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a b s t r a c t

Neural tensor networks have been widely used in a large number of natural language processing tasks
such as conversational sentiment analysis, named entity recognition and knowledge base completion.
However, the mathematical explanation of neural tensor networks remains a challenging problem,
due to the bilinear term. According to Taylor’s theorem, a kth order differentiable function can
be approximated by a kth order Taylor polynomial around a given point. Therefore, we provide a
mathematical explanation of neural tensor networks and also reveal the inner link between them
and feedforward neural networks from the perspective of Taylor’s theorem. In addition, we unify two
forms of neural tensor networks into a single framework and present factorization methods to make
the neural tensor networks parameter-efficient. Experimental results bring some valuable insights into
neural tensor networks.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

A neural tensor network (NTN) explicitly associates two en-
ities and can be applied to many natural language processing
NLP) tasks such as knowledge base completion [1], question
nswering [2,3], natural language inference [4], word segmenta-
ion [5], entity disambiguation [6], semantic compositionality [7]
nd conversational sentiment analysis [8]. Taking the conversa-
ional sentiment analysis task as an example, given two adjacent
tterances ‘‘The film is terrible" and ‘‘Yes, except for the begin-
ing", the first utterance changes the sentiment polarity of the
econd utterance from neutral to negative. Here, the interactions
etween two utterances could be captured by NTN.
NTN is composed of three parts, namely the bilinear term,

inear term and bias term. The representation of NTN varies from
odel to model. For example, [7] employs bilinear and linear

erms; [6] utilizes only the bilinear term. Moreover, NTN is proved
o be more powerful than feedforward neural networks [9]. How-
ver, how to explain NTN from the mathematical perspective is
till a challenging problem, due to the bilinear term. In this paper,
e associate NTN with Taylor’s theorem and find that each slice
f NTN could be represented as a 2nd order multivariate Taylor
olynomial. Moreover, we apply Taylor’s theorem to feedforward
eural networks and thus reveal its relationship with NTN. This
athematical explanation enables us to have a better viewpoint

egarding NTN.
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L. Zhu), cambria@ntu.edu.sg (E. Cambria).
ttps://doi.org/10.1016/j.knosys.2021.107258
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Taylor’s theorem, named after mathematician Brook Taylor, is
first proposed in 1712. It proves that a kth order Taylor poly-
nomial (Fig. 1) approximates a kth order differentiable function
around a given point. Based on Taylor’s theorem, we analyze NTN
from the perspective of function approximation. That is, each slice
in NTN is considered to approximate an unknown function that
captures a relation between two vectors. This is because there is
a strong connection between NTN and Taylor polynomial which
provides a feasible method to approximate that function without
knowing the exact form. Moreover, it is also the theoretical basis
for subsequent improvements on NTN. In summary, the scientific
contributions of this paper are as follows:

1. We present the mathematical explanation for NTN from
the perspective of Taylor’s theorem and bring two different
forms of neural tensor together into a single framework.

2. We reveal the inner link between NTN and other models,
e.g., feedforward neural networks and attention mechanism,
and factorize NTN for parameter-efficiency.

3. We conduct empirical studies on three NLP tasks to ana-
lyze the performance of NTN and obtain some important
insights.

The remainder of the paper is organized as follows: Section 2
introduces related work; Section 3 presents the mathematical
analysis of NTN; Section 4 discusses empirical studies and results;
finally, Section 5 proposes concluding remarks.

2. Related work

NTN is an expressive neural network architecture and was
first proposed by [10] for knowledge base completion task. NTN
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Fig. 1. The trigonometric function y = sin(x) (black) and the corresponding
aylor polynomial of degree five (blue) around the point π .

s a generalization of several previous studies [11–14] on entity
epresentation and relation modeling and has a good capability
f modeling relational information. In some more complicated
ituations, a tensor is used to capture multi-modal relations [15].
n general, an entity, character, word, sentence or document
s represented as a sparse or dense vector for computation in
ost NLP tasks. The relationship between two entities, words
r sentences is modeled as the interaction between two vectors.
n this case, NTN is applied to capture the relationship between
wo vectors. For instance, Socher et al. [10] first utilized NTN for
easoning over relationships between two entities on knowledge
ase completion task. Moreover, NTN is extended to associate
sequence of vectors by means of a recursive mechanism. For
xample, Socher et al. [7] proposed an NTN based recursive deep
odel to associate all the words vectors in a sentence or docu-
ent to conduct semantic compositionality on sentiment analysis

ask. Recently,Li et al. [8] applied NTN to extract context infor-
ation for a given utterance vector on conversational sentiment
nalysis task.
Although some previous studies report that NTN is more pow-

rful in modeling relational information than the feedforward
eural networks [10], the latter still has its unique strengths.
or instance, feedforward neural networks have fewer parame-
ers compared with NTN and are faster in the training phase.
herefore, a thorough theoretical analysis is needed to clarify the
elationship between NTN and feedforward neural networks. [16]
onverted NTN to a multilayer perceptron (MLP) based represen-
ation, bringing some novel insights regarding NTN. They found
hat NTN can be viewed and represented as a two-layer feed-
orward neural network in its traditional form. However, the
heoretical basis of such representation of NTN remains unclear.
ur research reveals the inner link between NTN and other mod-
ls, e.g., feedforward neural network and attention mechanism,
rom the perspective of Taylor’s theorem.

. Neural tensor network

NTN was proposed by [9,17] in knowledge base models to
epresent the relations between two entities. The proposed mod-
ls outperform the previous models on knowledge representation
nd reasoning tasks. NTN was also employed in other studies,
.g., visual question answering [2], community-based question
nswering [3], and implicit discourse relation recognition [18].
he model is used to represent whether two entities (ei, ej) are

n a certain relation R [17]. For example, NTNs are capable of

2

tating whether relation (ei, R, ej) =(Max, love, Cynthia) is true and
with what certainty, where ei, ej ∈ Rde×1 are vectors of the two
entities. The original NTN is shown as the following function:

h(ei, R, ej) = uT f (eTi M
[1:k]
R ej + VR

[
ei
ej

]
+ bR), (1)

where f is a standard nonlinear function applied element-wise,
e.g., tanh, sigmoid, M [1:k]

R ∈ Rde×de×k is a tensor, de is the dimen-
sion of the entity. VR ∈ Rk×2de , ei, ej ∈ Rde×1, uT , bR ∈ Rk×1.
eTi M

[m]

R ej is a computed one slice of the tensor layer eTi M
[1:k]
R ej,

m = 1, 2, . . . , k, which is considered as a ‘‘feature extractor" cap-
turing the interactions between ei and ej. To be specific, eTi M

[m]

R ej
captures a specific relationship between entity ei and ej.

As the wide application of NTN in a variety of tasks [5,19],
another variation was introduced:

h(e, R) = uT f (eTM [1:k]
R e + VRe + bR), (2)

where e ∈ Rnde×1 is the concatenated feature embeddings vector,
and n ∈ N+ is the number of entities, which usually equals 2
when e = [eTi , e

T
j ]

T
∈ R2de×1, M [1:k]

R ∈ R2de×2de×k. Besides, the use
of uT varies in different research tasks. For example, uT is applied
in NTN function to generate a scalar for two-class classification
of relations in knowledge base completion task shown above.
While in other works, e.g., question answering task, f (eTM [1:k]

R e+

Re + bR) is regarded as a NTN architecture, i.e., uT is omitted;
ecause in this case, the model is tailored for feature extraction
or semantic compositionality [7].

(e, R) = f (eTM [1:k]
R e + VRe + bR) (3)

n the following part of this paper, the term NTN refers to formula
3), which is also the key research object in this work.

.1. Taylor neural network slice

In this subsection, the architecture of NTN will be illustrated
hrough detailed examples firstly. Then, we show that NTN is
quivalent to Taylor polynomial under certain conditions, which
rovides a new perspective for the explanation of NTN. Based
n this consideration, we propose a Taylor Neural Network Slice
TNNS) framework to provide guidance for the construction and
pplication of NTN.
In addition to the tasks described above, NTN in formula (3)

s applied to extracting context features for sentiment analysis
n dialogues [8]. The same example in the introduction section is
llustrated as follows.

Given two adjacent utterances in a dialogue, u1-‘‘The film is
errible’’., u2-’’Yes, except for the beginning’’., a model is de-
igned to classify the sentiment polarity of the second utterance.
owever, it is difficult to predict u2’s polarity without the com-
rehension of u1. Thus, NTN in this paper is used to extract the
nteraction between u1 and u2, and the context information C of
2.
First the two utterances u1, u2 are represented as two vectors

1, e2 ∈ Rde×1 through a specific model. eT = [eT1, e
T
2] ∈ R1×2de is

the concatenated vectors of the two utterances. In this example,
NTN is illustrated as formula (4).

h(e, C) = f (bC + VCe + eTM [1:k]
C e)

= f (bC + VC

[
e1
e2

]
+ [eT1, e

T
2]M

[1:k]
C

[
e1
e2

]
)

(4)

Suppose NTN is composed of 3-slices tensor layer and the utter-
ance embedding is 2-dimensional, i.e. k = 3, de = 2, then NTN
could be represented as:

h(e, C) = f (t), t =

[t1
t2

]
(5)
t3
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ti = biC + ViC

[
e1
e2

]
+ [eT1, e

T
2]M

[i]
C

[
e1
e2

]

= bi +
[
vi1 vi2 vi3 vi4

]⎡⎢⎣e11
e12
e21
e22

⎤⎥⎦

+
[
e11 e12 e21 e22

]⎡⎢⎣m11
i m12

i m13
i m14

i

m21
i m22

i m23
i m24

i

m31
i m32

i m33
i m34

i

m41
i m42

i m43
i m44

i

⎤⎥⎦
⎡⎢⎣e11
e12
e21
e22

⎤⎥⎦ ,

i = 1, 2, 3.

(6)

M [i]
C corresponds to the ith slice of tensor MC

[1:3]. The detailed
rchitecture of NTN in formula (6) is shown in Fig. 2, where
ig. 2(a) shows the calculation process of ti in formula (6) and
ig. 2(b) corresponds to formula (5).
According to Fig. 2 and formula (6), it is interesting to find

hat the representation of ti is the 2nd order Taylor polynomial
or functions of multiple variables. Thus, the ti in formula (6) is
lso named as the 2nd order Taylor Neural Network Slice (TNNS)
f NTN in this paper. When M [i]

C = O (zero matrix), ti refers to
he 1st order Taylor Neural Network Slice, which equals the 1st
rder Taylor polynomial; and in this case, f (ti) is a 1st order NTN
nd a feedforward neural network as well. According to Taylor’s
heorem, for a multivariate function g(x), of which the value is
scalar, x ∈ Rd×1, the first derivative is ∇g(x) ∈ Rd×1, and the
econd derivative is the Hessian matrix of g(x), which is denoted
s Hf (x) ∈ Rd×d. Here, d ∈ N+ describes the dimension of the
ultiple variable x. Thus, the 2nd order Taylor polynomial for
ultivariate function g(x) around the point x(0) is:

g(x) = g(x(0)) + ∇g(x(0))(x − x(0))

+
1
2
(x − x(0))THg(x(0))(x − x(0)) + o((x − x0)3),

(7)

where ∇g(x(0)) = [
∂g
∂x1

,
∂g
∂x2

, . . . ,
∂g
∂xd

]
⏐⏐T
x(0) ,

Hg(x(0)) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂2g
∂x21

∂2g
∂x1∂x2

. . .
∂2g

∂x1∂xd
∂2g

∂x2∂x1
∂2g
∂x22

. . .
∂2g

∂x2∂xd
...

...
. . .

...
∂2g

∂xd∂x1
∂2g

∂xd∂x2
. . .

∂2g
∂x2d

⎤⎥⎥⎥⎥⎥⎥⎦.

For d = 2, x =
[
x1, x2

]T , x(0) =
[
x(0)1 , x(0)2

]T
, ∆x = x − x(0) =[

∆x1, ∆x2
]T

=
[
x1 − x(0)1 , x2 − x(0)2

]T
then the formula (7) could

be written as:

g(x) = g(x(0)) +

[
∂g
∂x1

∂g
∂x2

]
x(0)

[
∆x1
∆x2

]

+
1
2

[
∆x1 ∆x2

]⎡⎣ ∂2g
∂x21

∂2g
∂x1∂x2

∂2g
∂x2∂x1

∂2g
∂x22

⎤⎦
x(0)

[
∆x1
∆x2

]
+ o(∆x3)

(8)

As shown, the ti block, namely the 2nd order TNNS, in formula (6)
accounts for approximating the 2nd order Taylor polynomial for
a certain multivariate function g(x) at the point x(0), with bC , VC ,
M [i]

C , and e corresponding to g(x(0)), ∇g(x(0)), 1
2Hg(x

(0)), and ∆x,
espectively. This may provide the explanation why NTN works.

Furthermore, a 3rd order TNNS is proposed in this work for
ontext information extraction under the guideline of Taylor’s
heorem.

t = b + V e + eTM [i]e + P [i]
× e× e× e (9)
i C C C C 1 2 3

3

The P [i]
C ∈ R2de×2de×2de is the ith slice, more precisely, sub-

tensor of the 4th order tensor P [1:k]
C ∈ R2de×2de×2de×k. Accord-

ing to [20], C = A×jb is a mode-j product of Nth order ten-
or A ∈ RI1×···×IN and vector b ∈ RIj , which yields a ten-
sor C ∈ RI1×···×Ij−1×Ij+1×···×IN , with entries ci1,...,ij−1,ij+1,...,iN =

Ij
ij=1 ai1,...,ij,...,iN bij . Thus, P [i]

C ×1e×2e×3e =
∑2de

i=1
∑2de

j=1
∑2de

k=1

pijkeiejek. Obviously, tensor P
[i]
C is devised to fit the 3rd derivative

of function g(x) at the point x(0), i.e., pijk approximates ∂3g
∂xi∂xj∂xk

.

3.2. Factorization for neural tensor networks

Although NTN shows good performance on different tasks,
the model faces the curse of dimension as the increase of the
dimension de of entity e. It is obvious that the reduction of
the computation complexity of the tensor M [1:k]

C would relieve
the model of this problem. Besides, since the tensor M [1:k]

C is
composed of k slices of matrix M [i]

C , the key step is to reduce the
computation complexity of M [i]

C . As stated in Section 3.1, M [i]
C cor-

responds to 1
2Hg(x

(0)) in Taylor’s theorem. Thus, the factorization
f the tensor slice M [i]

C is based on the discussion of the Hg(x(0))
case by case.

Case One. (M [i]
C ̸= M [i]

C
T
) If M [i]

C is a real asymmetric matrix, it
could be decomposed via Singular Value Decomposition (SVD)
[21]. i.e. ∃ U, V T

∈ R[2de×2de], satisfying M [i]
C = UΣV T , where

U, V are unitary matrices, the diagonal elements of Σ are the
singular values of M [i]

C . Based on previous work and applications
of SVD [22], M [i]

C could be approximated as M [i]
C = U(k)Σ(k)V T

(k),
where Σ(k) is the k-order principal minor of Σ , and U(k), V(k)
correspond to the first k columns of U, V , respectively, 1 ≤ k ≤

2de.

Case Two. (M [i]
C = M [i]

C
T
) If M [i]

C is a real symmetric matrix, it
could be diagonalized, i.e. ∃ P ∈ R[2de×2de], PT

= P−1, satisfying
M [i]

C = PTΛP , where P is also named as unitary matrix. Based on
Case One, M [i]

C could be approximated as M [i]
C = P(k)Λ(k)PT

(k), where
Λ(k) corresponds to the k-order principal minor of Λ, and P(k) is
the first k columns of P .

A sufficient condition of Case Two is that the multivariate
function g(x) is of class Ck, i.e., all the i-order partial derivatives
exist and are continuous, for ∀i ≤ k, i, k ∈ N+.

3.3. Relationship between two forms of neural tensor networks

As shown in the aforementioned introduction of formulas (1)
and (2), both formulas are referred to as NTN in different research
papers. Besides, both of them could be applied to relation fea-
ture extraction. Moreover, we found an interesting relationship
between NTN in formula (1) and that in formula (2): formula (1)
is a special case of formula (2) under certain conditions.

As known, the only difference between formula (1) and for-
mula (2) is that between tensor layer slices eTi M

[m]

R ej and eTM [m]

R e,
where e = [eTi , e

T
j ]

T
∈ R2de×1. Thus, we focus on exploring

the relationship between the two tensor layer slices. For brevity,

we use W =

[
W1 W2
W3 W4

]
∈ R2de×2de to represent M [m]

R , where

Wl ∈ Rde×de , l = 1, 2, 3, 4.

eTWe = [eTi , e
T
j ]W

[
ei
ej

]
= [eTi , e

T
j ]

[
W1 W2
W3 W4

][
ei
ej

]
= eTi W1ei + eTj W3ei + eTi W2ej + eTj W4ej

T T T T

(10)
= ei (W2 + W3 )ej + ei W1ei + ej W4ej
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Fig. 2. The representation of NTN with two entities initialization. (a) The architecture of the 2nd order Taylor Neural Network Slice (TNNS). (b) The representation
of NTN with k slices of TNNS.
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According to formula (10), if W1 = W4 = O (zero matrix), we
ound that
TWe = eTi (W2 + W T

3 )ej. (11)

his is the same as the form of tensor layer slice eTi M
[m]

R ej, which
roves that the formula (1) is a special case of formula (2).
herefore, it is sensible to focus on the representation in formulas
2) and (3) in this paper when referring to NTN.

.4. Relationship between neural tensor network and attention mech-
nism

In recent years, the attention mechanism has been widely
tilized to improve the performance of deep learning models
n various NLP tasks, such as neural machine translation [23,
4], document classification [25], album summarization [26], etc.
ccording to [27], the common choices [23] for computing the
ttention score si in basic attention are given by:
Dot:

i = qTt ki, (12)

eneral:

i = qTt Wgki, (13)

dditive (Multi-layer perceptron):

si = uT tanh(Wqqt + Wkki + b)

= uT tanh(Wa[qt; ki] + b),
(14)

here qt ∈ Rdq is a query vector (or target hidden state), ki ∈ Rdk

is the ith key vector (or source hidden state); in most cases, we
set dq = dk = d; then, weight matrices Wg , Wq, Wk ∈ Rd×d,
Wa ∈ Rm×2d, bias vector b ∈ Rm, and u ∈ Rm.

We found that the general attention qTt Wki is a special case
of the 2nd order TNNS term, and the dot attention is a special
case of the general attention qTt Wgki, when Wg = I; besides, the
additive attention uT tanh(Wa[qt; ki] + b) is the 1st order NTN.
Moreover, [28] proposed the self-attention mechanism, becom-
ing a research focus in these years. The attention score in the
self-attention mechanism is:

sij =
(xiWQ )(xjWK )T

√
dk

. (15)

Here, xi, xj ∈ Rdx , and WQ , WK ∈ Rdx×dk . It is obvious that the
elf-attention score utilizes the 2nd order TNNS term with SVD
ecomposition (Case One in Section 3.2).
According to the formulas above, there is a strong connection

etween NTN and the attention score function, since both models
mploy TNNS which enables them to approximate any nonlinear
unctions without knowing the exact forms.
4

. Experiments

In this section, we conduct experiments on several NLP tasks
ncluding conversational sentiment analysis (CSA), named en-
ity recognition (NER) and knowledge base completion (KBC) to
estify the aforementioned mathematical analysis of NTN.

.1. Task definition and parameter setting

onversational sentiment analysis. The goal of CSA [29–31] is to
redict the sentiment polarities (e.g., frustrated, neutral, sad and
appy) of each utterance in a conversation. However, context
tterances may sometimes enhance, weaken or reverse the raw
entiment of an utterance. Therefore, we use NTN to associate
n utterance with its context utterances to incorporate the con-
ext information into the current utterance. Then the current
tterance is fed into a long short-term memory (LSTM) block
ollowed by a fully connected layer for classification. We also
eport the performance of the following baselines for comparison:
-LSTM [32] and DialogueRNN [33]. Here, we follow the exper-
ment protocols as described in [33], and use identical feature
xtraction procedures converting utterances into vectors. We set
he dimension of the utterance vector as 50, the number of slices
s 50, batch size as 1. We empirically set the learning rate as
.0001, the input dimension of NTN as 100. L2 regularization
nd dropout [34] are employed to alleviate over-fitting. We use
he factorization method case one mentioned in Section 3.2 to
educe trainable parameters. The neural network is optimized by
n Adam Optimizer [35].

amed entity recognition. NER is an important information ex-
raction task that requires identifying and classifying pre-defined
amed entity categories such as location, organization and person
n a given text [36,37]. In this paper, we employ the classical
nd-to-end sequence labeling model bidirectional LSTM-CNNs-
RF [38] as the base model to perform the NER task on the
tandard CoNLL NER dataset [39]. This NER system takes use of
oncatenated word-level embedding and character-level repre-
entation as the input feature, where the character representation
s computed by a convolutional neural network (CNN) [40]. Then,
he input feature is fed into a bidirectional long short-term mem-
ry (BiLSTM) [41] network and the output of BiLSTM is fed to a
onditional random field (CRF) [42] layer to jointly decode the
ptimal label sequence. In the experiment, we utilize NTN instead
f concatenation operation to better combine word embedding
nd character representation. Similarly, we follow the experi-
ent protocols as described in [38], and use identical CNN for
haracter-level representation. The dimension is 100 and 50 for
ord embedding and character-level representation respectively.
he dimension of word embedding and character-level represen-
ation are set to 100 and 50 respectively. The number of slices is
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et to 150. We empirically set learning rate as 0.015 and decay
ate as 0.05. Similarly, factorization method case one mentioned
n Section 3.2 is utilized to improve the computation-efficiency
f NTN. The model is optimized by a stochastic gradient descent
SGD) optimizer with a momentum of 0.9.

nowledge base completion. Knowledge bases like WordNet [43],
enticNet [44] or Google Knowledge Graph are of vital impor-
ance for query expansion [45], question answering (Google assis-
ant) or giving structured knowledge to users. However, knowl-
dge bases often suffer from incompleteness, generating the need
or KBC [46]. Most studies focus on extending the existing knowl-
dge base employing patterns or classifiers applied to large cor-
ora [47,48]. However, complex or rare knowledge is not as
sual as the common knowledge in text. Therefore, commonsense
easoning which refers to predicting the likely truth of additional
acts based on existing facts in the knowledge base [49], is useful
nd available for users to obtain rare or complex knowledge in
ext. We take the classical model [10] as the base model to per-
orm relation triplet classification. In this model, a neural tensor
ayer described in formula (1) is used to explicitly relate two en-
ities. Furthermore, we extend this special case to a general case
s described in formula (2) for comparison. We use Turian [50]
nitialization to initialize entity and relation embedding, and set
he dimension of their embedding as 100. We set the number of
lices as 3, batch size as 20000, corrupt size as 10. We train the
odel for 500 iterations and use L-BFGS [51] as the optimizer in

his experiment.
In general, there is no one-size-fit-all hyper-parameter setting

hat can cope with different tasks. In most cases, we need to fine-
une the hyper-parameters of NTN when applying it to different
asks. Parameter analysis and grid search are two good methods
sed to obtain the optimal hyper-parameters of NTNs.

.2. Datasets

In this subsection, we introduce all the datasets used in the
hree NLP tasks among which IEMOCAP [52] and MELD [53]
re for CSA, CoNLL2003 [39] for NER, and WordNet [43] and
reebase [54] for KBC. To be specific, IEMOCAP and MELD are
he most commonly used benchmark datasets for CSA datasets;
oNLL2003 is one of the most famous NER datasets released at
he top tier conference CoNLL; Similarly, WordNet and Freebase
re often used for knowledge base completion task since the
elease.

EMOCAP. IEMOCAP is a dataset composed of two-way conversa-
ions with ten distinct participators. Each utterance in a conversa-
ion is marked by one of the six sentiment labels, namely happy,
ad, neutral, angry, excited and frustrated. In the experiments, we
only focus on textual modality data (details in Table 1).

MELD. MELD consists of textual, acoustic, and visual information
from more than 13000 utterances from Friends TV series. It is
a multiparty and multimodal sentiment classification dataset.
The sentiment label of each utterance comes from one of the
following seven labels: joy, surprise, sadness, fear, neutral, anger
and disgust (details in Table 1).

CoNLL. The standard CoNLL dataset contains four types of name
entities. i.e., person, location, organization and misc. Here we use
IOES tagging schema instead of the BIO2 since previous studies
eported significant improvement with this schema [55]. The
tatistical information of this dataset is shown in Table 2.
5

Table 1
Statistical information of IEMOCAP and MELD datasets.
Dataset Partition Dialogue Utterance

count count

IEMOCAP Train + val 120 5,810
Test 31 1,623

MELD Train + val 1,153 11,098
Test 280 2,610

Table 2
Statistical information of CoNLL2003 dataset.
Dataset Sentence count Token count

Train 14,987 204,567
Dev 3,466 51,578
Test 3,684 46,666

Table 3
The statistics for WordNet and Freebase.
Dataset Partition Count Relation

WordNet Train 122,581 11
Dev 2,609 11
Test 10,544 11

Freebase Train 316,232 13
Dev 5,908 7
Test 23,733 7

WordNet. WordNet database is composed of 112,581 relational
triplets for training. A triplet (e1, similar to, e2) comprises two
entities (e1, e2) and a relation similar to between them. In the
experiment, we filter out trivial test triplets and obtain 38,696
unique entities in 11 different relations. Besides, the triplets
appeared in both training and testing sets in a different relation
or order are filtered out. For example, (e2, similar to, e1) and (e1,
ype of, e2) are removed if (e1, similar to, e2) is in the training set.
e display statistical information of WordNet in Table 3.

reebase. We use the relational triplets from People domain and
btain 316,232 triplets in 13 relations for training. However,
mong these 13 relations, place of death, place of birth, location,
arents, children and spouse are quite hard to predict and are
emoved from the testing set. Table 3 shows the statistics of
reebase.

.3. Neural tensor network variants

Following the theoretical guide of Taylor’s theorem, we pro-
ose several variants of NTN.

he first order neural tensor networks. This variant uses only the
ero-order term and the 1st order term of TNNS. The computation
ormula is f (bR + VRe).

he second order neural tensor networks. The 2nd order NTN is the
ame as traditional NTNs, where the zero, 1st and 2nd order terms
f TNNS are included for computation. The computation formula
s f (bR + VRe + eTM [1:k]

R e).

The third order neural tensor networks. We also introduce the 3rd
order term based on Taylor’s theorem. The computation formula
of this variant is shown in Eq. (9).

4.4. Experimental results

We report the empirical results of NTN variants as well as
baseline methods on IEMOCAP & MELD datasets of CSA task,
CoNLL dataset of NER task and WordNet & Freebase datasets of
KBC task, respectively. The experimental results are shown in
Tables 4, 5, 6 and 7.
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xperiment results on IEMOCAP and MELD datasets. Bold font denotes the best performance. Acc. = Accuracy; Average(w) = Weighted average.
Methods IEMOCAP MELD

Happy Sad Neutral Angry Excited Frustrated Average(w) Acc.

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

c-LSTM 30.6 35.6 56.7 62.9 57.6 53.0 59.4 59.2 52.8 58.9 65.9 59.4 56.3 56.2 57.5
DialogueRNN 25.7 33.2 75.1 78.8 58.6 59.2 64.7 65.3 80.3 71.9 61.2 58.9 63.4 62.8 56.7
The 1st order NTN 45.8 30.6 80.0 83.0 67.8 59.9 67.9 65.7 61.6 72.7 59.4 60.4 65.1 63.8 59.9
The 2nd order NTN 46.3 29.4 77.5 82.7 69.0 58.4 68.1 66.1 61.7 72.9 58.9 60.6 65.0 63.5 59.9
The 3rd order NTN 44.2 30.8 83.3 84.5 66.4 60.7 67.5 65.5 61.6 71.9 60.6 61.4 65.4 64.4 60.2
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IEMOCAP result. As evidenced by Table 4, for the IEMOCAP dataset
NTN variants outperform baselines DialogueRNN and c-LSTM by
a large margin on average. The performance of the 1st order NTN
exceeds DialogueRNN by 1.7% in accuracy and 1.0% in f1-score
on average. The major constituent of the 1st order NTN is the 1st
order TNNS approximating the 1st order differentiable functions,
which accounts for the good performance of the 1st order NTN.
Besides, the relationships between the context utterance and the
current utterance are not as complex as the entity relationships
in some other NLP tasks so that the 1st order NTN is good
enough for CSA. The 2nd order NTN gets almost the same average
accuracy and f1-score as the 1st order NTN. This means the
introduction of the 2nd order term of TNNS did not significantly
improve the overall performance. As for the 3rd order NTN, its
performance surpasses the 2nd order NTN by 0.4% in accuracy
and 0.9% in f1-score on average. We think that the reason for
such improvement is that the introduction of the 3rd order
term of TNNS enables NTN to approximate more complicated
functions. However, the high order terms dramatically increase
the trainable parameters with limited performance gain, which is
not computation-efficient in this task. The 2nd order NTN without
factorization gets 64.76% in accuracy and 63.54% in f1-score on
the IEMOCAP dataset respectively, which is almost the same as
the one with factorization. On the MELD dataset, the 2nd order
NTN without factorization achieves a slightly higher accuracy
(60.2%) than that (59.9%) with factorization. In conclusion, fac-
torization methods significantly reduce trainable parameters of
NTN without decreasing the overall performance.

MELD result. NTN variants surpass baseline methods by a large
margin on the multiparty conversation dataset MELD. However,
there is no big difference in the performance of NTN variants. The
introduction of the 2nd order terms of TNNS does not increase
the classification accuracy. The 3rd order NTN slightly improves
the classification accuracy, due to the 3rd order term of TNNS.
Similarly, the performance of the 1st order NTN is good enough.
One possible reason is that the relationships between the context
utterance and the current utterance are not very complicated so
that the 1st order NTN can capture most of these relationships.
Another reason is that the average MELD conversation length is
10 utterances, with more than 5 participants in many conver-
sations, which means that the connections between the current
utterance and the adjacent utterances are further weakened. In
this case, it does not make much sense to use the high order NTN
to approximate complicated functions.

Ablation study and parameter analysis. To further study the influ-
nce of each term of NTN on the CSA task, we perform an ablation
tudy on the IEMOCAP dataset and display the results in Table 5.
t indicates that the 1st order term plays an important role in
ontext compositionality of the CSA task. If removing the 1st
rder term from NTN, its performance on the IEMOCAP dataset
rop dramatically. The 2nd and 3rd order terms may slightly im-
rove or weaken the performance of NTN. There are two possible
easons for this phenomenon. Firstly, the 2nd and 3rd order terms
ntroduce a large number of parameters that require more data
6

Table 5
Results of ablated NTN on IEMOCAP dataset. Accuracy and F1-score are weighted
average.
The 1st The 2nd The 3rd Acc. F1-score
order term order term order term

+ − − 65.13 63.84
+ + − 65.00 63.47
+ + + 65.43 64.37
− + − 24.68 14.62
− + + 23.66 9.05
− − + 24.58 11.53

Fig. 3. Accuracy of three NTN variants on IEMOCAP dataset with different
number of slices.

samples in the training phase. Secondly, the number of slices is
enough for the 1st order NTN to capture the interactions between
two utterances so that the gain of the 2nd and 3rd order terms
are relatively small. We also conduct parameter analysis for the
number of slices on the IEMOCAP dataset. As shown in Fig. 3, the
influence of slice number on three NTN variants are almost the
same. The performance of NTN variants improves dramatically
as slice number increases from 5 to 15, which indicates that
employing more slices enables the model to capture more re-
lationships between two utterances from different perspectives.
Besides, the accuracy of the 3rd order NTN is slightly better than
those of the 2nd order and 1st order NTN within the interval [5,
5]. Then, the performance of NTN variants fluctuates from 63.5%
o 65.5%, which shows that slice number is enough and adding
dditional slice cannot further improve the overall performance
o some extent. Here, the optimal interval of slice number ranges
rom 45 to 55 based on the parameter analysis. Nevertheless, the
ptimal parameter interval of slice number may vary from dataset
o dataset as well as task to task.

oNLL result. For NER, we employ NTN to combine the pre-
rained 100 dimensional word-level embedding ew1 and CNN or

1 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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able 6
xperimental results on CoNLL dataset.
Method Character Dev Test

Embedding F1-score F1-score

The 1st order NTN BiLSTM 0.875 0.798
CNN 0.869 0.795

The 2nd order NTN BiLSTM 0.883 0.810
CNN 0.879 0.809

BiLSTM generated 50 dimensional character-level representation
ec .2 In general, character-level representation is less informative
and is considered complementary for word-level embedding. As
shown in Table 6, the overall performance of the 2nd order NTN
is slightly better than that of the 1st order NTN on both dev
and test sets. The structure of the LSTM-CNNs-CRF model is quite
complex and NTN accounts for only one layer of the whole model.
Therefore, NTN variants have a small impact on the final classifi-
cation results. Different from the CSA task, word and character
embedding dimensions are not equal and eT = [ew

i
T , ecj

T
] in

formula (2) are unbalanced in this case. This is an extension of
the existing NTN models and complies with the theoretical basis
of Taylor’s theorem.

WordNet result. Both the aforementioned models for CSA and
NER tasks have complicated structures where NTN accounts for
only one layer of the whole model. In this case, the difference
between the performance of NTN variants is relatively minor. To
this end, we conduct experiments on KBC to directly study the
properties of NTN variants. To be specific, our goal is to predict
correct facts in the manner of relations (e1, R, e2) in the testing
ataset. As illustrated in Table 7, the introduction of the 2nd order
NNS term dramatically improves the triplet classification results
n the WordNet dataset. We also compare the performance of
wo different forms of the 2nd order NTN, where form one is
escribed in formula (1) and form two is defined in formula (2).
he result indicates that form two has slightly better accuracy as
ompared with form one. One possible reason is that the former
as more trainable parameters. Supposing that the dimension
f the form one is (d, d, k), where d is the dimension of entity
mbedding and k the slice number. In this case, the dimension of
orm two is (2d, 2d, k). Given d = 100, k = 3 and Relation =

1, the parameters of form one and form two are 330 K and
320 K respectively. However, it is more sensible to use form
ne instead of form two in this situation considering the limited
mprovement in accuracy and rapidly increasing parameters. The
efault activation function is tanh and we replace it with identity
ctivation function. Experimental results show that the influence
f activation function on the performance of NTN variants is rela-
ively small in most cases. For the 1st order NTN, tanh activation
unction improves the overall performance by a small margin.
his is because the activation function increases the representa-
ion capability for approximating non-linear functions. However,
he influence of the activation function on the 2nd order NTN
s more complex. The 2nd order TNNS term provides non-linear
epresentation ability for the models. Therefore, some 2nd order
odels with identity activation even get better performance on
oth datasets.

reebase result. As shown in Table 7, form one and form two get
lmost the same results on the Freebase dataset, which shows
hat the 2nd order NTN models are competent for relation triplet
lassification. It is worth noting that the numbers of relations on
raining and testing sets are different and six relations that are

2 100 dimensional word-level embedding and 50 dimensional character-level
mbedding are the default setting in [38].
7

Table 7
Relation triplet classification results on WordNet and Freebase datasets.
Method WordNet Freebase

The 1st order NTN 0.704 0.824
The 1st order NTN* 0.695 0.818
The 2nd order NTN (form two) 0.831 0.837
The 2nd order NTN* (form two) 0.824 0.826
The 2nd order NTN (form one) 0.827 0.828
The 2nd order NTN* (form one) 0.817 0.832
The 2nd order term (form two) 0.837 0.663
The 2nd order term* (form two) 0.840 0.737
The 2nd order term (form one) 0.848 0.672
The 2nd order term* (form one) 0.810 0.711

*is a mark for identity activation function.

hard to predict are removed from the testing set according to [10].
In this case, the 2nd order NTN models, namely form one and
form two, outperform the 1st order NTN by only a small margin.
Nevertheless, given the optimal hyper-parameters, the accuracy
of form one surpasses the 1st order NTN by about 5% (reported
by [10]). Besides, if we only use the 2nd order NTN term for
classification, then form one and form two become special cases
of the 2nd order NTN models where VR and bR are k slices of zero
vectors. However, the performances of such special cases are not
stable across different datasets. They are slightly better than the
2nd order NTN models on WordNet while are largely worse than
the latter on Freebase, which indicates that the performances of
special cases strongly depend on data. In contrast, the 2nd order
NTN models show robust performance on both datasets, which
demonstrates the superiority of the 2nd order NTN on the KBC
task. Here, tanh and identity activation functions show a similar
impact as they do on the WordNet dataset.

5. Conclusion

In this paper, we provide the mathematical explanation of NTN
and also reveal the inner link between NTN and other models,
e.g., feedforward neural network and attention mechanism, from
the perspective of Taylor’s theorem. In this situation, each Taylor
neural network slice (TNNS) in NTN is regarded as a 2nd order
multivariate Taylor polynomial while a 1st order NTN is equal to
a feedforward neural network. Based on the theoretical analysis
of NTN, we further propose factorization methods for parameter-
efficiency. Moreover, we bring two forms of NTN together into a
unified framework on the basis of the block matrix. Additionally,
the 3rd order NTN is presented and tested in this paper.

The empirical studies performed on conversational sentiment
analysis, named entity recognition and knowledge base comple-
tion tasks provide some valuable insights into NTN. Specifically,
the 1st order NTN achieves competitive performance in most
cases; the kth order TNNS introduces non-linearity into the kth
order NTN when k ≥ 2, which accounts for the good results of
NTN with identity activation function; besides, form one obtains
comparable performance against that of form two with much
fewer parameters in most cases; the performance of the 2nd
order NTN term is not stable across different datasets; when
slice number is small, increasing the order of NTN benefits the
performance whereas it is trivial to increase the order of NTN
under the condition of a large slice number.

In summary, the mathematical deduction and the architecture
analysis may enable readers to understand NTN more deeply
and provide some guidance for designing NTN related models.
Moreover, factorization is an effective attempt towards reducing
the computation complexity of NTN. Last but not least, the pro-
posed 3rd order TNNS term provides insights for the performance
improvement of NTN related models.
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Besides the aforementioned three NLP tasks, NTN related
structures can also be used for some other tasks such as seman-
tic compositionality, ranking the recommendations, community-
based question answering. In general, NTN can be applied to any
task involving the capture of entity relationships. In the future re-
search, we plan to further discuss the optimal hyper-parameters
in NTN based structures, and explore the relationships between
NTN and some other deep learning structures.
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