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Abstract—Advanced natural language processing (NLP) mod-
els are increasingly applied in music composition and perfor-
mance, particularly in generating vocal melodies and simulating
singing voices. While NLP techniques have been successfully
used to analyze vocal performance data, providing insights into
performance quality and style, the automatic transcription of
vocal performances into sheet music remains a complex challenge.
Existing tools for manual transcription are often insufficient due
to the intricate dynamics of vocal expression. This study addresses
the challenge of automating the conversion of vocal performances
into sheet music using a combination of novel techniques, includ-
ing large language models (LLMs). We present a method that
successfully translates vocal audio input into display-ready sheet
music. Our findings highlight the strengths and limitations of
various approaches, particularly in the transcription of a cappella
performances into notes and lyrics. This research contributes to
the expanding field of NLP-driven music analysis and showcases
the potential of these models to revolutionize vocal transcription
in the future.

Index Terms—Natural Language Processing, Vocal Perfor-
mance, Automatic Music Transcription (AMT), Large Language
Models, Machine Learning, A Cappella, Lyric Transcription,
Sheet Music

I. INTRODUCTION

Advancements in machine learning (ML) and natural lan-
guage processing (NLP), particularly with large language
models (LLMs), are increasingly permeating a wide range of
research and application domains [4], [5], [16], [23], [50], [51].
Among these applications, aligning lyrics with musical notes
during transcription has emerged as a significant task [22],
[30], [36]. This process involves accurately mapping the
timing and content of lyrics to corresponding musical sections,
a task that demands sophisticated NLP models capable of
handling variations in pronunciation and tempo. Additionally,
NLP techniques are being applied to analyze the sentiment
and emotional tone of lyrics, providing deeper insights into
the emotional dimensions of vocal performances [39]. The
application of deep learning to analyze and transcribe vocal
performances into accurate sheet music is thus becoming a
focal point of research [46].
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The convergence of advanced NLP and music analysis has
sparked considerable interest due to the ability of modern
models to both interpret and generate musical content [11],
[30], [36]. Recent progress has enabled the development of
sophisticated systems that can generate vocal melodies and
simulate singing voices, offering new creative opportunities
for music composition and performance. These technologies
have begun to unlock novel creative possibilities for artists and
music producers alike.

However, despite notable advancements in utilizing NLP for
analyzing vocal performances—yielding insights into perfor-
mance quality, style, and emotional expression—the automated
conversion of vocal performances into sheet music remains
a complex and unsolved challenge. Existing software tools
provide some assistance for manual transcription, but the
nuanced and dynamic nature of vocal performances often
diminishes their efficacy [6]. As a result, automating the
transcription of vocal music into standardized notation is an
ongoing and pressing issue in this field.

This study aims to address this challenge by exploring
various automated methods for converting vocal performances
into sheet music, including LLMs. By evaluating the strengths
and limitations of various techniques, particularly in the tran-
scription of a cappella music, this research contributes to the
expanding body of literature on NLP and LLM applications
in music analysis. Ultimately, this work demonstrates the
limitations and transformative potential of LLMs to enhance
the interpretation of vocal performances and facilitate their
transformation into accessible musical notation, thereby en-
riching the music creation process.

The main contributions of this paper are as follows:

• This research proposes a novel method for converting
vocal performances, including a cappella music, into
sheet music, addressing a significant challenge in music
transcription.

• This research conducts a comprehensive comparative
analysis of various vocal isolation techniques crucial for
accurate transcription. This analysis outlines the strengths
and weaknesses of these methods, particularly in their
application to a cappella music transcription.
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• This study presents a framework for automating vocal
transcription into sheet music by incorporating advanced
techniques, including LLMs, to tackle the inherent com-
plexities of vocal performance transcription.

• Leveraging NLP techniques, this paper provides valuable
insights into the quality and stylistic elements of vocal
performances, offering a deeper understanding of their
impact on transcription accuracy.

• This research contributes to the expanding literature on
NLP and LLM applications in music analysis, highlight-
ing both the limitations and potential of these technolo-
gies in automating vocal performance transcription, and
identifying new avenues for future research.

II. EXISTING WORKS

The integration of NLP techniques, such as machine learn-
ing and LLMs, with music technology has garnered significant
attention in recent years, with numerous studies exploring
the potential applications of NLP techniques in music anal-
ysis, composition, and performance [11], [14]. Early research
focused primarily on using NLP to analyze lyrical content,
examining themes, sentiment, and stylistic elements within
song lyrics. These efforts laid the groundwork for more
complex interactions between language and music, particularly
as the capabilities of NLP models have evolved [29], [33].

Recent advancements in machine learning, especially with
the advent of deep learning and transformer-based models,
have expanded the scope of NLP applications in music [10],
[45]. Researchers have leveraged these models to generate
vocal melodies and simulate singing voices, demonstrating
the potential for creating innovative musical compositions
without human intervention. Notable projects include the use
of generative models to produce original music pieces, as well
as systems designed to enhance live performances through
real-time vocal synthesis.

Despite these promising developments, the task of convert-
ing vocal performances into sheet music remains a formidable
challenge [41]. Various software tools have been developed to
assist with manual transcription; however, the intricate nuances
of vocal expression—such as pitch variations, timing, and
phrasing—often evade accurate representation using conven-
tional methods. Studies indicate that while existing automated
transcription systems can be effective in certain contexts,
they struggle with the complexities of vocal performances,
particularly in genres that emphasize improvisation and a
cappella arrangements.

Recent research has started to explore the potential of
LLMs for music transcription [6], [11], [22]. These models
have shown promise in analyzing structured musical data and
generating corresponding notations. However, the application
of LLMs to transcribe vocal performances into sheet music
remains largely underexplored, presenting an opportunity to
advance the field by evaluating the strengths and limitations
of LLMs compared to traditional transcription methods. In
the domain of audio signal processing, key objectives such as
audio source separation and speech enhancement play a critical

role in isolating specific signals from complex recordings, a
prerequisite for accurate vocal transcription.

For the intricate task of separating an a cappella song into
six distinct vocal tracks (Lead Vocal, Soprano, Alto, Tenor,
Bass, and Vocal Percussion), our initial approach involved
using Non-negative Matrix Factorization (NMF), which has
demonstrated its efficacy in capturing complex audio struc-
tures [29]. However, our focus expanded to evaluate sev-
eral alternative methods, including Independent Low Ranking
Matrix Analysis (ILRMA), Convolutional Recurrent Neural
Network with Attention (CRNN-A), and Spleeter, each of
which brings unique strengths and capabilities, as detailed in
Section III-A. We aim to employ the most promising method
from this evaluation. This innovative approach, integrating
multiple techniques, effectively addresses the complexities
inherent in a cappella source separation [9].

Moreover, accurately assessing the fundamental frequency
(F0) during the conversion of audio WAV files to MIDI re-
mains a considerable challenge. [13]. Hidden Markov Models
(HMMs) and the Viterbi algorithm are popular in handling
sequence-to-sequence tasks in NLP domains. Such techniques
can effectively address complexities in extracting pitch, timing,
and duration information from audio signals. While fundamen-
tal frequency-based methods struggle with F0 inaccuracies,
HMMs provide a probabilistic framework adept at modelling
temporal dependencies within audio data [33]. Their distinct
advantage in handling intricate audio recordings contributes to
a more faithful MIDI representation [33]. Playing a pivotal role
in the decoding process within HMMs, the Viterbi algorithm
ensures precise alignment between observed audio data and
MIDI note sequences [2].

Similarly, speech-to-text conversion is a critical task within
the domain of NLP. Recent advancements in speech recog-
nition, such as OpenAI’s Whisper, have achieved notable
success, with a reported transcription accuracy of 98.5% for
spoken English [25]. This technology facilitates the conversion
of audio lyrics into text. The proposed workflow involves
rigorous text processing to correct transcription inaccuracies,
followed by the synchronization of lyrics with audio through
forced alignment techniques, such as the afaligner Python
package. This approach capitalizes on established technologies
to ensure precise and synchronized transcription of audio
content.

The subsequent conversion of MIDI to sheet music entails
the extraction of essential musical components from the MIDI
file, including notes, chords, time signatures, and key signa-
tures. The music21 Python package from MIT plays an integral
role in this process, facilitating the import of MIDI files and
the associated transcribed lyrics, which are then systematically
transformed into sheet music notation [9].

III. PROPOSED METHODOLOGY

As illustrated in Fig.1, the first proposed method consists
of a series of sequential processing steps (see Fig.1 (a)). The
process begins with audio preprocessing aimed at isolating
distinct vocal tracks. Subsequently, the isolated vocal track

446



Fig. 1. Overview of the Proposed Methods: (a) A multi-step music tran-
scription solution involving vocal isolation, vocal to MIDI and MIDI to Sheet
conversions; (b) An integrated solution for music transcription with LLMs

is converted from WAV format to MIDI. Also, the lyrics are
extracted specifically from the lead vocal track. In the final
stage, MIDI files are translated into musical notation, and the
extracted lyrics are aligned with their corresponding musical
notes to produce a complete sheet music representation. This
approach provides a structured and efficient methodology for
transcribing audio inputs, such as a cappella vocal record-
ings, into accurate and comprehensive sheet music. For this
study, we employ the Jacappella dataset, which contains 35
Japanese a cappella sheet music alongside corresponding vocal
audio recordings, including six distinct individual vocal parts’
recordings [48].

Fig. 1 (b) shows the LLM-based approach from the user’s
point of view. Research has been done on several LLM-
based methods and frameworks, typically involving general-
purpose Transformer models, that can assist in converting
vocal performances into sheet music. This approach envisions
an integrated solution for music transcription with fewer steps.

A. Vocal Isolation

The first step in Fig.1 (a) involves separating the vocal
tracks from a cappella songs. In this study, we attempted four
typical sound decomposition methods– Non-negative Matrix
Factorization (NMF) [24], Independent Low Ranking Matrix
Analysis (ILRMA) [20], [21], CRNN-A model [8], [53], and
Spleeter [15]. NMF effectively decomposes mixed sounds into
individual sources by capturing the non-negative and additive
characteristics of audio signals. ILRMA is recognized for
its high-quality blind source separation by assuming sources
are less dependent on time-frequency [19]. If we attempt
to split the tracks by speech, the CRNN-A model would
be a promising approach, as it combines a recurrent and a
convolutional neural network (CNN) for voice separation. [45].

Spleeter can be used to learn various vocal features as it uses
time-frequency (TF) masking, which filters the mixture of
Short-time Fourier transform (STFT) frequencies in a piece of
music, allowing for the selective isolation of desired elements
[15]. At the end of this whole process. the resulting isolated
audio tracks for a cappella song are obtained.

B. Vocal to MIDI

The second step of the proposed method (a) is to convert
each separated vocal track obtained from Vocal Separation
(Section III-A) into MIDI. In other words, we transformed the
WAV audio into MIDI format files, encapsulating the musical
notes and their timings into a digital representation. Various
methods are experimented with to convert using Python li-
braries such as Librosa [28], Aubio [1] and SciPy [49]. Each
attempt builds upon the shortcomings of the previous one,
incorporating more accurate pitch estimation methods, con-
sidering note duration and introducing probabilistic models.

The results were produced in an existing work that leverages
several signal processing techniques and probabilistic mod-
elling [47], including HMM, Viterbi Algorithm and PYIN. The
HMM transition matrix defines the probabilities of transition-
ing between different states (silence, onset, sustain) for each
note, while the prior probabilities are estimated from the input
audio signal using the PYIN pitch estimator [7], [27], which
considers pitch, voicing, and onset information. The Viterbi
algorithm is then applied, utilising the transition matrix and
prior probabilities, along with the insights from PYIN, to infer
the most likely sequence of musical states. An intermediate
piano-roll representation is constructed from this sequence,
detailing note onsets, offsets, pitches, and note names. A MIDI
file is then generated, incorporating tempo information. This
approach combines probabilistic modelling with detailed note
representation, enhancing the accuracy of the MIDI conversion
process.

C. MIDI to Sheet

The final step in Fig.1 (a) is to convert the MIDI format
into a piece of sheet music by utilising the versatile music21
Python library for music notation handling and analysis. The
MIDI files were first converted to MuseScore [52] format, a
widely used open-source music notation software, which al-
lows for the precise rendering of sheet music. Then, we add the
lyrics obtained by OpenAI’s Whisper automatic speech recog-
nition model. As a Transformer sequence-to-sequence model,
Whisper undergoes training on various speech-processing
tasks concurrently, such as multilingual speech recognition and
translation, spoken language identification, and voice activity
detection [37]. For transcription, Whisper segments the input
audio into 30-second intervals, converting each segment into
a log-Mel spectrogram, employing its decoder to predict the
text transcript word by word, utilising the informative visual
representation of audio signals. Eventually, by leveraging mu-
sic21, we can transform raw MIDI data into human-readable
sheet music in various formats, integrating lyrics and ensuring
an accurate representation of a cappella performances [9].
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D. Vocal Performances into Sheet Music using LLMs

In Fig. 1 (b), we present an integrated solution for music
transcription leveraging LLMs. The Multi-Task Multitrack
Music Transcription (MT3) [17] is a multi-instrument auto-
matic music transcription model based on the T5X frame-
work [40], a general-purpose Transformer model. While the
original framework was developed to handle a wide range of
instrumental combinations, our work specifically explores its
application in transcribing a cappella performances. Addition-
ally, we conducted several experiments with custom music
transcription models available through OpenAI’s ChatGPT
[34], utilizing GPT-4o [35] to evaluate their efficacy in this
domain.

IV. EXPERIMENT RESULTS AND DISCUSSION

A. Dataset Specifcations

The Ja Cappella dataset [31] is used to develop and evaluate
the proposed automatic music transcription method. It contains
35 a cappella vocal ensemble songs and their corresponding
individual voice part recordings. This dataset is also segmented
into seven genres, jazz, punk rock, bossa nova, popular, reggae,
enka, and neutral. These subsets contain songs that showcase
the characteristic traits of their respective genres, which might
help classify audio based on their features, such as chordal
harmony and key the vocals are sung in.

B. Algorithm Performance and Result Analysis

(1) Vocal separation algorithm parameter settings and results
The experiment feature extractions heavily rely on time,

amplitude, and frequency as the primary dimensions for
our model training. For evaluation, we used the Signal-to-
Distortion Ratio (SDR), the most commonly used foundational
yardstick for various source separation competitions, which is
measured in decibels(dB) [43]. SDR essentially quantifies the
ratio of the desired source signal to unwanted components,
including interference, noise, and artifacts.

ŝi = starget + einterf + enoise + eartif (1)

The higher the SDR, the more distinctly separated the vocal
tracks are, suggesting the more accurate the separation of the
a cappella.

SDR = 10log10(
||starget||2

||einterf + enoise + eartif ||2
) (2)

where, starget, einterf , enoise, and eartif . starget represents
the true source, and einterf , enoise, and eartif represent
error terms for interference, noise, and added artefacts respec-
tively [26].

We compared the results with existing works that employed
various deep learning methods [46] and found that the Spleeter
model performed particularly well in vocal separation. Our
analysis included four models from the study conducted
on the Ja Cappella dataset: the NMF model [24], ILRMA
model [20], [21], CRNN-A model [8], [44], [53], and the

Spleeter model [15], all applied to the same vocal separation
task. The simulation results are as shown in Table I.

TABLE I
BEST VOCAL ISOLATION RESULTS

Methods SDR Values
NMF [24] -28.773
ILRMA [20], [21] -31.24
CRNN-A [8], [44], [53] -34.773
Spleeter [15] 243

As seen in Table I, the NMF model struggled to separate
the vocal parts clearly, achieving a poor SDR of -28.773.
This limited performance may be attributed to the algorithm’s
slow convergence rate and inherent simplicity, resulting in a
simplistic output that did not accurately represent the audio
waveform, as illustrated in the spectrogram above. Addition-
ally, the model’s sensitivity to noise and other artifacts in
the audio signal likely contributed to this outcome. It is
also noteworthy that the performance degrades when handling
multiple overlapping sources. Furthermore, it is possible that
our implementation did not match the quality of existing work
[24].

The results from ILRMA also gave very weak separation
of a cappella voices with a SDR of -31.24 as shown in
Table I, possibly due to a cappella harmonies and interactions
challenging the strict independence assumption of separated
audio sources that ILRMA relies on for effective separation.
It is possible that our implementation did not match the quality
of existing work [20], [21]. Exploration of alternative methods
that incorporate domain-specific knowledge and adapt to the
characteristics of a cappella music may perform better.

Using the CRNN-A model [44], we initially had 3,157,768
parameters to train. Due to the high computational cost, we
reduced the model to a CNN, resulting in 6,232 parameters.
Employing only CNN resulted in the lowest SDR of -34.773
as shown in Table I, primarily due to its inability to capture
the attention layer for prioritizing features. This limitation
resulted in distraction by silent rests between vocal parts in the
training dataset, leading to a predominantly silent output. The
full CRNN-A framework, which incorporates time contextual
information through the RNN-A portion, is expected to offer
improved performance. However, its implementation requires
higher computational power, which was unavailable during the
experimentation phase.

Spleeter [15], a Python-based source separation library,
utilizes pre-trained U-Net models for customizable music
source separation. When applied to a cappella audio files,
Spleeter encodes the mixture input’s spectrogram through six
layers of encoding, learning features of the six vocals before
decoding and combining them. During this process, Spleeter
employs a kernel size of five and kernel movement of two
using Adaptive Moment Estimation. The parameters of the
Spleeter model are shown in Table II. Despite achieving the
best results with distinct and crisp vocal tracks (SDR value
of 243) as shown in Table I, Spleeter faces limitations due to
a scarcity of high-quality data with ground-truth labels. The
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TABLE II
PARAMETERS OF CUSTOMISED SPLEETER MODEL

Parameters Values
Sample rate 44100
Frame length 4096
Frame step 1024
T (number of frames in the temporal dimension (time) ) 512
F (number of frequency bins in the spectral representation) 1024
No. of audio channels 2
No. of audio chunks extracted from each training sample 20
Learning rate 1e-4
Batch size 1
Maximum training steps 10000
Throttle seconds 600

challenge stems from a lack of a cappella datasets containing
separated vocal tracks for the required six vocals, resulting
in only 35 usable songs for training and testing. Resource
constraints led to downsizing training time and size, potentially
contributing to inaccuracies in the separated audio tracks, such
as underfitting.

(2) Vocal to MIDI: Audio file transformation algorithm
parameter settings and results

To accurately evaluate the fidelity of the conversion from
WAV to MIDI files, this paper employs a range of established
evaluation metrics commonly utilized in audio analysis and
signal processing. Given the inherent challenges in directly
comparing the original WAV file to the converted MIDI file,
we created a reference MIDI file to serve as ground truth. This
reference MIDI file was generated using FL Studio, a widely
used digital audio workstation (DAW) among musicians [38].

Our evaluation focuses on two primary aspects: the onset
and pitch of the generated MIDI files. For the onset evaluation,
we employed metrics such as F-measure, precision, and recall.
The results of this transformation process are presented in
Table III. Higher values in these metrics indicate a closer
resemblance between the converted MIDI file and the original
WAV file [32]. In contrast, for the pitch evaluation, we utilized
metrics including Voicing Recall, Voicing False Alarm, Raw
Pitch Accuracy, Raw Chroma Accuracy, and Overall Accuracy.
In this context, higher values are preferred for all metrics
except Voicing False Alarm, where lower values are desirable
[18].

TABLE III
BEST MIDI CONVERSION RESULTS

Metrics Values
F-measure 0.812
Precision 0.831
Recall 0.794
Voicing Recall 1.0
Voicing False Alarm 0
Raw Pitch Accuracy 0.949
Raw Chroma Accuracy 0.949
Overall Accuracy 0.949

(3) MIDI to Sheet: Music notation generation results
In this section, we successfully leveraged the music21

library to effectively showcase the music notation derived from

MIDI files. While MIDI doesn’t contain information about
notation or sheet music, it stores data about musical events
such as pitch, duration, velocity, and other parameters [42].
The accuracy of the generated music sheet, when compared to
the source music sheet, is inherently reliant on the intricacies
of the specific MIDI file under consideration. While we
achieved a near-identical representation of the music sheet,
it is crucial to acknowledge the inherent limitations of MIDI,
as it does not capture every detail present in a conventional
music sheet.

Despite our success, certain nuances and information may
not be entirely transcribed due to MIDI’s inherent limitations.
Achieving 100% accuracy is hindered by expressive nuances
and necessitates manual adjustments, especially in intricate
arrangements. The complexity of musical material and MIDI
format limitations often require manual intervention for a
more precise music score representation in complex musical
arrangements where expressive elements and specific notations
may not be fully captured. One notable limitation is our
inability to display lyrics on the generated music sheet from
the preceding step. This challenge arises because our lyrics
are generated on a time-code basis rather than a note-by-
note basis. As a result, manual intervention remains crucial
for accurately incorporating lyrics into the final music sheet
(see Fig. 2), aligning them with the corresponding notes to
achieve a comprehensive and precise representation.

Fig. 2. Sample Output with integration of lyrics functionality

C. Vocal Performances into Sheet Music using LLMs
MT3 successfully transcribed MP3 files to note sequences,

which can be converted to MIDI. It captured various vocal
elements despite a significant loss of accuracy and coherence
as shown in Fig.3, due to the model not being specifically
trained on singing datasets.

Fig. 3. Sample Output of Pitch Sequence of Vocals by MT3

Custom GPTs powered by GPT-4o, such as Sheet Music
Composer [12] and Sheet Maestro [3], attempted to produce
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transcriptions by leveraging the coding capabilities of GPT-4o
but failed, as shown in Fig.4.

Fig. 4. An Answer by Sheet Music Composer Powered by GPT-4o

Another custom GPT, Music Sheet Generator [54], which
claims to transform music links into complete lead sheets,
failed to analyze an a cappella song link. Instead, it searched
online for information about the song and provided some
transcription tips as shown in Fig.5.

Fig. 5. An Answer by Music Sheet Generator Powered by GPT-4o

V. CONCLUSION, LIMITATIONS AND FUTURE WORKS

A. Conclusion

In this study, we have explored the promising intersection
of advanced NLP models and the complex task of converting
vocal performances into sheet music. By investigating various
approaches, we have identified the strengths and limitations

in current techniques for translating a cappella music into
display-ready sheet music, emphasizing the intricate nature of
vocal performances.

The findings underscore the importance of integrating so-
phisticated algorithms with an understanding of musical nu-
ances to enhance transcription accuracy. While existing tools
provide valuable assistance, the challenges remain significant,
illustrating the need for further innovation. Our proposed
method demonstrates a viable pathway toward effective au-
tomation, contributing to the growing literature on LLM
applications in music analysis.

Ultimately, this research opens new avenues for the future
of music composition and performance, suggesting that ad-
vancements in NLP technology could revolutionize how we
transcribe and engage with vocal music. As we move forward,
continued exploration and refinement of these methodologies
will be essential in bridging the gap between vocal artistry
and written notation, fostering a deeper appreciation for the
complexities of musical expression.

On the other hand, while LLMs have shown promising
results in various domains, their ability to transcribe complex
vocal performances, particularly with multi-layered vocals,
remains suboptimal. Future work in this area holds great
potential for advancing automatic music transcription to new
levels of accuracy and detail.

B. Limitations and Future Works

Our methodology does have limitations, particularly in the
sensitivity of vocal separation techniques when dealing with
intricate a cappella harmonies. Future efforts should aim to
refine these algorithms to handle overlapping voices such as
by acquiring a large number of ground-truth a cappella songs
with each vocal part already separated to aid in training our
models for better separation accuracy. Exploring advanced
lyrics transcription methods for extracting lyrics on a note-
by-note basis can enable compatibility with the following
music sheet generation step. Incorporating user feedback and
iterative testing with a cappella singers is crucial for refining
the system’s robustness and user-friendliness. Additionally,
our future work can involve fine-tuning Whisper to consider
filler words for improved accuracy. Addressing GPU resource
limitations and expanding the dataset could further enhance
model training, enabling effective handling of a cappella songs
with diverse languages and group sizes.

The performance of LLM-based vocal transcription in this
study reveals notable limitations in accuracy and coherence
when applied to a cappella performances. The challenges
encountered suggest that current models are ill-suited for
capturing the intricacies of vocal music. This leaves a vast
space for improvement, including training models on larger
and more diverse vocal datasets, and refining architectures to
handle polyphonic content more effectively.
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