire a training set, X , of N labeled pairs, where ( x i , y i ), where

 i ∈ R 

m is the i th input vector and y i ∈ R is the associate expected

target’ value; using a scalar output implies that the network has

ne output unit, without loss of generality. 

The input layer has m neurons and connects to the ‘hidden’

ayer (having N h neurons) through a set of weights { ̂  w j ∈ R 

m ; j =
 , . . . , N h } . The j th hidden neuron embeds a bias term, ˆ b j , and a

onlinear ‘activation’ function, ϕ( · ); thus the neuron’s response
o an input stimulus, x , is: 

 j (x ) = ϕ( ̂  w j · x + ̂

 b j ) (3)

Note that (3) can be further generalized as a wider class of

unctions [97] but for the subsequent analysis this aspect is not

elevant. A vector of weighted links, w̄ j ∈ R 

N h , connects hidden

eurons to the output neuron without any bias [98] . The overall

utput function, f ( x ), of the network is: 

f (x ) = 

N h ∑ 

j=1 

w̄ j a j (x ) (4)

It is convenient to define an ‘activation matrix’, H , such that the

ntry { h i j ∈ H ; i = 1 , . . . , N; j = 1 , . . . , N h } is the activation value of

he j th hidden neuron for the i th input pattern. The H matrix is: 

 ≡

⎡ 

⎢ ⎣ 

ϕ( ̂  w 1 · x 1 + ̂

 b 1 ) · · · ϕ( ̂  w N h · x 1 + ̂

 b N h ) 
. . . 

. . . 
. . . 

ϕ( ̂  w 1 · x N + ̂

 b 1 ) · · · ϕ( ̂  w N h · x N + ̂

 b N h ) 

⎤ 

⎥ ⎦ 

(5) 

In the ELM model, the quantities { ̂  w j , ̂
 b j } in (3) are set ran-

omly and are not subject to any adjustment, and the quantities

 ̄w j , ̄b } in (4) are the only degrees of freedom. The training prob-

em reduces to the minimization of the convex cost: 

in 

 ̄w , ̄b } 

∥∥H ̄w − y 
∥∥2 

(6) 

A matrix pseudo-inversion yields the unique L 2 solution, as

roven in [95] : 

¯
 = H 

+ y (7) 

The simple and efficient procedure to train an ELM therefore

nvolves the following steps: 

1. Randomly set the input weights ˆ w i and bias ˆ b i for each hidden

neuron; 

2. Compute the activation matrix, H , as per (5) ; 

3. Compute the output weights by solving a pseudo-inverse prob-

lem as per (7) . 

Despite the apparent simplicity of the ELM approach, the cru-

ial result is that even random weights in the hidden layer endow

 network with a notable representation ability [95] . Moreover, the

heory derived in [99] proves that regularization strategies can fur-

her improve its generalization performance. As a result, the cost

unction (6) is augmented by an L 2 regularization factor as follows:

in 

w̄ 

{ ∥∥H ̄w − y 
∥∥2 + λ

∥∥w̄ 

∥∥2 } (8) 

.2. Experiment and comparison with SVM 

The experimental results in Table 22 shows ELM and SVM offer-

ng equivalent performance in terms of accuracy. While for mul-

imodal sentiment analysis SVM outperformed ELM with a sharp

.23% accuracy margin, on the emotion analysis dataset their per-

ormance difference is not significant. On the IEMOCAP dataset,

LM showed better accuracy for text based emotion detection. Im-

ortantly, for the purposes of feature-level fusion, we used a mul-

iple kernel variant of the ELM algorithm namely multiple-kernel

xtreme learning machine (MK-ELM) [100] . As with SPG-GMKL for

eature-level fusion ( Section 8.4 ), the same set of kernels was used

or MK-ELM. 

However, ELM edges SVM out by a big margin when it comes to

omputational time, i.e., training time of feature-level fusion (see

able 23 ). 

SPG-GMKL outperformed SVM for the feature-level fusion task

y 2.7%. 
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Table 22 

Accuracy Comparison between SVM and ELM (A = Audio, V = Video, T = Textual,UWA = Un-weighted Average) 

Dataset A V T A + V+T (UWA) 

SVM ELM SVM ELM SVM ELM SPG-GMKL MK-ELM 

YouTube 74.22% 73.81% 76.38% 76.24% 79.77% 78.36% 88.60% 87.33% 

IEMOCAP 61.32% 60.85% 66.30% 64.74% 59.28% 59.87% 73.37 72.68% 

Table 23 

Computational Time comparison between SVM and ELM. 

YouTube Dataset IEMOCAP dataset 

SPG-GMKL 1926 seconds 4389 seconds 

MK-ELM 584 seconds 2791 seconds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Conclusion 

In this work, a novel multimodal affective data analysis frame-

work is proposed. It includes the extraction of salient features, de-

velopment of unimodal classifiers, building feature- and decision-

level fusion frameworks. The deep CNN-SVM -based textual senti-

ment analysis component is found to be the key element for out-

performing the state-of-the-art model’s accuracy. MKL has played

a significant role in the fusion experiment. The novel decision-level

fusion architecture is also an important contribution of this paper.

In the case of the decision-level fusion experiment, the coupling

of sentic patterns to determine the weight of textual modality has

enriched the performance of the multimodal sentiment analysis

framework considerably. 

Interestingly, a lower accuracy was obtained for the emotion

recognition task, which may indicate that extracting emotions from

video may be more difficult than inferring polarity. While text

is the most important factor for determining polarity, the visual

modality shows the best performance for emotion analysis. The

most interesting part of this paper is that a common multimodal

affect data analysis framework is well capable of extracting emo-

tion and sentiment from different datasets. 

Future work will focus on extracting more relevant features

via visual modality. Specifically, deep 3D CNNs will be employed

for automatic feature extraction from videos. A feature selection

method will be used to select only the best features in order to en-

sure both scalability and stability of the framework. Consequently,

we will strive to improve the decision-level fusion process using

a cognitive inspired fusion engine. In order to realize our ambi-

tious goal of developing a novel real-time system for multimodal

sentiment analysis, the time complexities of the methods need to

be consistently reduced. Hence, another aspect of our future work

will be to effectively analyze and appropriately address the sys-

tem’s time complexity requirements in order to create a better,

more time efficient and reliable multimodal sentiment analysis en-

gine. 
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