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Abstract
Time expressions and named entities play important roles in data mining, information retrieval, and natural language
processing. However, the conventional position-based tagging schemes (e.g., the BIO and BILOU schemes) that previous
research used to model time expressions and named entities suffer from the problem of inconsistent tag assignment. To
overcome the problem of inconsistent tag assignment, we designed a new type of tagging schemes to model time expressions
and named entities based on their constituents. Specifically, to model time expressions, we defined a constituent-based
tagging scheme termed TOMN scheme with four tags, namely T, O, M, and N, indicating the defined constituents of time
expressions, namely time token, modifier, numeral, and the words outside time expressions. To model named entities, we
defined a constituent-based tagging scheme termed UGTO scheme with four tags, namely U, G, T, and O, indicating the
defined constituents of named entities, namely uncommon word, general modifier, trigger word, and the words outside
named entities. In modeling, our TOMN and UGTO schemes model time expressions and named entities under conditional
random fields with minimal features according to an in-depth analysis for the characteristics of time expressions and named
entities. Experiments on diverse datasets demonstrate that our proposed methods perform equally with or more effectively
than representative state-of-the-art methods on both time expression extraction and named entity extraction.

Keywords Inconsistent tag assignment · Position-based tagging scheme · Constituent-based tagging scheme ·
Named entities · Time expressions · Intrinsic characteristics

Introduction

Time expressions and named entities play increasingly
important roles in the fields of data mining, information
retrieval, and natural language processing [51, 66, 80].
There are many linguistic tasks that are involved in time
expressions and named entities, such as temporal relation
extraction [8, 45], timeline construction [16, 33], temporal
information retrieval [2, 7], named entity recognition [11,
66], named entity typing [22, 37, 44], entity linking [27, 36],
and domain-specific entity recognition [29, 73].

This paper is an extension of the following conference paper:
Xiaoshi Zhong and Erik Cambria. 2018. Time Expression
Recognition Using a Constituent-based Tagging Scheme. In
Proceedings of the 2018World Wide Web Conference , Association
for Computing Machinery, Lyon, France, pages 983–992.

� Xiaoshi Zhong
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Extended author information available on the last page of the article.

Researchers from various fields have devoted tremen-
dous effort to specify standards for the annotation of time
expressions [18, 59, 61] and named entities [12, 66], build
annotated corpora for time expressions [48, 60] and named
entities [57, 66], and recognize time expressions and named
entities from unstructured text [66, 75, 76, 78].

To better understand the intrinsic characteristics of time
expressions and named entities, we analyzed four diverse
datasets about time expressions and two benchmark datasets
about named entities. According to these characteristics,
we proposed two methods to extract time expressions and
named entities from unstructured text.

Analysis and Extraction of Time Expressions

The four datasets we used to analyze time expressions
include TimeBank [60], Gigaword [54], WikiWars [48], and
Tweets [82]. From our analysis, we found two characteris-
tics about their organization and constituent words. Firstly,
time expressions are formed by loose structure; more than
53.5% of unique time tokens appearing in different positions
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Fig. 1 Tag assignment of the
BILOU and TOMN schemes.
The BILOU scheme is based on
the positions within a labeled
chunk, while the TOMN scheme
is based on the constituents of a
labeled chunk. Here,
inconsistent tag assignment is
defined as that during the
training stage, a word is
assigned with different tags
simply because this word
appears in different positions
within labeled chunks

(a) Tag assignment of BILOU scheme: “September” in different positions within la-
beled time expressions is assigned with different tags of U, B, L, or I. The inconsistent
tag assignment reduces the predictive power of “September,” and this contradicts that
characteristic that time tokens can distinguish time expressions from common text.

(b) Tag assignment of TOMN scheme: “September” in different positions within la-
beled time expressions is consistently assigned with the same tag of T . The consistent
tag assignment protects the predictive power of “September.”

within time expressions. Secondly, time tokens can distin-
guish time expressions from common text; more than 91.8%
of time expressions contain at least one time token while no
more than 0.7% of common text contain time tokens.

These two characteristics motivated us to design a
learning-basedmethod termed TOMN tomodel time expres-
sions. Specifically, TOMN defines a constituent-based tag-
ging scheme termed TOMN scheme that consists of four
tags, namely T, O, M, and N, indicating the constituents of
time expressions, namely time token,modifier, numeral, and
the words outside of time expressions. Time tokens include
those words that explicitly express information about time,
such as “month” and “September.” Modifiers include those
words that modify time tokens and appear around them; for
example, “last” modifies “month” in “last month.” Numerals
include ordinals and numbers. TOMN models time expres-
sions under conditional random fields (CRFs) [30] with only
a kind of pre-tag features and the lemma features. In model-
ing, a word is assigned with one of the four TOMN tags.

TOMN scheme can keep the tag assignment consistent
during training and therefore overcomes the problem of
inconsistent tag assignment.1 The loose structure by which
time expressions are formed exhibits in two aspects. Firstly,
many time expressions consist of loose collocations. Sec-
ondly, some time expressions can change their word order
without changing their meanings. The conventional tagging
schemes like BILOU [63] are based on the positions within
a labeled chunk. Under the BILOU scheme, a word that
appears in different positions within labeled time expres-
sions is assigned with different tags. For example, the time
token “September” in the four time expressions shown in
Fig. 1a can be assigned with U, B, L, or I. The inconsis-
tent tag assignment causes difficulty for statistical models
to model time expressions. Firstly, inconsistent tag assign-
ment reduces the predictive power of lexicons, and this

1In a supervised-learning procedure, tag assignment occurs in two
stages: (1) feature extraction in the training stage and (2) tag prediction
in the testing stage. We focus on the training stage to analyze the
impact of tag assignment.

contradicts the characteristic that time tokens can dis-
tinguish time expressions from common text. Secondly,
inconsistent tag assignment might cause the problem of
tag imbalance. Our TOMN scheme instead is based on the
constituents of a labeled chunk and assigns the same con-
stituent word with the same tag, regardless of its frequency
and its positions within time expressions. Under TOMN
scheme, for example, the above time token “September”
in the four time expressions is consistently assigned with
T (see Fig. 1b). With consistent tag assignment, TOMN
scheme protects the predictive power of time tokens and
avoids the potential tag imbalance.

We evaluate TOMN against five state-of-the-art meth-
ods on three datasets. Experimental results demonstrate
that TOMN performs equally or more effectively than
these state-of-the-art methods, and much more robust on
cross-dataset performance compared with those learning-
based baselines. Experimental results also demonstrate the
advantage of our constituent-based TOMN scheme over the
conventional position-based tagging schemes (see “Time
Expression Extraction” for details).

Analysis and Extraction of Named Entities

The two benchmark datasets we used to analyze named
entities are CoNLL2003 [66] and OntoNotes*, which is
a derived version of OntoNotes5 corpus [57, 58]. From
our analysis we found two common characteristics about
named entities. Firstly, 92.2% of named entities contain
uncommon words, which include those words that mainly
appear in named entities while hardly appear in common
text. Secondly, named entities are mainly made up of proper
nouns; in the whole text, more than 84.8% of proper nouns
appear in named entities, and within named entities, more
than 80.1% of words are proper nouns.

These two characteristics motivated us to design a CRFs-
based learning method termed UGTO to extract named enti-
ties from unstructured text. UGTO defines a constituent-
based tagging scheme termedUGTO scheme that consists of
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four tags: U, G, T, and O. U encodes the uncommon words,
such as “Boston” and “Africans.”G encodes the genericmod-
ifiers while T encodes the trigger words. Generic modifiers
(e.g., “of” and “and”) can appear in several types of named
entitieswhile triggerwords appear in a specific typeof named
entities; for example, the trigger word “University” appears
in “Boston University.” O encodes those words Outside
named entities. In modeling, UGTO assigns one word
with one of the UGTO tags under a CRFs framework with
only the UGTO pre-tag features and some basic features.

We evaluate UGTO on two benchmark datasets against
two representative state-of-the-art baselines. Experimental
results demonstrate the effectiveness and efficiency of
UGTO in comparison with the two baselines. Experimental
results also demonstrate that traditional methods with
simple handcrafted features can achieve state-of-the-art
performance on named entity extraction, compared with a
state-of-the-art neural-network-based method, and that joint
modeling named entity extraction and classification does
not improve the performance of named entity extraction,
in both our model and the baselines (see “Named Entity
Extraction” for details).

Contributions

To summarize, we made in this paper the following
contributions.

– We summarized from four diverse datasets two
common characteristics about time expressions, and
summarized from two benchmark datasets two common
characteristics about named entities.

– We identified a fundamental problem underlying
in the conventional position-based tagging schemes:
inconsistent tag assignment. To overcome that problem,
we defined a new types of constituent-based tagging
schemes to model time expressions and named entities.

– We conducted extensive experiments on diverse
datasets, and the experimental results demonstrate the
effectiveness and efficiency of our proposed meth-
ods against state-of-the-art baselines on the extractions
of time expressions and named entities. Experimen-
tal results also demonstrate that joint modeling named
entity extraction and classification does not improve
the performance of named entity extraction, in both our
model and baselines.

RelatedWorks

The works that are related to our work include the tasks
of time expression extraction and normalization as well as
named entity extraction and classification.

Time Expression Extraction and Normalization

Time expression identification is an information-extraction
task whose goal is to automatically identify time expres-
sions from unstructured text and it can be divided into
two subtasks: time expression extraction and time expres-
sion normalization. Methods that were developed for time
expression extraction can be classified into two kinds: rule-
based methods and learning-based methods.

Time Expression Extraction

Rule-Based Methods Rule-based methods like TempEx,
GUTime, HeidelTime, and SUTime mainly handcrafted
deterministic rules to identify time expressions. TempEx
and GUTime used both handcrafted rules and machine-
learnt rules to resolve time expressions [46, 77]. HeidelTime
manually designed rules with time resources to recognize
time expressions [71]. SUTime designed deterministic
rules at three levels (i.e., individual word, chunk, and
time expression levels) for time expression extraction [9].
SynTime designed general heuristic rules with a token type
system to recognize time expressions [82].

TOMN uses token regular expressions, similar to
SUTime [9] and SynTime [82], and further groups them
into three token types, similar to SynTime. While SynTime
further defines 21 token types for the constituent words
of time expressions, TOMN uses those three general token
types that are helpful for a learning method to connect
those words with low frequencies to those words with
high frequencies. Moreover, TOMN leverages statistical
information from an entire corpus to improve the precision
of the extraction and alleviate the deterministic role of
deterministic rules and heuristic rules.

Learning-Based Methods Learning-based methods in the
TempEval series mainly derived features from text (e.g.,
character features, word features, syntactic features, and
semantic features), and applied statistical models (e.g.,
CRFs, logistic regression, maximum entropy, Markov logic
network, and support vector machines) to model time
expressions [5, 19, 41, 74]. Besides the standard methods,
Angeli et al. [3] and Angeli and Uszkoreit [4] exploited
an EM-style approach with compositional grammar to
learn a latent time parser. Lee et al. [32] leveraged
combinatory categorial grammar (CCG) [70] and defined a
collection of lexicon with linguistic context to model time
expressions.

Unlike [5, 19, 24, 41, 74] which used standard features,
TOMN derives features according to the characteristics of
time expressions and uses only a kind of pre-tag features
and the lemma features. Such strategy can enhance the
impact of those significant features and reduce the impact
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of those insignificant features. Unlike [3, 4, 32] which
used fixed structure information, TOMN uses the loose
structure information by grouping the constituent words of
time expressions under three token types; this strategy can
fully account for the loose structure of time expressions.
More importantly, TOMN models time expressions under a
CRFs framework with a constituent-based tagging scheme,
which can keep the tag assignment consistent.

Time Expression Normalization

The methods that were developed for time expression
normalization are mainly based on rules [5, 19, 41, 71, 74,
77]. Since those rule methods are highly similar, Llorens
et al. [40] suggested to construct a large knowledge base
for public use. Angeli et al. [3], Angeli et al. [4], and Lee
et al. [32] combined grammar rules and machine learning
techniques to normalize time expressions. TOMN focuses
on the extraction and leaves the normalization to those
highly similar rule methods.

Named Entity Extraction and Classification

Named Entity Recognition

The research of named entity recognition has a long history.
Nadeau and Sekine review the development of the early
years [51] in terms of languages (e.g., English and Chinese)
[23, 66, 79], text genres and domains (e.g., scientific and
journalistic) [47, 56], statistical learning techniques (e.g.,
CRFs and maximum entropy models) [6, 49], engineering
features (e.g., lexical features and dictionary features) [13,
69], and shared task evaluations (e.g., MUC, CoNLL, and
ACE) [11, 17, 23, 66].

Before the deep learning era, there were also works that
concern several aspects of NER, like leveraging unlabeled
data for NER [34], leveraging external knowledge for NER
[28, 63], nested NER [1, 21], and NER in informal text [39,
65].

In the deep learning era, many researchers use neural
networks and word embeddings to develop variants of
models on CoNLL03 dataset [14, 15, 26, 31, 35, 38, 42, 43,
55, 62, 68, 72].

UGTO benefits from the traditional methods by utiliz-
ing some of their basic features (e.g., lexical and POS
features), and refines the significant features (i.e., UGTO
pre-tag features) according to an in-depth analysis for the
characteristics of named entities. Unlike neural network
based methods that mainly compute the semantic similari-
ties among words, UGTO focuses on the difference between
named entities and the common text. Unlike most NER
methods that jointly model entity extraction and classifica-
tion, our analysis and experiments show that the joint NER

task does not improve the performance of entity extraction
but simply costs additional runtime, in both our model and
representative models.

Named Entity Classification

The studies of named entity classification (also known
as entity typing) assume that named entities are already
extracted from text [22, 37, 44, 52, 64]. These studies
leverage features like bag of words, POS tags, head words,
and n-gram strings, many of which are similar to those
derived for NER. A key difference between these studies
and NER is that they do not formulate entity classification
as a problem of sequence tagging but treat a whole named
entity as a unit. We focused on entity extraction and leave
entity classification to future work.

Data Analysis

In this section, we firstly reported two common charac-
teristics of time expressions from analyzing four diverse
datasets, and then reported two characteristics about named
entities from two benchmark datasets.

Time Expression Analysis

Datasets

The four datasets we used to analyze time expressions
include TimeBank [60], Gigaword [54], WikiWars [48],
and Tweets [82]. TimeBank is a benchmark dataset
with 183 news articles. Gigaword consists of 2,452
news articles with automatically annotated time expres-
sions. WikiWars is constructed by collecting articles from
Wikipedia about famous wars. Tweets consists of 942 tweets
collected from Twitter. The four datasets cover com-
prehensive data (TimeBank, Gigaword, and Tweets) and
domain-specific data (WikiWars) as well as formal text
(TimeBank, Gigaword, and WikiWars) and informal text
(Tweets). Table 1 summarizes the statistics of these four
datasets.

Table 1 Statistics of the four datasets (“timex” stands for time
expression)

Dataset No. of documents No. of words No. of timex

TimeBank 183 61,418 1243

Gigaword 2452 666,309 12,739

WikiWars 22 119,468 2671

Tweets 942 18,199 1127
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Characteristics

Although the four datasets are different from each other
in source, domain, corpus size, and text type, their time
expressions demonstrate some common characteristics. We
found such two common characteristics of time expressions
about their organization and constituent words.

Characteristic 1 Time tokens can distinguish time expres-
sions from common text while modifiers and numerals
cannot.

Table 2 reports the percentage of the constituent words
of time expressions that appear in time expressions (Ptimex)
and in common text (Ptext ). “Common text” here means
the whole text with time expressions excluded. Ptimex is
defined by Eq. 1 and Ptext is defined by Eq. 2, where
T ∈ {t imetoken, modif ier, numeral}.

Ptimex(T ) = no. of timex that contain T

no. of total timex
(1)

Ptext (T ) = no. of tokens that are T

no. of total tokens
(2)

The second column of Table 2 shows that more than
91.8% of time expressions contain at least one time token;
the percentage 91.8% is consistent with the one analyzed
by Zhong et al. [82]. (Some time expressions without
time token depend on other time expressions; for example,
“95” depends on “100 days” in “95 to 100 days.”) By
contrast, the third column shows that no more than 0.7%
of common text contain time tokens. This indicates that
time tokens can distinguish time expressions from common
text. On the other hand, the last four columns show that on
average, 32.1% of time expressions and 21.1% of common
text contain modifiers and 24.9% of time expressions and
4.1% of common text contain numerals. This indicates that
modifiers and numerals cannot distinguish time expressions
from common text.

Table 2 Percentage of the constituents of time expressions that appear
in time expressions (Ptimex ) and in common text (Ptext )

Dataset Time token Modifer Numeral

Ptimex Ptext Ptimex Ptext Ptimex Ptext

TimeBank 94.61 0.34 47.39 22.56 22.61 3.16

Gigaword 96.44 0.65 28.05 22.82 20.24 2.03

WikiWars 91.81 0.14 31.64 26.14 38.01 9.82

Tweets 96.01 0.50 21.38 13.03 18.81 1.28

Characteristic 2 Time expressions are formed by loose
structure; more than 53.5% of time tokens appear in
different positions within time expressions.

We found that time expressions are formed by loose
structure, and the loose structure exhibits in the following
two aspects. Firstly, many time expressions are composed
of loose collocations. For example, the time token “Septem-
ber” can form a time expression by itself, or forms “Septem-
ber 2006” by another time token appearing after it, or forms
“1 September 2006” by a numeral appearing before it and
another time token appearing after it. Secondly, some time
expressions can change their word order without chang-
ing their meanings. For example, “September 2006” can be
written as “2006 September” without changing its meaning.
From the point of view of the positions within time expres-
sions, the “September” may appear as the (i) beginning or
(ii) inside word of time expressions when time expressions
are modeled by the BIO scheme; or it may appear as (1) a
unit-word time expression, or the (2) beginning, (3) inside,
(4) last word of multi-word time expressions when time
expressions are modeled by the BILOU scheme.

Table 3 reports the percentage of unique time tokens
and modifiers that appear in different positions within
labeled time expressions. “Unique” here means ignoring
the variants and frequencies of a word during counting;
for example, “month,” “months,” and “mths” are treated
the same and are counted only once. “Different positions”
means the two different positions under the BIO scheme and
at least two of the four different positions under the BILOU
scheme. For each dataset, under the BIO scheme, more than
53.5% of unique time tokens appear in different positions;
under the BILOU scheme, more than 61.4% of unique
time tokens appear in different positions. The number of
modifiers that appear in different positions is more than
27.5%. When the BIO or BILOU scheme is used to model
time expressions, the appearance in different positions leads
to inconsistent tag assignment, and the inconsistent tag
assignment causes difficulty for statistical models to model
time expressions. We need to explore an appropriate tagging
scheme (see “TOMN Scheme” for details).

Table 3 Percentage of unique time tokens and modifiers that appear in
different positions within time expressions

Dataset BIO scheme BILOU scheme

Time token Modifier Time token Modifier

TimeBank 58.18 33.33 63.64 33.33

Gigaword 61.29 45.83 77.05 46.00

WikiWars 53.57 26.19 61.40 29.55

Tweets 67.21 27.59 72.58 27.59
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Named Entity Analysis

Datasets

The two benchmark datasets we used to analyze named
entities are CoNLL03 [66] and OntoNotes*, which is a
derived version of OntoNotes5 corpus [57]. The original
CoNLL03 and OntoNotes5 datasets include data in English
and other languages, but here we focus on the English
data.

CoNLL03 is a benchmark dataset derived from Reuters
RCV1 corpus, with 1,393 news articles between August
1996 and August 1997 [66]. It contains 4 entity types: PER,
LOC, ORG, and MISC.

OntoNotes* is a dataset derived from OntoNotes5
corpus [57], which is developed for named entity analysis
and consists of 3370 articles collected from different
sources (e.g., newswire and web data) and contains 18 entity
types.2

Although OntoNotes5 is a benchmark dataset, we found
its annotation far from perfect. For example, “OntoNotes
Named Entity Guidelines (Version 14.0)” states that
ORDINAL includes all the ordinal numbers and CARDINAL
includes the whole numbers, fractions, and decimals, but
we found in the common text 3,588 numeral words,
which is 7.1% of the total numeral words. Besides, some
sequences are annotated inconsistently. For “the Cold
War,” for example, in some cases the whole sequence
is annotated as an entity (i.e., “<ENAMEX>the Cold
War</ENAMEX>”; where “ENAMEX” is the annotation
mark) while in some cases only the “Cold War” is an entity
(i.e., “the <ENAMEX>Cold War</ENAMEX>”).

To get a high-quality dataset for analysis, we derived
a dataset, which is termed OntoNotes*, from OntoNotes5
by removing those entity types whose entities are mainly
composed of numbers and ordinals,3 and moving all the
“the” at the beginning of entities and all the “’s” at
the end of entities outside their entities (e.g., all the
“<ENAMEX>the Cold War ’s</ENAMEX>” are changed
to “the <ENAMEX>Cold War</ENAMEX> ’s”).

In splitting datasets into training, development, and test
sets, we followed the setting by [66] for CoNLL03 and the
setting4 by OntoNotes5’s author for OntoNotes*. Table 4
summarizes the statistics of these two datasets.

2OntoNotes5’s 18 entity types include CARDINAL, DATE, EVENT,
FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDI-
NAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME,
WORK OF ART.
3Those removed entity types are CARDINAL, DATE, MONEY,
ORDINAL, PERCENT, QUANTITY, TIME.
4https://github.com/ontonotes/conll-formatted-ontonotes-5.0

Table 4 Dataset statistics

Dataset No. of No. of No. of No. of

Docs words entities types

CoNLL03 Train 946 203,621 23,499

4
Dev. 216 51,362 5,942

Test 231 46,435 5,648

Whole 1393 301,418 35,089

OntoNotes* Train 2,729 1,578,195 81,222 11

Dev. 406 246,009 12,721

Test 235 155,330 7,537

Whole 3370 1,979,534 101,480

“Whole” denotes the whole dataset

Characteristics

Although these two datasets vary in source, corpus size, and
text genre, we will see that their named entities demonstrate
some common characteristics.

Characteristic 3 Most named entities contain uncommon
word(s); more than 92.2% of named entities have at least
one word that hardly appears in common text.

Table 5 reports the percentage of named entities that have
words hardly appearing in common text (case sensitive).
“Common text” here means the whole text with named
entities excluded. The percentage is computed within a set
that contains named entities and common text; the set can
be a whole dataset (e.g., the CoNLL03 dataset) or only a
splitting set (e.g., CoNLL03’s training set). Within a set, for
a word w, the rate of its occurrence in named entities over
the one in the whole text is defined by Eq. 3.

r(w) = fentity(w)

fentity(w) + fcommon(w)
(3)

where fentity(w) denotes w’s occurrence in named entities
while fcommon(w) denotes its occurrence in common text.
If r(w) reaches a threshold R, then the word w is treated
as hardly appearing in common text. For CoNLL03 and its
splitting sets, R is set to 1, which means the word w does
not appear in common text. For OntoNotes* and its splitting
sets, R is set to 0.95, because its annotation is imperfect: its

Table 5 Percentage of named entities that have at least one word that
hardly appears in common text

Whole Train Dev. Test

CoNLL03 97.77 98.77 99.19 98.62

OntoNotes* 92.91 92.20 95.22 95.61
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common text contains some words that should be treated as
named entities, such as “American.” We call such kind of
words uncommon words.

From Table 5 we can see that for a set, more than 92.2%
of its named entities contain at least one uncommon word.
This phenomenon of uncommon words widely exists in
the CoNLL03 and OntoNotes* datasets as well as their
training, development, and test sets. An implication of this
phenomenon is that for a dataset, the uncommonwords of its
development and test sets also hardly appear in the common
text of its training set. This suggests that those words of the
test set that hardly appear in the common text of the training
set tend to predict named entities.

Characteristic 4 Named entities are mainly made up of
proper nouns. In the whole text, more than 84.8% of proper
nouns appear in named entities; within named entities, more
than 80.1% of the words are proper nouns.

Table 6 lists the top 4 POS tags appearing in named
entities, and their percentages over the whole tags in named
entities (pentity) and over the corresponding tags in the
whole text (pwhole):

pentity(t) = fentity(t)
∑

ti
fentity(ti)

(4)

pwhole(t) = fentity(t)

fentity(t) + fcommon(t)
(5)

where fentity(t) denotes the occurrence of tag t in named
entities while fcommon(t) denotes its occurrence in common
text.

We can see that the top 4 POS tags in both CoNLL03
and OntoNotes* are the same and they are NNP, JJ, NN,
and NNPS. The pentity of proper nouns (including NNP and
NNPS) reaches more than 80.1%, and this indicates that
named entities are mainly made up of proper nouns. The
pwhole of proper nouns reaches more than 84.8%, and this
indicates that in the whole text, the proper nouns mainly

Table 6 Top 4 POS tags in named entities and their percentage within
named entities (pentity ) and over the corresponding tags in the whole
text (pwhole)

CoNLL03 OntoNotes*

POS pentity pwhole POS pentity pwhole

NNP 83.81 84.82 NNP 77.67 85.88

JJ 5.82 17.57 JJ 4.60 6.77

NN 4.89 6.46 NN 4.57 2.91

NNPS 1.55 94.12 NNPS 2.50 93.04

appear in named entities.5 Within named entities, those JJ
words are mainly the nationality words and those NN words
are some common nouns.

Methodology

This section describes the method TOMN we proposed
to extract time expressions from unstructured text and the
method UGTO we proposed to extract named entities.

TOMN: Time Expression Extraction
with Constituent-Based TOMN Scheme

Figure 2 shows the overview of TOMN. It mainly
includes three parts: TOMN scheme, TmnRegex, and time
expression modeling. The TOMN scheme is a constituent-
based tagging scheme with four tags. TmnRegex is a
set of regular expressions for time-related words. Time
expressions are modeled under a CRFs framework with the
help of TmnRegex and the TOMN scheme.

TOMN Scheme

Characteristic 2 suggests us to explore an appropriate
tagging scheme to model time expressions. We defined a
constituent-based tagging scheme termed TOMN scheme
with four tags: T, O, M, and N; they indicate the constituents
of time expressions, namely time token, modifier, numeral,
and the words outside time expressions.

Conventional tagging schemes like the BIO scheme6 [67]
and the BILOU scheme7 [63] are based on the positions
within a labeled chunk. BIO refers to the beginning, inside,
and outside of a chunk; BILOU refers to a unit-word chunk,
or the beginning, inside, last word of a multi-word chunk.
The TOMN scheme instead is based on the constituents
of a labeled chunk, indicating the constituent words of
time expressions. Next, we use the BILOU scheme as the
representative of the conventional position-based tagging
schemes for analysis.

Using the BILOU scheme for time expression extrac-
tion leads to inconsistent tag assignment. Characteristic 2
indicates that time expressions are formed by loose struc-
ture, which exhibits in two aspects: loose collocations

5The pwhole of proper nouns does not reach 100%mainly because each
individual dataset is concerned with certain types of named entities
and partly because some NNP* words are POS tagging errors, e.g.,
“SURPRISE DEFEAT” is tagged as “NNP NNP,” but it should be
tagged as “JJ NN.”
6The BIO scheme in this paper denotes the standard IOB2 scheme
described in [67].
7The BILOU scheme is also widely known as the BIOES or IOBES
scheme.
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Fig. 2 Overview of TOMN. Top-left side shows the TOMN scheme,
which consists of four tags. Bottom-left side is the TmnRegex, a set of
regular expressions for time-related words. Right-hand side shows the
time expression modeling, with the help of TmnRegex and the TOMN
scheme

and exchangeable order. Under the BILOU scheme, both
loose collocations and exchangeable order lead to the prob-
lem of inconsistent tag assignment. Suppose “September,”
“September 2006,” “2006 September,” and “1 September
2006” are four manually labeled time expressions in the
training data. During feature extraction, they are tagged as
“September/U,” “September/B 2006/L,” “2006/B Septem-
ber/L,” and “1/B September/I 2006/L” (see Fig. 1a). The
four “September” have the same word and express the
same meaning, but because they appear in different posi-
tions within labeled time expressions, they are assigned with
different tags (i.e., U, B, L, and I).

The inconsistent tag assignment causes difficulty for
statistical models to model time expressions. Firstly,
inconsistent tag assignment reduces the predictive power
of lexicon. A word assigned with different tags causes
confusion to model that word. If a word is assigned with
different tags in equal number, then that word itself cannot
provide any useful information to determine which tag
should be assigned to it. Reducing the predictive power
of lexicon indicates reducing the predictive power of time
tokens, and this contradicts Characteristic 1 which describes
that time tokens can distinguish time expressions from
common text. Secondly, inconsistent tag assignment may
cause another problem: tag imbalance. If a tag of a word
dominates in the training data, then all the instances of that
word in test data will be predicted as that tag. For example,
“1 September 2006” can be written as “September 1, 2006”
in some cultures. If the training data are collected from the
style of “1 September 2006” in which most “September”
are assigned with I, then it is difficult for a trained model
to correctly predict the data that are collected from the style
of “September 1, 2006” in which “September” should be
predicted as B.

Our TOMN scheme overcomes the problem of inconsis-
tent tag assignment. The TOMN scheme assigns a tag to a
word according to the constituent role that the word plays
in time expressions. Since our TmnRegex well defines the
constituent words of time expressions (see “TmnRegex”)
and same word plays same constituent role in time expres-
sions, therefore, the same word is assigned with the same
tag, regardless of its frequency and its positions within
time expressions. For example, the TOMN scheme assigns
the above four time expressions as “September/T,” “2006/T
September/T,” “September/T 2006/T,” and “1/N Septem-
ber/T 2006/T” (see Fig. 1b). The four “September” have the
same tag of T and statistical models can model them without
any confusion. With consistent tag assignment, the TOMN
scheme protects the predictive power of time tokens and
avoids the potential tag imbalance.

TmnRegex

TOMN uses three token types, namely time token, modifier,
and numeral, to group those time-related words. These three
token types corresponds to three of the above four tags (i.e.,
T, M, and N), and are same to the ones defined by Zhong
et al. [82]. Time tokens explicitly express information about
time, such as month (e.g., “September”), and time units
(e.g., “month”). Modifiers include thos words that modify
time tokens in time expressions; for example, the two
modifiers “the” and “last” modify the time token “month” in
“the last month.” Numerals include ordinals and numbers.

The three token types with the words they group form a
set of token regular expressions, which is denoted by Tmn-
Regex. TmnRegex is constructed by importing token regular
expressions from SUTime [10]. Note that TmnRegex col-
lects from SUTime only the regular expressions at the level
of token, the same as SynTime [82] did, and it contains 115
unique time tokens, 57 modifiers, and 58 numerals, without
counting the words with changing digits.

Time Expression Extraction

Time expression extraction mainly includes two parts: (1)
feature extraction and (2) model learning and tagging.

Feature Extraction The features we extracted for time
expression extraction include two kinds: TOMN pre-tag
features and lemma features. During feature extraction we
used wi to denote the i-th word in the text.

TOMN Pre-tag Features: Characteristic 1 suggests that
time tokens can distinguish time expressions from common
text while modifiers and numerals cannot, therefore, how to
leverage the information of these words becomes crucial. In
practice, we treated them as a kind of pre-tag features under
the TOMN scheme. Specifically, a time token is pre-tagged
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Table 7 Features extracted for
the word wi in time expression
modeling

1 TOMN pre-tags in a 5-word window of wi , namely pre-tag of wi−2, wi−1, wi , wi+1, and wi+2

2 If wi is a M or N, then check whether it modifies any time token

3 Lemmas in a 5-word window of wi , namely lemmas of wi−2, wi−1, wi , wi+1, and wi+2

by T, a modifier is pre-tagged by M, and a numeral is pre-
tagged by N; other common words are pre-tagged by O. The
assignment of pre-tags is conducted by simply looking up
the words at TmnRegex.

The last four columns of Table 2 suggests that modifiers
and numerals constantly appear in time expressions and in
common text. To distinguish where a modifier or numeral
appears, we conducted a checking for the modifiers and
numerals (those words assigned with the pre-tag of M or
N (denoted as M/N)) to record whether they directly or
indirectly modify any time token. “Indirectly” here means
a M/N word together with other M/N words modifies a time
token; for example, in “last two months,” “last” (M) together
with “two” (N) modifies “months” (T). The checking is
a loop searching relying on time tokens. For each time
token we search its left side without exceeding the previous
time token and search its right side without exceeding the
next time token. When searching a side of a time token,
if encounter a M/N word, then record this M/N word and
continue searching; if encounter a word that is not a M/N
word, then stop the searching for this side of this time
token. After the checking, those M/N words that modify
time tokens are recorded; for example, the modifier “two”
in “two months” is recorded while in “two apples” it is not
recorded. The checking is treated as a feature for modeling.

Lemma Features: The lemma features include the word
shape of wi in a 5-word window, namely wi−2, wi−1, wi ,
wi+1, andwi+2. Ifwi contains changing digit(s), then we set
its lemma by its token type. For example, the lemma of
“20:16” is set by TIME. We use five special lemma for the
words with changing digits: YEAR, DATE, TIME, DECADE,
and NUMERAL. The lemma features can help build connec-
tions among time expressions; for example, the two different
words “20:16” and “19:25:33” are connected at TIME.

Table 7 summarizes the features extracted for wi to
modeling time expressions. For the TOMN pre-tag features,
we extracted them in a 5-word window of wi . For the
checking feature, we only considered the current word wi .
For the lemma features, we extracted them for all the words
in text in both training and test phases.

Model Learning and Tagging During modeling and tagging,
each word is assigned with one of the TOMN tags. Note that
the TOMN scheme is used in feature extraction as a kind of
pre-tag features as well as in sequence tagging as labeling
tags.

After sequence tagging, those T, M, and N words (or
non-O words) that appear together are extracted as a time
expression (see Fig. 3a and b). A special kind of modifiers,
i.e., the linkers “to,” “-,” “or,” and “and” separate those
non-O words into parallel time expressions (see Fig. 3c).

UGTO: Named Entity Extraction with
Constituent-Based UGTO Scheme

Characteristic 3 and 4 suggest that for a dataset, those words
of its test sets that hardly appear in the common text of
its training set tend to predict named entities, and they
are mainly proper nouns. This is our main idea for named
entity extraction. Figure 4 visualizes this idea with a simple
example: in the unannotated test set, words like “Boston”
and “Reuters” hardly appear in the training set’s common
text and tend to predict named entities. Such words are also
called uncommon words and they include two kinds: the
first kind appears in the training set’s named entities (e.g.,
“Boston”) while the second kind does not (e.g., “Reuters”).
The remaining of this section illustrates how we developed
our idea in UGTO.

Fig. 3 Examples of time
expression extraction. The
symbol t indicates time
expressions (a) T , M , and N words together form a time expression.

(b) T , M , and N words together form a time expression.

(c) Linker “and” separates two time expressions.
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Jose Hernandez committed 

three of Boston ’s four 

achievements .

The North Africans were 

held to a goalless …

Hernandez told Reuters by 

telephone .

Annotated Training Set Unannotated Test Set

Jose, Hernandez, 

Boston, African, 

American, ...

commit, three, four, the, 

achievement, were, told, 

goalless, telephone, ...

Fig. 4 Main idea: those words (red font) of the test set that hardly
appear in the common text of the training set (bottom-left) tend to
predict named entities. Such words include two kinds: the first kind
(e.g., “Boston”) appears in training set’s named entities (top-left)
while the second kind (e.g., “Reuters”) does not. The training set is
annotated, indicated by the colored background, while the test set is
not. Solid arrow denotes appearing in the training’s named entities
while dashed arrow denotes hardly appearing in the training set’s
common text

UGTO models named entities under a CRFs framework
and follows a typical CRFs procedure. It mainly includes
four components: (1) uncommon word induction, (2) word
lexicon, (3) UGTO scheme, and (4) named entity modeling.

UncommonWord Induction

We induced two kinds of uncommon words from the
annotated training set and the unannotated test set.

For each dataset, the first kind of uncommon words is
induced from the annotated training set. At the beginning,
there is an empty list L. For each word w in the named
entities of its training set, its rate r(w) of hardly appearing
in common text is calculated by Eq. 3. If r(w) reaches
a threshold R, then w is added to L. Like the setting in
“Characteristics,” R is set to 1 for CoNLL03 and 0.95 for
OntoNotes*.

The second kind of uncommon words is induced from the
unannotated test set. They include those words (excluding
those in L) that appear in the unannotated test set and do not
appear in the common text of the training set. Inducing them
is to extract out-of-vocabulary named entities. This kind of
uncommon words can be viewed as the information from the
unannotated data, and note that they can be only used in the
test phase, because the unannotated test set is not available
in the training phase.

Word Lexicon

Word lexicon includes two kinds of entity-related words:
entity token and modifier. Entity tokens are collected from
external sources; some entity tokens are from the entity list
provided by the CoNLL03 shared task [66] and some are

Table 8 Number of word lexicon

Word lexicon Number

Entity token 9658

Generic modifier 17

PER trigger word 31

Other trigger word 116

from Wikipedia.8 Modifiers are collected from the training
set according to the annotation guideline of each dataset;
they include two kinds: generic modifier and trigger word.
Generic modifiers can modify several types of entity tokens,
such as “of” and “and,” while trigger words modify a
specific type of entity tokens, such as “Mr.” modifying PER
entity tokens.

We put all the entity tokens together, without using their
entity types (e.g., PER, LOC, and ORG), so as to remove
the impact of the information carried in entity types. For the
trigger words, we separated PER trigger words from other
trigger words because PER trigger words appear outside
named entities while other trigger words appear inside
named entities.

Unlike previous works that used lexicon in word
sequences [28, 63], we used lexicon in words. For example,
we did not use “Boston University” but used “Boston” and
“University.” Table 8 summarizes the number of the word
lexicon.

UGTO Scheme

The constituent-based UGTO scheme consists of four tags:
U, G, T, and O; they indicate the constituents of named
entities: uncommon word, generic modifier, trigger word,
and the words outside named entities. U encodes uncommon
words and entity tokens. G encodes generic modifiers while
T encodes trigger words.

Named Entity Extraction

Like time expression extraction, named entity extraction
also includes two parts: (1) feature extraction and (2) model
learning and tagging.

Feature Extraction The features we extracted for named
entity extraction include three kinds: UGT pre-tag features,
word cluster features, and basic lexical & POS features. The
ith word in the text is denoted by wi .

UGTO Pre-tag Features: UGTO pre-tag features are
designed to encode the information of those uncommon
words and word lexicon under our UGTO scheme.

8https://en.wikipedia.org/wiki/Lists of cities by country and https://
en.wikipedia.org/wiki/Lists of people by nationality.
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Table 9 Features extracted for
the word wi in named entity
modeling

1 UGTO pre-tags in a 5-word window of wi , namely pre-tag of wi−2, wi−1, wi , wi+1, and wi+2

2 Whether wi is matched by any entity token; whether wi is hyphenized by any entity token

3 Prefix paths of 4, 8, and 12 bits from a hierarchical word clusters for wi

4 wi itself, its lowercase, its lemma, whether the first letter is capitalized, where it is the beginning

of a sentence, POS tag

Specifically, a word is encoded by U if it satisfies
two conditions: (1) it appears in the list L induced
in “Uncommon Word Induction” (i.e., the first kind of
uncommon words) or does not appear in the common text of
training set (i.e., the second kind of uncommon words9); (2)
it has a POS tag of NNP* or is matched by the entity tokens
or is hyphenized by at least one entity token (e.g., “U.S.-
based” and “English-oriented”). A word is encoded by G if
it is matched by any of generic modifiers. A word is encoded
by TP if it is matched by any of PER trigger words; a word
is encoded by T if it is matched by other trigger words.

Besides UGTO pre-tag features, we used two features to
indicate (1) whether a word is matched by any of the entity
tokens and (2) whether a word is hyphenized by any of the
entity tokens.

Word Cluster Features: Previous works have demon-
strated that word clusters are useful for many information
extraction tasks [34, 50]. We followed those words to derive
the prefix paths of 4, 8, and 12 bits from a hierarchical
word clusters as features for a word. In practice, we used
the publicly available word clusters: the bllip-clusters for
the CoNLL03 dataset and the one trained by OntoNotes 5.0
corpus [57] for the OntoNotes* dataset.

Lexical & POS Features: The lexical & POS features are
widely used for named entity modeling and we extracted
three kinds of such features for wi : (1) the word wi itself,
its lowercase, and its lemma; (2) whether its first letter is
capitalized and whether it is the beginning of a sentence;
and (3) its POS tag.

Table 9 summarizes the features extracted for wi to
modeling named entities. For the UGTO pre-tag features
and lexical & POS features, we extracted them in a 5-word
window of wi , namely the features of wi−2, wi−1, wi , wi+1,
and wi+2. For the word cluster features we consider them
for only the wi .

Model Learning and Tagging UGTO uses Stanford Tagger
to get word lemma and POS tags and uses Java version of
CRFSuite with its default parameters for modeling. Note
that the UGTO scheme is used in feature extraction as a kind
of pre-tag features as well as in sequence tagging as labeling
tags.

9Note that this kind of uncommon words are not available in the
training phase because they are extracted from the unannotated test set.

After sequence tagging, we extracted named entities from
tagged sequences. For the models excluding entity types
from labeling tags (in Experiment 1), those U, G, and
T words that appear together form a named entity (see
Example (1)∼(3) in Table 14). For the models incorporating
entity types into labeling tags (in Experiment 2), those
consecutive words that are tagged with the same entity type
form a named entity (see Example (4)∼(6) in Table 14).

Experiments

Time Expression Extraction

We conducted experiments to evaluate TOMN against
five state-of-the-art methods, namely HeidelTime (with
the Colloquial setting for Tweets), SUTime, SynTime,
ClearTK-TimeML (short as “ClearTK”), and UWTime, on
three datasets, namely TE-3, WikiWars, and Tweets.10

Experimental Setup

Datasets The three datasets used for the experiments of
time expression extraction are TE-3, WikiWars, and Tweets.
TE-3 uses the TimeBank corpus as the training set and the
Platinum corpus as the test set [75]. WikiWars is a domain-
specific dataset in formal text, consisting of 22 English
Wikipedia articles about famous wars [48]. Tweets is a
comprehensive dataset in informal text, with 942 tweets that
contain time expressions [82]. The performance of a method
on a dataset is reported on the test set of that dataset.

Baseline Methods We evaluated TOMN against five state-
of-the-art methods, including three rule-based methods (i.e.,
HeidelTime, SUTime, and SynTime) and two learning-
based methods (i.e., ClearTK and UWTime). HeidelTime
[71] and SUTime [9] use predefined deterministic rules
and achieve the best results in the relaxed match while
ClearTK [5] uses a CRFs framework with the BIO scheme
and achieves the best result in the strict match in TempEval-
3 [75]. UWTime uses combinatory categorial grammar
(CCG) to predefine linguistic structure for time expressions

10We followed [82] not to use the Gigaword dataset in experiments
because its labels are not ground-truth labels, but are automatically
generated by other taggers.
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and achieves better results than HeidelTime on the TE-
3 and WikiWars datasets [32]. SynTime uses a set of
general heuristic rules and achieves good results on the TE-
3, WikiWars, and Tweets datasets [82]. SynTime has two
versions, a basic version and an expanded version. Because
the expanded version requires extra manual annotations, for
fair comparison, we used the basic version to ensure that the
token regular expressions used in SynTime and TOMN are
comparable.

EvaluationMetrics We reported results in the three standard
metrics Precision, Recall, and F1 under strict match and
relaxed match by using the evaluation toolkit of TempEval-3
[75].

Experiment Results

Table 10 reports the performance of TOMN and baseline
methods. Among the 18 measures, TOMN achieves 13
best or second best results. It is better than SynTime
which achieves 10 best or second best ones, and much
better than other baselines which achieve at most 4 best or
second best. For each measure, TOMN achieves either the
best or comparable results. Especially for the F1, TOMN
performs the best in strict F1 on Tweets and in relaxed F1

on WikiWars; for other F1, TOMN performs comparably

(most are within 0.5% difference) to the corresponding best
results.

TOMN vs. Baseline Methods We further compared TOMN
with the rule-based methods and the learning-based
methods.

TOMN vs. Rule-based Baselines. On TE-3 and Tweets,
TOMN achieves comparable results with SynTime. On
WikiWars, TOMN achieves the F1 with 2.0 to 2.3% absolute
increase over SynTime. This indicates that compared with
SynTime, TOMN is equally effective on comprehensive
data and more effective on specific domain data. The
reason is that the heuristic rules of SynTime are greedy for
recalls at the cost of precisions, and the cost is expensive
when it comes to specific domain data. TOMN instead
leverages statistical information from entire corpus, which
may miss the rare time expressions but helps recognize time
expressions more precisely; especially in specific domain
data, the statistical information significantly improves
the precisions at little cost of recalls. For HeidelTime
and SUTime, except the strict F1 on WikiWars, TOMN
outperforms them on all the datasets, with up to 15.3%
absolute increase in recalls and up to 12.0% absolute
increase in F1. The reason is that the deterministic rules
of HeidelTime and SUTime are designed in fixed manner,
which lacks flexibility [82].

Table 10 Performance of
TOMN and baseline methods Dataset Method Strict match Relaxed match

Pr . Re. F1 Pr . Re. F1

TE-3 HeidelTime 83.85 78.99 81.34 93.08 87.68 90.30

SUTime 78.72 80.43 79.57 89.36 91.30 90.32

SynTime 91.43 92.75 92.09 94.29 95.65 94.96

ClearTK 85.90 79.70 82.70 93.75 86.96 90.23

UWTime 86.10 80.40 83.10 94.60 88.40 91.40

TOMN 92.59 90.58 91.58 95.56 93.48 94.51

WikiWars HeidelTime 88.20 78.50 83.10 95.80 85.40 90.30

SUTime 78.61 76.69 76.64 95.74 89.57 92.55

SynTime 80.00 80.22 80.11 92.16 92.41 92.29

ClearTK 87.69 80.28 83.82 96.80 90.54 93.56

UWTime 87.70 78.80 83.00 97.60 87.60 92.30

TOMN 84.57 80.48 82.47 96.23 92.35 94.25

Tweets HeidelTime 91.67 74.26 82.05 96.88 78.48 86.71

SUTime 77.69 79.32 78.50 88.84 90.72 89.77

SynTime 89.52 94.07 91.74 93.55 98.31 95.87

ClearTK 86.83 75.11 80.54 96.59 83.54 89.59

UWTime 88.36 70.76 78.59 97.88 78.39 87.06

TOMN 90.69 94.51 92.56 93.52 97.47 95.45

For each measure, we make bold the best results and underline the second best. Some results are reported
directly from the sources where the results are publicly available
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TOMN vs. Learning-based Baselines. Except the strict F1

on WikiWars, TOMN outperforms ClearTK and UWTime
on all three datasets in all the recalls and F1. Especially on
TE-3 and Tweets datasets, TOMN improves the recalls by
at least 9.8% in strict match and at least 5.1% in relaxed
match, and improves the F1 by at least 8.5% in strict match
and at least 3.1% in relaxed match. The reasons are that
the fixed linguistic structure predefined in UWTime cannot
fully capture the loose structure of time expressions, the
BIO scheme used in ClearTK reduces the predictive power
of time tokens, and some of their features (e.g., syntactic
dependency) actually hurt the modeling. For the strict F1

on WikiWars, TOMN performs slightly worse than the
two learning-based methods because like SynTime, TOMN
follows TimeBank and SynTime to exclude the prepositions
(except “of”) from time expressions while some time
expressions in WikiWars include these prepositions.

Factor Analysis We conduct experiments to analyze the
impact of the TOMN scheme as labeling tags and the
features used in TOMN. The results are reported in Table 11.

Impact of TOMN Labeling Tags. To analyze the impact
of the TOMN scheme as labeling tags, we keep all the
features unchanged except change the labeling tags from
TOMN scheme to BIO scheme to get a BIO system and
to BILOU scheme to get a BILOU system. The BIO and
BILOU systems use the same TOMN pre-tag features and
lemma features that are used in TOMN.

The tag assignment of BIO and BILOU schemes
during feature extraction in the training stage follows their
traditional use; for example, a unit-word time expression is
assigned with B under BIO scheme while it is assigned with
U under BILOU scheme. When extracting time expressions
from tagged sequence in the test stage, we adopt two
strategies. One strategy follows their traditional use in
which time expressions are extracted according to the tags
of words; for example, a U word under BILOU scheme is
extracted as a time expression. The other strategy follows
the one used for TOMN in which the non-O words that
appear together are extracted as a time expression. The
traditional strategy is denoted by “trad” while the non-O
strategy is by “nono.” The results of the BIO and BILOU

Table 11 Impact of factors
Dataset Method Strict match Relaxed match

Pr . Re. F1 Pr . Re. F1

TE-3 TOMN 92.59 90.58 91.58 95.56 93.48 94.51
BIOtrad 83.06 74.64 78.63 94.35 84.78 89.31

BIOnono 84.68 76.09 80.15 94.35 84.78 89.31

BILOUtrad 84.75 72.46 78.12 94.92 81.16 87.50

BILOUnono 86.44 73.91 79.69 94.92 81.16 87.50

−PreTag 89.36 60.87 72.41 95.74 65.22 77.59

−Lemma 81.56 83.33 82.44 92.20 94.20 93.19

WikiWars TOMN 84.57 80.48 82.47 96.23 92.35 94.25
BIOtrad 77.75 71.03 74.24 93.39 85.31 89.17

BIOnono 77.75 71.03 74.24 93.39 85.31 89.17

BILOUtrad 79.56 72.03 75.61 93.56 84.71 88.91

BILOUnono 79.78 72.23 75.82 93.56 84.71 88.91

−PreTag 87.22 70.02 77.68 99.25 79.68 88.39

−Lemma 74.80 75.25 75.03 92.20 92.56 92.28

Tweets TOMN 90.69 94.51 92.56 93.52 97.47 95.45
BIOtrad 89.16 93.67 91.36 92.37 97.05 94.65

BIOnono 90.24 93.67 91.93 93.50 97.05 95.24

BILOUtrad 89.37 95.78 92.46 92.13 98.73 95.32

BILOUnono 90.65 94.09 92.34 93.50 97.06 95.24

−PreTag 92.41 61.60 73.92 98.10 65.40 78.48

−Lemma 90.69 94.51 92.56 93.52 97.47 95.45

“BIO” denotes the systems that replace TOMN labeling tags by BIO tags while “BILOU” denotes the
systems that replace by BILOU tags. “trad” indicates the traditional strategy for extraction while “nono”
indicates the non-O strategy. “−” indicates the kind of features removed from TOMN; “PreTag” denotes
the TOMN pre-tag features; and “Lemma” denotes the lemma features. For each measure, the best result is
made bold
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systems are reported as “BIO” and “BILOU” in Table 11.
We can see that the non-O strategy performs almost the
same as the traditional strategy, and the BIO systems
achieve comparable or slightly better results compared with
the BILOU systems. The reason is that time expressions
on average contain about two words; in that case, BILOU
scheme is reduced approximately to BLOU scheme and
BIO scheme is changed approximately to BLO scheme.
Between BLOU scheme and BLO scheme there is only
slight difference; and under the impact of inconsistent
tag assignment and TOMN pre-tag features, this slight
difference affects slightly to the performance. Following we
do not distinguish BILOU scheme from BIO scheme and
do not distinguish non-O strategy from traditional strategy;
the four methods of BIOtrad , BIOnono, BILOUtrad , and
BILOUnono are simply represented by “BILOU.”

On TE-3 and WikiWars, TOMN significantly outper-
forms BILOU. TOMN achieves the recalls that are 7.0 to
14.5% absolute higher than those of BILOU and achieves
the F1 that are 5.0 to 11.4% absolute higher than those
of BILOU. The reason is that the loose collocations and
exchangeable order in time expressions lead BILOU scheme
to suffer from the problem of inconsistent tag assignment;
TOMN scheme instead overcomes that problem.

On Tweets, TOMN and BILOU achieve similar perfor-
mance; the difference between their performance ranges
within 1% in most measures. The reason is that 62.9%
of time expressions in Tweets are one-word time expres-
sions and 96.0% of time expressions contain time tokens,
which means the one-word time expressions contain only
the time tokens. In that case, TOMN scheme is reduced
approximately to TO scheme and BILOU scheme is reduced
approximately to UO scheme. Then UO scheme becomes a
constituent-based tagging scheme in which U indicates the
time token. It is equivalent to TO scheme. (BIO scheme is
reduced approximately to BO scheme in which B indicates
the time token. Then BO scheme is equivalent to TO scheme
as well as UO scheme.)

Impact of TOMN Pre-tag Features. To analyze the impact
of TOMN pre-tag features, we remove them from TOMN.
After they are removed, although most of the precisions
increase and even reach highest scores, all the recalls and
F1 drop dramatically, with absolute decreases of 10.4 to
32.9% in recall and 4.8 to 19.1% in F1. That means TOMN
pre-tag features significantly improve the performance and
confirms the predictive power of time tokens. The results
also validate that pre-tag is a good way to use those lexicon.

Impact of Lemma Features. When lemma features are
removed, the performance in relaxed match on all the
datasets is affected slightly. That is because TOMN pre-
tag features provide useful information to recognize time
tokens. The strict match on TE-3 and WikiWars decreases
dramatically, indicating that lemma features heavily affect

the recognition of modifiers and numerals. The strict match
on Tweets is affected little because tweets tend not to use
modifiers and numerals in time expressions.

Named Entity Extraction

Experimental Setup

Datasets The two benchmark datasets used for the exper-
iments of named entity extraction are CoNLL03 [66] and
OntoNotes* [57]. They are detailed in “Datasets.”

Baseline Methods The compared methods include two
representative state-of-the-art methods: StanfordNER [20]
and LSTM-CRF [31]. StanfordNER derives hand-crafted
features under CRFs with the BIO scheme. LSTM-CRF
derives automatic features learned by long short-term
memory networks (LSTMs) [25] under CRFs with the
IOBES scheme. We used StanfordNER as the representative
of those traditional hand-crafted-feature methods and
LSTM-CRF as the representative of those auto-learned-
feature methods.

Evaluation Metrics We used the evaluation toolkit of the
CoNLL2003 shared task [66] to report results under the
three standard metrics: Precision, Recall, and F1.

Experimental Design

We designed two kinds of experiments to evaluate UGTO
against the two baselines.

– Experiment 1 Exclude entity types from labeling tags
during the whole process.

– Experiment 2 Incorporate entity types into labeling tags
during modeling and tagging (i.e., training and testing, but
not evaluation).

Experiment 1 is a pure entity extraction task. In this
experiment, the labeling tags of UGTO are {U, G, T, O}; the
ones of StanfordNER are {B, I, O}; the ones of LSTM-CRF
are {I, O, B, E, S}.

Experiment 2 is a joint named entity extraction and clas-
sification task (i.e., NER). Designing this experiment is
to test whether does named entity classification enhance
named entity extraction during modeling? In this experi-
ment, the labeling tags for UGTO are the combination of
{U, G, T, O} and entity types, such as U-PER, G-LOC, and
O; similarly, the labeling tags for StanfordNER and LSTM-
CRF are the combination of their basic tags and entity types,
such as B-PER, I-LOC, and O.
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Table 12 Named entity
extraction performance of
UGTO and baselines. “w/o”
indicates Experiment 1 and
“w/type” indicates
Experiment 2

Dataset Method Dev. set Test set

Pr . Re. F1 Pr . Re. F1

CoNLL03 StanfordNERw/o 95.80 95.93 95.86 93.28 93.59 93.43

StanfordNERw/type 96.43 95.36 95.89 93.77 92.49 93.13

LSTM-CRFw/o 94.96 95.46 95.21 92.02 93.48 92.74

LSTM-CRFw/type 95.68 94.36 95.02 92.99 91.55 92.27

UGTOw/o 95.84 96.21 96.02 94.15† 94.56† 94.35†

UGTOw/type 96.24 95.76 96.00 94.29† 94.18† 94.23†

OntoNotes* StanfordNERw/o 92.38 91.62 92.00 93.11 91.99 92.54

StanfordNERw/type 93.17 91.17 92.16 93.69 90.96 92.31

LSTM-CRFw/o 91.41 91.86 91.64 92.35 91.91 92.13

LSTM-CRFw/type 92.52 90.32 91.41 93.37 90.28 91.80

UGTOw/o 93.28 92.08† 92.67† 93.43 92.26 92.84†

UGTOw/type 93.32 92.01† 92.66† 93.62 92.17† 92.89†

†Improvement of our result over the best one of baselines is statistically significant (p < 0.05 under
t test). For each measure, the best result is made bold

We were concerned with named entity extraction and
reported only the performance of named entity extraction.
For Experiment 2, after named entities were extracted, we
converted them to the CoNLL format and removed their
entity types so as to report the performance of named entity
extraction. We did the same conversion for both UGTO and
the two baselines.

Experimental Results

Table 12 reports the overall performance of UGTO and the
two baselines in named entity extraction.

UGTOw/o vs. Baselines in Experiment 1 UGTOw/o out-
performs StanfordNERw/o and LSTM-CRFw/o on
both datasets in recall and F1. Specially , UGTOw/o

reduces 3.86%∼14.00% of error in F1. Compared with
StanfordNERw/o which mainly treats the named entities

of training set as a kind of dictionary, UGTOw/o explicitly
takes into account both the named entities and common text
of training set. The second kind of uncommon words can
help extract more out-of-vocabulary named entities.

Let us look at LSTM-CRF. According to literature,
LSTM-CRF significantly outperforms StanfordNER on the
NER task [31], however, it performs comparably with or
worse than UGTOw/o and StanfordNERw/o on named entity
extraction. This indicates that simple hand-crafted-feature
methods can achieve state-of-the-art performance on named
entity extraction.

Experiment 2 vs. Experiment 1 For each of UGTO and
baselines, we compared its performance in Experiment 2
with its performance in Experiment 1. On both CoNLL03
and OntoNotes* datasets, UGTOw/type and UGTOw/o

perform similar; StanfordNERw/type and StanfordNERw/o

perform similar; LSTM-CRFw/type and LSTM-CRFw/o

Table 13 Impact of factors.
“BIO” indicates the systems
that replace UGTO labeling
tags by BIO tags. “−” indicates
removing this factor from
UGTOw/o

Dataset Method Dev. set Test set

Pr . Re. F1 Pr . Re. F1

CoNLL03 UGTOw/o 95.84 96.21 96.02 94.15 94.56 94.35

BIO 94.78 95.14 94.96 93.66 94.02 93.83

−UGTO PreTag 94.68 93.23 93.95 93.47 91.04 92.34

−Word Clusters 95.09 94.96 95.02 94.01 93.23 93.62

OntoNotes* UGTOw/o 93.28 92.08 92.67 93.43 92.26 92.84

BIO 92.63 91.05 91.83 92.87 91.35 92.10

−UGTO PreTag 92.65 90.08 91.35 92.71 89.64 91.15

−Word Clusters 92.67 90.74 91.69 93.22 92.16 92.68

For each measure, the best result is made bold

858 Cogn Comput  (2020) 12:844–862



Table 14 Examples of named
entity extraction

Colored background indicates named entities

also perform similar. That means that the joint task of named
entity extraction and classification does not improve the
performance of named entity extraction, in both our model
and the two baselines.

Factor Analysis in Experiment 1 We conducted controlled
experiments to analyze the impact of UGTO labeling tags
and the features that are used in UGTO. Their results are
reported in Table 13.

Impact of UGTO Labeling Tags. To analyze the impact
of UGTO labeling tags, we replaced them by BIO tags (as
well as IOBES tags) and kept other factors unchanged. The
BIO and IOBES schemes achieve similar results and we
reported the results of the BIO scheme. UGTOw/o performs
better than BIO, because the UGTO scheme overcomes the
problem of inconsistent tag assignment [81].

Impact of UGTO Pre-tag Features. We remove the
UGTO pre-tag features from UGTOw/o to analyze their
impact. We can see that UGTO pre-tag features significantly
improve the performance, with about absolute 2.0%
improvements.

Impact of Word Clusters. Word clusters are helpful in
UGTO (about 0.45% improvement) but not significant as
their impact in some other works [34, 50, 53, 63]. The
reason is that the UGTO pre-tag features play a similar role
as word clusters in improving the coverage and connecting
words at the abstraction level.

Error Analysis

There is a limitation in UGTO: when extracting named
entities from tagged sequence, UGTO might wrongly treat
several consecutive entities as a named entity. Comparing
Example (3) and (6) in Table 14, for example, UGTO
extracts two named entities “Australian” and “Tom Moody”
as a named entity “Australian Tom Moody.”

Conclusion

In this paper, we analyzed intrinsic characteristics of time
expressions from four diverse datasets and the ones of
named entities from two benchmark datasets. According to
these characteristics, we designed two learning-based meth-
ods under conditional random fields with a new type of
constituent-based tagging schemes to extract time expres-
sions and named entities from unstructured text. Our
constituent-based tagging schemes overcome the problem
of inconsistent tag assignment that is caused by the conven-
tional position-based tagging schemes. Experiments demon-
strate that our proposed methods perform either equally
with or better than representative state-of-the-art models
on time expression extraction and named entity extraction.
Experimental results also demonstrate that the joint model-
ing of named entity extraction and classification does not
improve the performance of named entity extraction.
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