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Abstract

Recently, Large Language Models (LLMs)
have dominated much of the artificial intel-
ligence scene with their ability to process
and generate natural languages. However,
the majority of LLM research and develop-
ment remains English-centric, leaving low-
resource languages such as those in the South-
east Asian (SEA) region under-represented. To
address this representation gap, we introduce
Llama-SEA-LION-v3-8B-IT and Gemma-
SEA-LION-v3-9B-IT, two cutting-edge mul-
tilingual LLMs designed for SEA languages.
The SEA-LION family of LLMs supports 11
SEA languages, namely English, Chinese, In-
donesian, Vietnamese, Malay, Thai, Burmese,
Lao, Filipino, Tamil, and Khmer. Our work
leverages large-scale multilingual continued
pre-training with a comprehensive post-training
regime involving multiple stages of instruc-
tion fine-tuning, alignment, and model merging.
Evaluation results on multilingual benchmarks
indicate that our models achieve state-of-the-art
performance across LLMs supporting SEA lan-
guages. We open-source the models' to benefit
the wider SEA community.

1 Introduction

Large language models (LLMs) have significantly
transformed the field of natural language process-
ing, achieving remarkable performance in text
generation, summarization and sentiment analy-
sis (Brown et al., 2020; OpenAl, 2023; Dubey et al.,
2024; Riviere et al., 2024; Zhang et al., 2024b; Yeo
et al., 2024). Despite the impressive capabilities
of LLMs, the vast majority of them still are very
much English-centric (Wendler et al., 2024; Zhong
et al., 2024).
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Unfortunately, this situation has led LLMs in re-
gions with many under-represented languages such
as SouthEast Asia (SEA) to suffer. Languages with
lower resources, such as Filipino, Lao, Burmese
and Khmer in the SEA region, are not supported
by many open-source English-centric LLMs such
as Llama (Dubey et al., 2024) and Olmo (Groen-
eveld et al., 2024). This raises a pressing need to
mitigate this language resource and representation
gap between English and SEA languages.

Recently, there have been many attempts to cre-
ate multilingual LLMs in an open-source manner.
For instance, BLOOM (Scao et al., 2022) was
a project aimed at increasing multilingual pres-
ence in open-source LL.Ms by supporting 46 nat-
ural languages. Popular LLM families such as
Llama (Dubey et al., 2024), Gemma (Riviere et al.,
2024) and Qwen (Yang et al., 2024a) have also
introduced multilingual LLMs for their latest it-
eration. During our evaluations, we found that
the performance of these models is acceptable in
the general case, i.e., the evaluation benchmark is
formulated from English datasets, but it performs
poorly on SEA-specific benchmarks.

Moreover, researchers have also introduced LLMs
such as SeaLLM (Nguyen et al., 2024; Zhang et al.,
2024a) and Sailor (Dou et al., 2024) to specifically
address the LLM gap in SEA languages. How-
ever, the performance of these models is less than
ideal for under-represented languages like Thai or
Tamil? (10X et al., 2024; AI Products Team, 2024).

In this paper, we address the issues by proposing
a robust open-source SEA model with data trans-
parency for reproducibility, namely SEA-LION —
a family of LLMs CPT and fine-tuned on Llama-

Tamil is one of the official languages in Singapore. It is
also spoken in other areas in the SEA region, such as Malaysia.
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3.1-8B-Instruct and Gemma-2-9B with a focus on
SEA languages. To tackle the performance prob-
lem, we utilize 200 billion English, code and SEA
languages tokens as well as 16.8 million English
and SEA languages instruction and answer pairs for
CPT and post-training steps respectively, to achieve
a significant improvement in SEA languages. In
order to allow our models to be used by everyone
without restrictions, we release our models under a
fully open MIT license. We benchmark our models
against the SEA-HELM? (Susanto et al., 2025) and
Open LLM Leaderboard* with other SEA LLMs
of similar sizes like Sailor 2 (Team, 2024a) and
SealLLM3 (Zhang et al., 2024a) where our models
achieve state-of-the-art performances. We summa-
rize the contribution of our paper as follows.

* We released two LLMs, Llama-SEA-LION-
v3-8B-IT and Gemma-SEA-LION-v3-9B-IT,
that are meticulously trained to accurately rep-
resent the unique linguistic diversity of SEA
languages.

* We also provide in-depth insights in this paper
into our end-to-end training workflow to benefit
the community developing multilingual LLMs.

2 Continued pre-training (CPT)
2.1 Pre-training data

The continued pre-training (CPT) data consists of
a curated set of English, multilingual and code
corpora from several open source repositories like
Dolma (Soldaini et al., 2024), FineWeb (Penedo
et al., 2024), the-stackv2 (Lozhkov et al., 2024),
SEA-LION-Pile (Singapore, 2023), SEA-LION-
Pile-v2 (Singapore, 2025), as well as documents
from CommonCrawl (CommonCrawl, 2024) and
from the public domain such as Wikipedia (Foun-
dation, 2024). For SEA-LION-Pilev2, we filter
CommonCrawl WARC data for documents in SEA
languages (i.e., Burmese, Simplified Chinese, In-
donesian, Khmer, Lao, Malay, Filipino, Tamil, Thai
and Vietnamese) using the pretrained fasttext lan-
guage classifier (Joulin et al., 2017). A document
is retained if the language code reported in its meta-
data matches with that of one of the aforementioned
SEA languages. Additionally, we further clean up
the data with Trafilatura (Barbaresi, 2021).

To determine the best dataset ratio between SEA
languages, code and English for the CPT process,
we perform a series of small-scale CPT experi-
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ments each with a training budget of 10B tokens
and varying proportions of English, code and SEA
language data. We settled on an optimal data mix
ratio of 55% SEA languages, 25% English and 20%
Code tokens for a budget of 200B tokens. For a de-
tailed breakdown of the token count by languages,
please refer to model card®.

2.2 Continued pre-training (CPT) process

Model selection. For the models to CPT from, we
choose Llama-3.1-8B-Instruct (Dubey et al., 2024)
and Gemma-2-9B (Riviere et al., 2024).

Training setup. Following previous works (Dou
et al., 2024), we use BPE-Dropout (Provilkov
et al., 2020) to increase the performance and ro-
bustness of the training. We use a Warmup-Stable-
Decay (WSD) (Hu et al., 2024) scheduler with
warm-up and cooldown phases each representing
10% of the entire training budget. We use the
AdamW (Loshchilov and Hutter, 2019) optimiser
with the maximum learning rate (LR) set to 1le=
and the final LR after cooldown is le~". Fol-
lowing Wortsman et al. (2024), we set epsilon to
le—15. We use Composer (Team, 2021) and LLM
Foundry (Team, 2022) for distributed training us-
ing Fully Sharded Data Parallel (Zhao et al., 2023)
on a cluster of eight nodes of the p5.48xlarge in-
stance from Amazon Web Services (AWS). The to-
tal training duration was approximately 6 days and
10 days for the Llama 3.1 and Gemma 2 models,
respectively. In this paper, we refer to the post-CPT
models as Llama-SEA-LION-v3-8B and Gemma-
SEA-LION-v3-9B for the Llama 3.1 and Gemma 2
continued pre-trained models respectively.

3 Post-training

3.1 Post-training data

The post-training data for instruction fine-tuning
consists of Infinity-Instruct [Foundation and
Chat] (of Artificial Intelligence, 2024), OpenMath-
Instruct 2 (Toshniwal et al., 2024) and our own
SEA-Instruct. In particular, SEA-Instruct con-
sists of multiple open-source instruction datasets,
a synthetically generated dataset following the
Magpie (Xu et al., 2024) template, and hand-
crafted datasets collected from native Southeast
Asians. The full detail of the SEA-Instruct and
SEA-Preference dataset can be found in the model
card®.

>Gemma-SEA-LION-v3-9B Model Card

5Gemma-SEA-LION-v3-9B-IT Model Card
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Figure 1: Training process of Llama-SEA-LION-v3-
8B-IT (Section 3.2.1). The post-training process con-
sists of 2 stages of instruction fine-tuning, an alignment
stage and multiple merge stages. Dotted lines denote a
merge stage and solid lines denote an alignment stage.

3.2 Post-training process

We use LLaMaFactory (Zheng et al., 2024b) with
DeepSpeed (Rasley et al., 2020) for all Instruc-
tion Fine Tuning (IFT) and alignment steps. All
IFT stages are performed using full model fine-
tuning where the models are from the previous
step (Section 2.2) and existing models. We use
MergeKit (Goddard et al., 2024) with a value of
1 for weight and density parameters for all merge
steps. Models selected for merging are selected em-
pirically, based on the openness of model licenses,
the suitability for merging and performance.

3.2.1 Llama-SEA-LION-v3-8B-IT

Stage 1 IFT As shown in Figure 1, we started off
the post-training phase with IFT of Llama-SEA-
LION-v3-8B with the Infinity Instruct (Founda-
tion) (of Artificial Intelligence, 2024) and Open-
MathInstruct2 (Toshniwal et al., 2024) datasets.
Both datasets contain approximately 9.5 million
instruction pairs, primarily in English and centered
around reasoning, math, and code. We refer to the
model at this stage as Stage-1-Llama.

Stage 2 IFT We performed a second round of
IFT using the SEA-Instruct dataset, which con-
sists of approximately 7.3 million instruction pairs,
of which 5 million instruction pairs are gener-
ated using the Gemma-2-27B-Instruct (Riviere
et al., 2024) model and the Qwen2.5-32B-Instruct
model (Yang et al., 2024a) in SEA languages. The
remaining are English language instruction pairs
from the Infinity-Instruct (Chat) (of Artificial In-
telligence, 2024) dataset. We refer to the model at
this stage as Stage-2-Llama.

First merge After finishing the IFT stages, we
performed the first of a series of merges by merging
Stage-1-Llama and Stage-2-Llama into the Llama-
SEA-LION-v3-8B using the DARE TIES (Yu et al.,
2024; Ilharco et al., 2023) method. We refer to the
model at this stage as Merge-1-Llama.

Second merge In order to mitigate catastrophic
forgetting due to the fine-tuning process (Alexan-
drov et al., 2024), we performed the second round
of merge by merging top-performing instruction-
tuned models that share the Llama 3.1 lineage. We
merge the original Llama-3.1-8B-Instruct, Llama3-
8B-SEA-LION-v2.1-Instruct (Team, 2024b), and
SuperNova-Lite (Arcee-Al, 2024) into Merge-1-
Llama using the Consensus TA (Wang et al., 2024b;
Ilharco et al., 2023) merge method. We refer to the
model at this stage as Merge-2-Llama.
Helpfulness and preference alignmentWe per-
formed one round of alignment on Merge-2-Llama
using SimPO (Meng et al., 2024) with the SEA-
Preference dataset. We refer to the model at this
stage as Aligned-SimPO-Llama.

Final merge Lastly, we perform a merge using the
DELLA-Linear merge. With the original Llama-
3.1-8B-Instruct model as the base for merging,
we merge in Merge-2-Llama and Aligned-SimPO-
Llama to produce the final model, Llama-SEA-
LION-v3-9B-IT.

3.2.2 Gemma-SEA-LION-v3-9B-IT
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Figure 2: Training process of Gemma-SEA-LION-v3-
9B-IT (Section 3.2.2). The post-training process com-
prises two stages of instruction fine-tuning, an alignment
stage, and multiple merge stages. Dotted lines denote a
merge stage and solid lines denote an alignment stage.

Stage 1 and Stage 2 IFT Similar to the Llama-SEA-
LION-v3-8B-IT, we started off the post-training
phase with both stages of IFT using the same
datasets on the Gemma-2-9B model (Riviere
et al., 2024). We refer to both models at stage



1 and stage 2 as Stage-1-Gemma and Stage-2-
Gemma, respectively. First merge We merge
the Gemma-2-9B, Gemma-2-9B-IT (Riviere et al.,
2024), Stage-1-Gemma and Stage-2-Gemma to-
gether using the DELLA Linear method. We
refer to the model at this stage as the Merge-1-
Gemma. Helpfulness and preference alignment
Using the Merge-1-Gemma as the base model, we
performed one round of alignment using SimPO
with the SEA-Preference dataset. We refer to
the model at this stage as the Aligned-SimPO-
Gemma. Final merge Finally, using the Gemma-
2-9B model as the base model, we merged Merge-
1-Gemma, FuseChat Gemma-2-9B-Instruct (Yang
et al., 2024b), Gemma-SEA-LION-v3-9B, and
Aligned-SimPO-Gemma into it to produce the final
model Gemma-SEA-LION-v3-9B-IT.

3.3 Discussion

This post-training workflow emphasizes the careful
balance between general capabilities, SEA-specific
linguistic fluency, and natural conversational abil-
ities. Each step in the workflow is designed to
progressively refine the model, ensuring it meets
the diverse needs of users in the Southeast Asian
region.

The entire post-training process for Gemma-
SEA-LION-v3-9B-IT and Llama-SEA-LION-v3-
8B-IT took approximately 1350 and 1024 GPU
hours respectively on eight H100 GPUs. To make
the training efficient, all post-training steps utilize
Liger Kernel (Hsu et al., 2024) for substantial mem-
ory savings of approximately 60%.

4 Experimental Setup and Results
4.1 Setup

For the evaluation, we compared our models
against SEA and well-known LLMs, such as
SeaLLMv3 (Zhang et al., 2024a), Sailorv2 (Team,
2024a), Owen 2.5 (Yang et al., 2024a), Gemma
2 (Riviere et al., 2024) and Llama 3.1 (Dubey et al.,
2024) where the parameters of those models are
less than 10 billion parameters, similar to our mod-
els. The evaluations are split into two areas as
follows.

Multilingual performance. We evaluated the mul-
tilingual performance of each LLM using the SEA-
HELM Leaderboard (Susanto et al., 2025; Leong
et al., 2023). Due to the lack of proper benchmarks
for low-resource languages (e.g. Lao, Khmer, Fil-
ipino), we only benchmarked the languages cov-

ered in the SEA-HELM leaderboard, which are
Indonesian, Tamil, Thai, and Vietnamese. We se-
lected SEA-HELM because the design choice of
this benchmark reflects the performance of SEA
culture and knowledge the most compared with
other existing benchmarks (Lovenia et al., 2024;
Wang et al., 2024a; DAMO-NLP-SG, 2024). We
used the evaluation code from the official website’
without any changes.

English performance. We evaluated the English
performance of the models using the Open LLM
Leaderboard (HuggingFace, 2024). The leader-
board consists of six benchmarks, IFEval (Zhou
et al., 2023), Big Bench Hard (Suzgun et al., 2023),
MATH (Hendrycks et al., 2021), GPQA (Rein et al.,
2023), MuSR (Sprague et al., 2024) and MMLU-
PRO (Wang et al., 2024c¢).

4.2 Results

Multilingual performance. As shown in Table 1,
the SEA-HELM benchmark performance demon-
strates that our instruct models, Llama-SEA-LION-
v3-8B-IT and Gemma-SEA-LION-v3-9B-IT, attain
competitive performance in SEA languages, with
Gemma-SEA-LION-v3-9B-IT achieving one of the
highest average performances. Both Liama-SEA-
LION-v3-8B-IT and Gemma-SEA-LION-v3-9B-IT
outperform other SEA languages-focused LLMs,
such as Sailor2-8B-Chat and SEALLMs-v3-7B-
Chat, with an average score of 69.35 across all the
languages covered by the SEA-HELM benchmark
apart from the SEA-MTBench tasks.

English performance. The Open LLM Leader-
board performance is shown in Table 2. Both
Llama-SEA-LION-v3-8B-IT and Gemma-SEA-
LION-v3-9B-IT performed competitively in En-
glish language, math, and reasoning tasks, with
Gemma-SEA-LION-v3-9B-IT achieving the highest
average score of 35.43.

4.3 Performance Analysis

Continued Pre-Training The CPT stage is pri-
marily focused on gaining SEA languages capabil-
ities and knowledge. For the purpose of compari-
son against base and CPT models, we observed a
6.05 and 7.19 average SEA-HELM performance in-
crease over the Meta-Llama-3.1-8B and Gemma-2-
9B for Llama-SEA-LION-v3-8B and Gemma-SEA-
LION-v3-9B, respectively. We observed a much
larger average increase with instruction following

"SEA-HELM Repository
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SEA-HELM

NLU, NLG, NLR, NLI Instruction Following MTBench

Models Average | ID VI TH TA 1D VI TH 1D VI TH

SealLLMs-v3-7B-Chat 39.19 4272 48.50 4259 12.06 | 57.14 53.33 47.00 | 59.81 65.24 56.59
Llama-3.1-8B-Instruct 41.48 51.50 51.31 4532 1540 | 77.14 17524 63.00 | 56.38 57.59 54.34
Sailor2-8B-Chat 43.13 4898 48.01 4544 2829 | 49.52 4571 40.00 | 69.76 66.97 73.94
Qwen2.5-7B-Instruct 44.58 60.28 5346 53.43 21.03 | 81.90 69.52 66.00 | 65.66 66.80 68.71
Gemma-2-9B-IT 55.33 64.04 59.86 57.22 5228 | 88.57 78.10 71.00 | 68.78 68.37 73.51
Stage-1-Llama 50.76 51.84 51.83 46.23 27.53 | 69.52 73.33 59.00 | 42.74 4641 46.46
Stage-2-Llama 59.49 53.87 55.18 5092 4480 | 77.14 76.19 67.00 | 5090 53.72 46.97
Merge-1-Llama 59.36 56.73 56.82 51.771 46.63 | 81.90 82.86 67.00 | 57.04 54.01 50.28
Merge-2-Llama 58.01 59.19 52.63 51.89 3540 | 87.62 8095 78.00 | 56.38 59.32 58.86
Aligned-SimPO-Llama 51.30 5486 51.69 46.77 26.40 | 82.86 80.00 68.00 | 68.20 64.68 64.92
Llama-SEA-LION-v3-8B-IT 61.84 60.50 61.48 5592 4361 | 84.76 8571 76.00 | 62.65 68.32 65.13
Stage-1-Gemma 56.56 55.06 54.51 5196 4274 | 66.67 7429 61.00 | 47.35 47.26 55.05
Stage-2-Gemma 66.66 64.10 61.76 5690 57.85 | 89.52 82.86 76.00 | 60.54 58.93 58.76
Merge-1-Gemma 69.26 66.25 6495 59.74 6041 | 89.52 9143 82.00 | 6645 64.47 65.00
Aligned-SimPO-Gemma 69.37 65.69 6547 59.51 5738 | 86.67 8857 78.00 | 68.89 73.67 73.51
Gemma-SEA-LION-v3-9B-IT  69.35 66.26 6493 59.23 5882 | 94.29 8857 78.00 | 65.85 73.27 69.07

Table 1: SEA-HELM multilingual benchmark on NLU, NLG, NLR, NLI, instruction following and multi-turn chat
on instruct models of similar sizes.

Open LLM Leaderboard

Models Average MMLU-PRO BBH GPQA MATHLvlIS IFEval (EN) MUSR
Sailor2-8B-Chat 16.37 27.93 27.15  3.47 0.00 37.49 2.19
SealLLMs-v3-7B-Chat 22.49 33.93 2437  7.27 15.86 44.10 9.38
Llama-3.1-8B-Instruct 27.88 29.36 26.10 10.63 17.45 77.03 6.75
Qwen2.5-7B-Instruct 27.93 37.00 3472 10.18 0.00 76.34 9.34
Gemma-2-9B-1T 28.86 31.95 4214  14.77 0.23 74.36 9.74
Stage-1-Llama 24.51 25.87 2632 7.83 19.26 62.89 4.88
Stage-2-Llama 27.75 28.10 2464 772 19.56 78.78 7.74
Merge-1-Llama 27.49 27.47 26.22  8.28 19.79 76.16 7.04
Merge-2-Llama 29.96 29.92 28.78  9.96 19.94 82.61 8.54
Aligned-SimPO-Llama 30.58 30.84 3431 839 26.59 75.76 7.61
Llama-SEA-LION-v3-8B-IT 30.39 31.01 2947 10.40 22.58 80.35 8.54
Stage-1-Gemma 29.88 33.34 38.51 10.74 24.17 56.87 15.66
Stage-2-Gemma 33.48 34.67 36.06 11.74 20.77 83.00 14.61
Merge-1-Gemma 35.15 36.22 4142 1532 26.28 82.09 9.59
Aligned-SimPO-Gemma 35.31 37.65 4238 14.99 27.79 80.23 8.82
Gemma-SEA-LION-v3-9B-IT 3543 36.94 4339 15.10 24.24 81.85 11.07

Table 2: Open LLM Leaderboard benchmarks across different instruct models of similar sizes.

capabilities in particular, which we attribute to the
fact that our CPT models are trained from the in-
struct models rather than from the base models.
Both CPT models also managed to perform compet-
itively against the Meta-Llama-3.1-8B and Gemma-
2-9B base models on the Open LLM Leaderboard
benchmarks. This indicates that our choice of re-
training with a proportion of 25% English tokens
has been beneficial in mitigating catastrophic for-
getting which has been shown (Zheng et al., 2024a)
to stem from CPT.

As shown in Table 1, we chose Gemma since it
is the most performant on multilingual benchmarks.
However, we also show that our framework general-
izes for every LLM by applying our framework on
Llama3.1; although the performance of Llama3.1 is

lower than QWEN or Sailor, we can still improve it
to outperform all of them. Note that we have shown
the full performance score of our CPT models and
other base models in Appendix A.1.

Stage 1: English instruction fine tuning In Stage
1 IFT, the focus is predominantly on gaining gen-
eral capabilities in math, code and general instruc-
tion following in the English language. Although
our CPT models are based off of the instruct ver-
sions of Llama-3.1-8B, the CPT process has eroded
the instruction following capabilities (See Table 2).
We observe an increase of 3.86 and 9.72 for Stage-
1-Llama and Stage-1-Gemma respectively in En-
glish instruction following capabilities on the IFE-
val benchmark. We also observe an average in-
crease of 7.9 for Stage-1-Llama and 7.47 for Stage-



1-Gemma for the SEA-HELM benchmark.

Stage 2: Multilingual instruction fine tuning In
Stage 2 IFT, the focus is on multilingual and rea-
soning capabilities. By instruction fine tuning on
SEA languages and higher complexity English in-
struction pairs, the Stage 2 models saw an average
increase of 8.73 for Stage-2-Llama and 10.1 for
Stage-2-Gemma over Stage 1 models on the SEA-
HELM benchmark.

Merge 1: Combining Stage 1 and Stage 2 De-
spite the significant gains observed in Stage 1 and
2, we observed that the effects of catastrophic for-
getting from earlier stages could still be observed
after Stage 2. In order to mitigate this, we merge
Stage 1 and Stage 2 models into the CPT model,
after which we we observed an average increase
of 2.6 for Merge-1-Gemma. We also observed an
increase across all SEA-HELM benchmark tasks
for Merge-1-Llama.

Merge 2: Incorporating instruct models To rein-
troduce talkativeness and helpfulness observed in
Llama 3.1 and Gemma 2 models, we perform fur-
ther merges of open-source instruct models. While
we observed significant increases in MT-Bench
benchmark scores for Vietnamese and Thai, we
also observed a slight degradation of average SEA-
HELM performance as well as a slight degradation
of Indonesian MTBench scores, which we view as
acceptable tradeoffs for the significant performance
increases in Vietnamese and Thai. Note that, due
to Merge-1-Gemma already demonstrating great
performance across the SEA-HELM benchmark,
we choose to skip this step for the Gemma model.
Alignment steps In the alignment step to align the
models to human preference, we prioritize the SEA
MTBench performance over the other SEA-HELM
benchmark tasks. We observed a broad increase in
SEA MTBench performances across all languages
for both models. However, this comes with minor
degradation of instruction following capabilities
and overall Indonesian SEA-HELM performance.
The alignment step significantly pushes the model
towards longer, more helpful and sensitive re-
sponses, but also compromises performance in
more task-specific benchmarks and instruction fol-
lowing in some languages, which we try to resolve
in the next step.

Final merge: Combining aligned models To com-
pensate for the capability degradation in the previ-
ous steps, we merge Merge-2-Llama and Merge-1-
Gemma with Aligned-SimPO-Llama and Aligned-
SimPO-Gemma and various open sourced pre-

trained models describe in sections 3.2.1 and 3.2.2
for their respective model families. For Llama-
SEA-LION-v3-8B-IT, we observed a significant in-
crease in average SEA-HELM performance (61.84)
from the alignment stage (51.30), mainly from the
increase in performance for the core tasks in SEA-
HELM. This performance increase demonstrate the
value of empirical selection of pre-trained models
to merged by each model’s strength and weakness
to produce a far superior model. For Gemma-SEA-
LION-v3-9B-IT, it easily achieve higher perfor-
mance compared to the Llama-SEA-LION-v3-8B-
IT with fewer post training steps. We attribute this
performance to the high performance of the base
Gemma 2 model and partly due to the higher vocab-
ulary size which have been demonstrated (Takase
et al., 2024) to produce better models.

5 Conclusion

Despite the sizable population and language di-
versity in Southeast Asia, there remains a scarcity
of resources and accurate linguistic representation
with open source LLMs. In this paper, we intro-
duce SEA-LION-v3, two state-of-the-art multilin-
gual LLMs based on the Llama and Gemma family
of LLMs. SEA-LION represents the next advance-
ment in the development of LLMs that explicitly
supports SEA languages. Due to our comprehen-
sive approach to CPT and post training, Llama-
SEA-LION-v3-8B-IT and Gemma-SEA-LION-v3-
9B-IT achieve state-of-the-art performance in SEA
languages. Both models are fully open-source and
available for commercial use to increase accessibil-
ity and innovation in multilingual LLMs in South-
east Asia.

SEA-LION.AI

South East Asian Languages in One Network

Figure 3: SEA-LION logo and official website.
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A Appendix

A.1 Benchmarks for Continued Pretrained Models

SEA-HELM

NLU, NLG, NLR, NLI Instruction Following
Models Average ID VI TH TA ID VI TH
Meta-Llama-3.1-8B 3537 4233 40.67 35.13 3888 16.19 19.05 9.00
SealLLMs-v3-7B 37.04 4479 4829 4353 2745 26.67 3524 26.00
Gemma-2-9B 41.48  47.65 4328 42,00 5326 476 3.81 10.00
Qwen2.5-7B 41.98 51.63 52.17 46.55 36.60 3143 36.19 30.00
Sailor2-8B 42.62 5323 47.33 46.64 45.04 3048 3048 35.00

Llama-SEA-LION-v3-8B 4142 4498 46.25 42779 43.03 2571 32.38 23.00
Gemma-SEA-LION-v3-9B  48.67 57.16 49.39 47.16 60.56 2571 20.00 27.00

Table 3: SEA-HELM multilingual benchmark on NLU, NLG, NLR, NLI and instruction following on base and
continued pre-trained models of similar sizes.

Open LLM Leaderboard
Models Average MMLU-PRO BBH GPQA MATHLvl5 IFEval (EN) MUSR
Meta-Llama-3.1-8B 13.9 24.95 2529  6.32 5.14 12.7 8.98
Sailor2-8B 17.71 25.74 27.62  4.87 7.02 21.95 19.03
Gemma-2-9B 21.15 34.48 34.1 10.51 13.14 20.4 14.3
SealLLMs-v3-7B 24.00 35.71 3457 9.28 18.81 32.94 12.68
Qwen2.5-7B 24.99 37.39 35.81  9.96 18.88 33.74 14.14
Llama-SEA-LION-v3-8B 16.61 27.6 26.04  7.49 9.89 16.56 12.07
Gemma-SEA-LION-v3-9B  22.41 32.78 3724 10.29 9.89 30.12 14.11

Table 4: Open LLM Leaderboard benchmarks across different continued pre-trained models of similar sizes.

12



	Introduction
	Continued pre-training (CPT)
	Pre-training data
	Continued pre-training (CPT) process

	Post-training
	Post-training data
	Post-training process
	Llama-SEA-LION-v3-8B-IT
	Gemma-SEA-LION-v3-9B-IT

	Discussion

	Experimental Setup and Results
	Setup
	Results
	Performance Analysis

	Conclusion
	Appendix
	Benchmarks for Continued Pretrained Models


